首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Confocal laser scanning microscopy of rat follicle development.   总被引:1,自引:0,他引:1  
This study used confocal laser scanning microscopy (CLSM) to study follicular development in millimeter pieces of rat ovary. To use this technology, it is essential to stain the tissue before laser excitation with the confocal microscope. Various fluorescent stains (Yo-Pro, Bo-Pro, LysoTracker Red, hydroethidine, ethidium bromide, and 7-aminoactinomycin-d) were applied either to fresh tissue or to tissue that had been fixed with glutaraldehyde or paraformaldehyde. After fixation and staining, the tissue was dehydrated with MEOH and cleared with benzyl alcohol/benzyl aldehyde. CLSM was then used with the appropriate laser excitation, dichroics, and bandpass filters to acquire images of oocytes contained in follicles. Analysis of the data revealed three principal findings. First, a rapid increase in oocyte size occurred in the preantral stages of follicle development. In the antral stage of follicle development, there was a rapid increase in follicle size without any substantial increase in oocyte size. Second, accompanying these changes in oocyte and follicle growth was a differential staining pattern in which the nucleus stained more than the cytoplasm in a young follicle, but stained less than the cytoplasm as the follicle enlarged into the late antral stage. Lastly, using CLSM, atretic follicles showed increased LysoTracker Red staining in the granulosa region of the antral follicle, suggestive of cell death.  相似文献   

2.
BACKGROUND: After fluorochromes are incorporated into cells, tissues, and organisms, confocal microscopy can be used to observe three-dimensional structures. LysoTracker Red (LT) is a paraformaldehyde fixable probe that concentrates into acidic compartments of cells and indicates regions of high lysosomal activity and phagocytosis, which both correlate to apoptosis activity. LT has been shown to be an indicator of apoptotic cell death which is correlated to other standard apoptotic assays. METHODS: The mammalian samples were stained with LT, fixed with paraformaldehyde/glutaraldehyde, dehydrated with methanol (MEOH), and cleared with benzyl alcohol/benzyl benzoate (BABB). Following this treatment, the tissues were nearly transparent. Mosquitoes were fixed with MEOH and stained with propidium iodide. Next the tissues were dehydrated with MEOH and cleared with BABB. RESULTS: Tissues as thick as 500 microm can be visualized after clearing with BABB. LT staining revealed apoptotic regions in mammalian limbs, fetuses, and embryos. Morphological observation of insect tissue consisted of combining autofluorescence with either nucleic acid staining (either propidium iodide or ethidium bromide). CONCLUSIONS: The use of BABB matches the RI of the tissue within the suspending medium. It helps in increasing the penetration of laser light in a confocal microscope by reducing the amount of light scattering artifacts and allows for the visualization of morphology in thick tissues. LT is a probe that stains the acid regions of tissues and cells and has been correlated to apoptosis. Morphological features of a tissue or organism (embryo, mosquito larvae) can be elucidated by fixation aldehydes, autofluorescence, and red-emitting probes. This sample preparation procedure with optimization of confocal laser scanning microscopy allowed for the detection and visualization of apoptosis in fetal limbs and embryos which were approximately 500-microm thick.  相似文献   

3.
BACKGROUND: Choline is an essential nutrient in methylation, acetylcholine and phospholipid biosynthesis, and in cell signaling. The demand by an embryo or fetus for choline may place a pregnant woman and, subsequently, the developing conceptus at risk for choline deficiency. METHODS: To determine whether a disruption in choline uptake and metabolism results in developmental abnormalities, early somite staged mouse embryos were exposed in vitro to either an inhibitor of choline uptake and metabolism, 2-dimethylaminoethanol (DMAE), or an inhibitor of phosphatidylcholine synthesis, 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH(3)). Cell death following inhibitor exposure was investigated with LysoTracker Red and histology. RESULTS: Embryos exposed to 250-750 microM DMAE for 26 hr developed craniofacial hypoplasia and open neural tube defects in the forebrain, midbrain, and hindbrain regions. Embryos exposed to 125-275 microM ET-18-OCH(3) exhibited similar defects or expansion of the brain vesicles. ET-18-OCH(3)-affected embryos also had a distended neural tube at the posterior neuropore. Embryonic growth was reduced in embryos treated with either DMAE (375, 500, and 750 microM) or ET-18-OCH(3) (200 and 275 microM). Whole mount staining with LysoTracker Red and histological sections showed increased areas of cell death in embryos treated with 275 microM ET-18-OCH(3) for 6 hr, but there was no evidence of cell death in DMAE-exposed embryos. CONCLUSIONS: Inhibition of choline uptake and metabolism during neurulation results in growth retardation and developmental defects that affect the neural tube and face.  相似文献   

4.
The influence of vital staining with trypan blue or fluorescein diacetate on the fertilization of mouse oocytes and the developmental potential of mouse embryos was assessed. Neither stain induced spontaneous activation in mouse oocytes, nor did they impair the in vitro development and implantation of mouse zygotes, two-cell embryos, stressed morulae or blastocysts. However, fertilization and subsequent development of mouse oocytes have been shown to be reduced by vital staining.  相似文献   

5.
Embryonic cell number in miniature pigs inbred for specific SLA haplotypes (a, c, and d) was determined on Day 6 by nuclear staining and, on Days 9 and 11, by DNA analyses (first day of oestrus = Day 0). Pigs exhibiting first behavioural oestrus at 08:00 h were hand-mated to an SLA homozygous boar 12 and 24 h later. Numbers of embryos flushed from uteri at 08:00-10:00 h on Days 6, 9 and 11 were greater (P less than 0.05) for SLAd females than for SLAa or SLAc females, which did not differ (8.2 vs 6.8 and 6.2, respectively). Recovery rates (embryos recovered/CL number) were similar, averaging 75.8% for all three SLA haplotypes. Embryos from SLAd dams contained fewer blastomeres (23 cells) on Day 6 than did embryos from SLAa (89 cells) or SLAc (79 cells) females. The reduced cell numbers of SLAd vs SLAa or SLAc embryos continued to Day 9 (28 vs 107 and 67 ng DNA/embryo) and Day 11 (167 vs 674 and 586 ng DNA/embryo). These results suggest an effect of the SLA complex on preimplantation embryonic development.  相似文献   

6.
Programmed cell death (PCD) occurs in adults to maintain normal tissue homeostasis and during embryological development to shape tissues and organs1,2,6,7. During development, toxic chemicals or genetic alterations can cause an increase in PCD or change PCD patterns resulting in developmental abnormalities and birth defects3-5. To understand the etiology of these defects, the study of embryos can be complemented with in vitro assays that use differentiating embryonic stem (ES) cells.Apoptosis is a well-studied form of PCD that involves both intrinsic and extrinsic signaling to activate the caspase enzyme cascade. Characteristic cell changes include membrane blebbing, nuclear shrinking, and DNA fragmentation. Other forms of PCD do not involve caspase activation and may be the end-result of prolonged autophagy. Regardless of the PCD pathway, dying cells need to be removed. In adults, the immune cells perform this function, while in embryos, where the immune system has not yet developed, removal occurs by an alternative mechanism. This mechanism involves neighboring cells (called "non-professional phagocytes") taking on a phagocytic role-they recognize the ''eat me'' signal on the surface of the dying cell and engulf it8-10. After engulfment, the debris is brought to the lysosome for degradation. Thus regardless of PCD mechanism, an increase in lysosomal activity can be correlated with increased cell death.To study PCD, a simple assay to visualize lysosomes in thick tissues and multilayer differentiating cultures can be useful. LysoTracker dye is a highly soluble small molecule that is retained in acidic subcellular compartments such as the lysosome11-13. The dye is taken up by diffusion and through the circulation. Since penetration is not a hindrance, visualization of PCD in thick tissues and multi-layer cultures is possible12,13. In contrast, TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) analysis14, is limited to small samples, histological sections, and monolayer cultures because the procedure requires the entry/permeability of a terminal transferase.In contrast to Aniline blue, which diffuses and is dissolved by solvents, LysoTracker Red DND-99 is fixable, bright, and stable. Staining can be visualized with standard fluorescent or confocal microscopy in whole-mount or section using aqueous or solvent-based mounting media12,13. Here we describe protocols using this dye to look at PCD in normal and sonichedgehog null mouse embryos. In addition, we demonstrate analysis of PCD in differentiating ES cell cultures and present a simple quantification method. In summary, LysoTracker staining can be a great complement to other methods of detecting PCD.  相似文献   

7.
Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo’s integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development.  相似文献   

8.
In a mouse model, in vitro fertilization or extended embryo culture leads to the increased expression of TRP53 in susceptible embryos. Ablation of the TRP53 gene improved embryo viability indicating that increased expression of TRP53 is a cause of the reduction of embryo viability resulting from in vitro fertilization or embryo culture. This study investigates the status of TRP53 expression in human embryos produced by intracytoplasmic sperm injection. Following fertilization, embryos were cultured for 96 h and then cryopreserved. Immediately upon thawing they were fixed in formaldehyde and subjected to immunostaining for TRP53. Staining was visualized by confocal microscopy. Negative controls were incubated with isotype control immunoglobulin and showed negligible staining. All embryos showed TRP53 staining above negative controls. TRP53 staining was heterogenous within and between embryos. An embryo that showed retarded development showed high levels of TRP53 expression. A blastocyst that had a collapsed blastocoel also showed high levels of TRP53 compared to morphologically normal blastocysts. Most TRP53 staining was in the region of the nucleus. Morphologically normal blastocysts tended to show little nuclear accumulation of stain. However, some cells within these embryos had high levels of nuclear TRP53 expression. The results show that embryos have varying sensitivity to the stresses of production and culture in vitro, and this resulted in variable expressivity of TRP53.  相似文献   

9.
In this study, we have investigated the distribution of adenosine deaminase (ADA) in embryonic, extra-embryonic, and decidual tissues of the developing mouse embryo. ADA catalyzes a key step in purine metabolism converting adenosine to inosine. ADA specific activity (nmol/min/micrograms protein) was present at low levels in the embryo-decidual unit during the first 2 days of postimplantation development but then increased starting late on Day 6 of gestation (Day 0 plug). By Day 9, ADA specific activity was 80-fold higher than on Day 6. A histochemical staining method for ADA activity was applied to cryostat sections of the implantation site. The developmental increase localized primarily to the trophoblast/antimesometrial decidua interface between Days 7 and 9 of gestation, and decidua basalis and the metrial gland by Day 11. Immunofluorescent staining with sheep anti-mouse ADA antiserum confirmed the presence of ADA antigenicity in tissues forming the maternal/fetal interface. ADA specific activity was 19-fold higher in homogenates of the Day 11 decidua/parietal yolk sac than in the thymus, a tissue generally thought of as ADA-rich. High levels of ADA activity and immunoreactivity were also detected in the embryonal plasma during organogenesis, but the embryo proper showed only low levels. These results indicate that ADA is tightly regulated within tissues forming the maternal/fetal interface during early postimplantation stages of development.  相似文献   

10.
The production of cloned equine embryos remains highly inefficient. Embryo aggregation has not yet been tested in the equine, and it might represent an interesting strategy to improve embryo development. This study evaluated the effect of cloned embryo aggregation on in vitro and in vivo equine embryo development. Zona-free reconstructed embryos were individually cultured in microwells (nonaggregated group) or as 2- or 3-embryo aggregates (aggregated groups). For in vitro development, they were cultured until blastocyst stage and then either fixed for Oct-4 immunocytochemical staining or maintained in in vitro culture where blastocyst expansion was measured daily until Day 17 or the day on which they collapsed. For in vivo assays, Day 7-8 blastocysts were transferred to synchronized mares and resultant vesicles, and cloned embryos were measured by ultrasonography. Embryo aggregation improved blastocyst rates on a per well basis, and aggregation did not imply additional oocytes to obtain blastocysts. Embryo aggregation improved embryo quality, nevertheless it did not affect Day 8 and Day 16 blastocyst Oct-4 expression patterns. Equine cloned blastocysts expanded and increased their cell numbers when they were maintained in in vitro culture, describing a particular pattern of embryo growth that was unexpectedly independent of embryo aggregation, as all embryos reached similar size after Day 7. Early pregnancy rates were higher using blastocysts derived from aggregated embryos, and advanced pregnancies as live healthy foals also resulted from aggregated embryos. These results indicate that the strategy of aggregating embryos can improve their development, supporting the establishment of equine cloned pregnancies.  相似文献   

11.
BACKGROUND: The most comprehensive evaluation of vertebrate skeletal development involves the use of Alizarin Red S dye to stain ossified bone and various other dyes to stain cartilage. The dye used most widely to stain fetal cartilage in rodents and rabbits is Alcian Blue 8GX. However, the global supply of this specific dye has been exhausted. Several forms of the dye marketed as Alcian Blue 8GX are now available, although they are not synthesized via the original 8GX manufacturing process. METHODS: One new Alcian Blue 8GX form and two Alcian Blue dye variants were evaluated in rats and rabbits using standard staining procedures. The staining quality of these dyes were evaluated relative to the original form of Alcian Blue 8GX based on cartilage uptake of the dye, clarity of the cartilaginous components, staining intensity of the dye, and overall readability of the specimens under stereomicroscopic evaluation. RESULTS: Staining with the newer form of Alcian Blue 8GX resulted in poor staining quality. The Alcian Blue-Pyridine variant performed well, although staining intensity was less than optimal. The Alcian Blue-Tetrakis variant provided staining characteristics that were most similar to the original form of Alcian Blue 8GX. CONCLUSIONS: Alcian Blue-Tetrakis was markedly better in its ability to stain fetal cartilage than the newer form of Alcian Blue 8GX.  相似文献   

12.
The objectives of this study were to evaluate embryonic size and survival, plasma progesterone (P4) and pregnancy-specific protein bovine (PSPB) concentrations in early pregnancies (n = 99) following the transfer of one whole (n = 66) or one demi (n = 33) embryo to recipient virgin dairy heifers. The experiment was designed to evaluate the fixed effects of embryo size at transfer (whole or demi embryo) on Day 7 of the estrous cycle (Day 0 = estrus) and P4 supplementation between Days 7 to 19 through an intravaginal device (yes or no) on plasma P4 and PSPB concentrations and on embryo measurements. Plasma P4 concentrations were measured by RIA on Days 0, 7, 14, 19, 21, 25, 35, 42, 49, 56 and 63 of pregnancy and, PSPB concentrations were measured by ELISA on Days 7, 21, 25, 35, 42, 49, 56 and 63. The presence of an embryonic vesicle was detected on Day 25, embryonic/fetal movements and heartbeat were evaluated on Days 42 and 63 and embryo measurements [crown-rump length (CRL) and width at mid body] were obtained on Day 42 through ultrasonography.In non-supplemented pregnancies, Day 42 whole embryos had higher (P < 0.05) CRL and width than demi embryos, but the difference averaged only 1 to 2 mm. In P4 supplemented pregnancies, whole and demi embryos attained a similar size on Day 42 of pregnancy. Embryo size at transfer, early exogenous P4 supplementation and their interactions had no effects (P > 0.05) on plasma P4 concentrations. However, the post-hoc LSD evaluation showed that plasma P4 concentrations on Day 25 were higher (P < 0.001) in whole than in demi embryo derived pregnancies and, that exogenous P4 supplementation increased (P < 0.05) plasma P4 concentrations on Day 19 of pregnancy. The plasma PSPB detection rate on Days 7 to 63 of pregnancy was similar in pregnancies resulting from the transfer of whole and demi embryos. From a total of 93 recipients remaining pregnant until Day 63, plasma PSPB was constantly undetectable on Day 7, was detected in 4% of Day 21 samples, 41% of Day 25, 95% of Day 35, 96% of Day 42, 99% of Day 49 and in 100% of samples of Days 56 and 63. Concentrations of PSPB increased (P < 0.05) from Days 21 to 42 and from Days 56 to 63, with a plateau between Days 42 to 56. Demi embryo pregnancies had higher (P < 0.05) plasma PSPB concentrations on Days 35 and 42 than whole embryo pregnancies. Progesterone supplementation had a positive effect (P < 0.01) on PSPB concentrations from Days 35 to 63. Concentrations of PSPB were similar in non-supplemented whole and demi embryo pregnancies from Days 7 to Day 63. In contrast, in supplemented recipients, demi embryo pregnancies had higher (P < 0.05) PSPB concentrations on Days 25 to 42 than whole embryo pregnancies. No significant correlation was found between P4 and PSPB concentrations or between the concentrations of these hormones and embryonic measurements on Day 42. In conclusion, demi embryos experienced a compensatory growth until Day 42 of pregnancy, attaining a similar size to that of whole embryos and originating conceptuses producing similar plasma PSPB concentrations to those of whole embryo derived conceptuses. Embryonic growth and conceptus secretion of PSPB were positively stimulated by early pregnancy exogenous P4 treatment.  相似文献   

13.
14.
ABSTRACT: Background Our previous work found that mouse embryos could invade malignant cancer cells. In the process of implantation, embryo trophoblast cells express matrix metalloproteinases and the invasive ability of trophoblast cells is proportional to matrix metalloproteinase-9 protein expression. So the purpose of this study is to observe the effects of mouse embryos on human ovarian cancer cells in the co-culture environment in vitro and explore the possible mechanism of matrix metalloproteinase-9. Methods Several groups of human ovarian cancer cells HO8910PM were co-cultured with mouse embryos for different time duration, after which the effects of mouse embryos on morphology and growth behavior of HO8910PM were observed under the light microscope real-time or by H.E staining. Apoptosis was detected under laser confocal microscope by Annexin V-EGFP/PI staining in situ. Invasion ability of tumor cells was studied by transwell experiments. After matrix metalloproteinase 9 (MMP -9) activity was inhibited by MMP-9 Inhibitor I, the interaction between mouse embryos and human ovarian cancer cells HO8910PM was observed. Results Mouse embryos were able to invade co-cultured human ovarian cancer cell layer which extended in the bottom of the culture dish, and gradually pushed away tumor cells to form their own growth space. The number of apoptosis tumor cells surrounding the embryo increased under laser confocal microscope. After co-cultured with mouse embryos, tumor cells invasive ability was lowered compared with the control group. After MMP-9 activity was inhibited, the interaction between mouse embryos and HO8910PM cells had no significant difference compared with the normal MMP-9 activity group. Conclusion Mouse embryos were able to invade human ovarian cancer cells in vitro and form their own growth space, promote apoptosis of human ovarian cancer cells and lower their invasive ability. The mouse embryo was still able to invade human ovarian cancer cells after MMP-9 activity was inhibited.  相似文献   

15.
This prospective and randomised experiment was designed to compare the luteotrophic effect of whole versus half embryos and, to evaluate the relationship between the plasma progesterone (P4) profiles and the rates of early embryonic (from Days 7 to 25), late embryonic (Days 25-42) and foetal (Days 42-63) mortalities of whole and half embryo recipients. Within a single herd, 188 virgin, healthy, cyclic, reproductively sound, with adequate body condition score, Holstein dairy heifers were randomly allocated to receive one whole or one half embryo on Day 7 of the oestrous cycle (Day 0=estrus). In each embryo-transfer (ET) group, half of the recipients were treated with a CIDR (controlled internal drug releasing device) between Days 7 and 19. Pregnancy was evaluated by ultrasound on Days 25, 42 and 63 and plasma P4 profiles were obtained until Day 63 of pregnancy. CIDR-treated and untreated heifers had similar pregnancy rates on Days 25, 42 and 63 and, embryo size on Day 42 was also similar in treated and untreated recipients. Therefore, CIDR treatment failed to promote growth and survival of half and whole embryos. Half embryos presented a significantly higher rate of early and late embryonic mortality than whole embryos. In contrast, foetal mortality was similar in whole and half embryos and, this was coincidental to a similar embryo size on Day 42. Therefore, half embryos exhibited a compensatory growth until Day 42, irrespective of CIDR treatment, after which they presented a similar survival rate to that of whole embryos. Half embryo-derived pregnancies presented significantly lower plasma P4 concentrations on Day 25 than whole embryo-derived pregnancies, suggesting that this lower luteotrophic effect of half embryos could be related to their higher rate of late embryonic mortality. No significant relationship between the early luteal P4 concentrations and embryo survival was observed in whole and half embryo recipients. The first detectable luteotrophic effect of embryonic origin was observed on Day 14 and no detectable second luteotrophic effect was observed until Day 63 of pregnancy. Treatment with CIDR significantly increased plasma P4 concentrations during treatment but induced a significant decrease after removal of the device, suggesting that secretion of luteotropins was downregulated in the course of treatment.  相似文献   

16.
Supraphysiological oxygen tension during embryo culture can generate reactive oxygen species (ROS), which can induce apoptosis. Antioxidants such as thiol compounds (cysteine, cysteamine) can be used to prevent ROS damage to the embryo. The purpose of this study was to evaluate the prevalence of apoptosis during bovine embryo development and to evaluate the effect of the presence or absence of cysteine 0.6 mM in modified synthetic oviduct fluid (mSOF) on in vitro produced cattle embryos cultured under two different oxygen tensions (5% O2 versus 20% O2). Effects were assessed by checking embryo development at Days 7, 8 and 9 and by evaluating Day 9 hatched blastocysts for differentiation by means of differential staining and for apoptosis by means of TUNEL-assay. Apoptotic cells were present in 94% of Day 7 blastocysts and in 100% of Days 8 and 9 blastocysts. Cysteine addition affected Day 8 blastocyst rates in a negative way (P < 0.05) regardless of the oxygen tension. In fact, cysteine addition to the mSOF culture medium had a negative effect upon embryo development in terms of blastocyst rates, hatching rates and apoptotic cell ratio. Embryos cultured under 5% O2 in the presence of cysteine, however, possessed significantly higher numbers of ICM cells. This finding corroborates the theoretical assumption that antioxidants are beneficial for ICM development.  相似文献   

17.
The aim of the present study was to find a reliable functional criterion for the evaluation of the proliferation potential of bovine in vitro-produced embryos. We used immunocytochemical detection of proliferating cell nuclear antigen (PCNA) combined with propidium iodide (PI) staining and subsequent confocal laser scanning microscopy together with routine morphological evaluation under a stereomicroscope to study fresh Day 7, 8, and 9, and cryopreserved Day 7 and 8 embryos. The ratio of PCNA/PI-positive nuclei was equal in fresh Day 7 and Day 8 embryos and significantly lower in Day 9 embryos. In general, Day 7 embryos tolerated the cryopreservation treatments better than Day 8 embryos. Vitrification in normal straws was especially detrimental to Day 8 embryos. In fresh Day 7 and 8 embryos, the PCNA results were in agreement with stereomicroscopic evaluation. However, in Day 9 fresh and in Day 7 and 8 treated embryos, the missing PCNA revealed disorders that were not observed under morphological evaluation. PCNA immunocytochemistry is an effective method to obtain information about the functional state of nuclei. The ratio of PCNA-positive nuclei can provide more information and numerical data about the developmental potential of bovine embryos after cryopreservation.  相似文献   

18.
Changes in sodium/potassium adenosine triphosphatase (Na+/K+ ATPase) and Na+/K+ ATPase mRNA content during preimplantation mouse embryo development were determined. Western blotting, using polyclonal antiserum against guinea pig Na+/K+ ATPase, was used to detect changes in Na+/K+ ATPase alpha- and beta-subunit content during mouse embryo development. Total RNA from mouse embryos was analyzed using Northern and slot blots hybridized with random-primer-labeled cDNA for Na+/K+ ATPase alpha-subunit from sheep kidney. Northern blots exhibited a single mRNA band (3.65 kb) in sheep and mouse kidneys and mouse embryos. Although Na+/K+ ATPase alpha-subunit mRNA content of mouse embryos increased 45-fold between Day 1 and Day 4 of development, Na+/K+ ATPase alpha-subunit content remained constant, and beta-subunit content increased 9-fold. The Na+/K+ ATPase alpha-subunit and alpha-subunit mRNA content did not increase in a similar manner. The results suggest that, in mouse embryos, blastocoel formation is not triggered by an increase in Na+/K+ ATPase alpha-subunit content. Changes in beta-subunit content may be important in regulating Na+/K+ ATPase activity and blastocoel formation.  相似文献   

19.
This study examined morphological appearance, viability and hatching rates in relation to the total cell number following vitrification of in vitro produced bovine blastocysts and expanded blastocysts. In Experiment 1, embryos obtained after 7, 8 or 9 d of culture were pooled and equilibrated in either 10% ethylene glycol (EG) or 10% EG plus 0.3M trehalose in Dulbecco's phosphate buffered saline (DPBS) supplemented with 10% calf serum and 0.6% BSA for 5 min each, at room temperature, and then vitrified together in precooled vitrification solutions consisting of 40% EG (Treatment 1), 40% EG plus 0.3M trehalose (Treatment 2), 40% EG plus 0.3M trehalose and 20% polyvinylpyrrolidone (PVP, Treatment 3) in DPBS. The embryo viability and hatching rates of Treatment 1 (19 and 3%) differed significantly (P < 0.05) from those of Treatment 2 (56 and 31%) and Treatment 3 (70 and 43%). There was a significant difference (P < 0.05) in embryo viability between Treatment 2 (31%) and Treatment 3 (43%). In Experiment 2, Day 7, 8 and 9 embryos were vitrified separately, with higher viability and hatching rates in Experiment 1 than in Experiment 2. The viabilities of Day 7 (87%), 8 (71%) and 9 (46%) embryos differed significantly (P < 0.05). Again, there were significant differences (P < 0.01) among the hatching rates of Day 7 (75%), 8 (38%) and 9 (9%) embryos. The total cell number of hatched blastocysts was then determined by differential fluorochrome staining. The total cell number of Day 7, 8 and 9 embryos differed significantly (P < 0.05).  相似文献   

20.
Dai B  Cao Y  Zhou J  Li S  Wang X  Chen D  Duan E 《Theriogenology》2003,60(7):1279-1291
The high failure rate of interspecific pregnancy is a major obstacle to the successful interspecific cloning of mammals. Embryo transfer between rats and mice provides a unique model for studying the causes of such failures. Previous research has shown that the upper time limit for the survival of rat embryos in mouse uteri was the seventh day of pregnancy (Day 7). To study the reasons for the failure of interspecific pregnancy between rats and mice, we transferred rat blastocysts into mouse uteri on the third day of pseudopregnancy. Unexpectedly, intact rat embryos could still be observed in mouse uteri on Day 9 and the implantation rate was as high as 30.6%. However, compared with mouse embryos, the further development of transferred rat embryos in mouse uteri was retarded. On Day 10, transferred rat embryos shrank with much blood. From Day 11 on, they lost their intact structure and the recipient uteri developed dropsy. On Day 12, the embryos shrank further and completely separated from the mouse uteri. By Day 13, they had been absorbed without any remains. In an in vitro co-culture (CT) system, the attachment rate of rat embryos on a monolayer of mouse uterine epithelial cells was similar to that of mouse embryos, but the outgrowth rate of rat embryos was significantly lower. Further investigation by gelatin zymography showed that matrix metalloproteinase-2 (MMP-2) and metalloproteinase-9 (MMP-9) activities in transferred rat embryos was significantly less than in mouse embryos. The same result was obtained in the in vitro CT assay. These results suggest that rat embryos can complete adhesion but not the invasion when transferred into mouse uteri. The reduced invasive ability, and especially, the associated reduction of MMP-2 and -9 activity, is one of the reasons for the failure of interspecific pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号