首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mutations affecting pigmentation of the cyanobacterium Synechocystis sp. 6701 were induced with ultraviolet light. Two mutants with phycobilisome structural changes were selected for structural studies. One mutant, UV08, was defective in chromatic adaptation and incorporated phycoerythrin into phycobilisomes in white or red light at a level typical of growth in green light. The other mutant, UV16, was defective in phycobilisome assembly: little phycocyanin was made and none was attached to the phycobilisome cores. The cores were completely free of any rod substructures and contained the major core peptides plus the 27,000 Mr linker peptide that attaches rods to the core. Micrographs of the core particles established their structural details. Phycoerythrin in UV 16 was assembled into rod structures that were not associated with core material or phycocyanin. The 30,500 Mr and 31,500 Mr linker peptides were present in the phycoerythrin rods with the 30,500 Mr protein as the major component. Phycobilisome assembly in vivo is discussed in light of this unusual mutant.Abbreviations PE phycoerythrin - PC phycocyanin - AP allophycocyanin - W white light - G green light - R red light - SDS sodium dodecyl sulfate - Na–K–PO4 equimolar solutions of NaH2PO4 · H2O and K2HPO4 · 3 H2O titrated to the desired pH  相似文献   

3.
Phycobilisomes were isolated from wild type Gracilaria tikvahiae and a number of its genetically characterized Mendelian and non-Mendelian pigment mutants in which the principal lesions result in an increase or decrease in the accumulation of phycoerythrin. Both the size and phycoerythrin content of the phycobilisomes are proportional to the phycoerythrin content of the crude algal extracts. In most of the strains examined, the structure and function of the phycocyanin-allophycocyanin phycobilisome cores are the same as in wild type. The phycobilisome architecture is derived from wild type by the addition or removal of phycoerythrin. The same pattern is observed for the phycobilisome of mos2 which contains a large excess of phycocyanin that is not bound to the phycobilisome. The single exception is a yellow, non-Mendelian mutant, NMY-1, which makes functional phycobilisomes composed of phycoerythrin and allophycocyanin with almost no phycocyanin. Characterization of the `linker' polypeptides of the phycobilisome indicates that a 29 kilodalton protein is required for the stable incorporation of phycocyanin into the phycobilisome. Evidence is provided for the requirement of nuclear and cytoplasmic genes in phycobilisome synthesis and assembly. The symmetry properties of the phycobilisome are considered and a structural model for the reaction center II-phycobilisome organization is presented.  相似文献   

4.
Light harvesting in cyanobacteria is performed by the biliproteins, which are organized into membrane-associated complexes called phycobilisomes. Most phycobilisomes have a core substructure that is composed of the allophycocyanin biliproteins and is energetically linked to chlorophyll in the photosynthetic membrane. Rod substructures are attached to the phycobilisome cores and contain phycocyanin and sometimes phycoerythrin. The different biliproteins have discrete absorbance and fluorescence maxima that overlap in an energy transfer pathway that terminates with chlorophyll. A phycocyanin-minus mutant in the cyanobacterium Synechocystis sp. strain 6803 (strain 4R) has been shown to have a nonsense mutation in the cpcB gene encoding the phycocyanin beta subunit. We have expressed a foreign phycocyanin operon from Synechocystis sp. strain 6701 in the 4R strain and complemented the phycocyanin-minus phenotype. Complementation occurs because the foreign phycocyanin alpha and beta subunits assemble with endogenous phycobilisome components. The phycocyanin alpha subunit that is normally absent in the 4R strain can be rescued by heterologous assembly as well. Expression of the Synechocystis sp. strain 6701 cpcBA operon in the wild-type Synechocystis sp. strain 6803 was also examined and showed that the foreign phycocyanin can compete with the endogenous protein for assembly into phycobilisomes.  相似文献   

5.
6.
Wild type Gracilaria tikvahiae, a macrophytic red alga, and fourteen genetically characterized pigment mutants were analyzed for their biliprotein and chlorophyll contents. The same three biliproteins, phycoerythrin, phycocyanin, and allophycocyanin, which are found in the wild type are found in all the Mendelian and non-Mendelian mutants examined. Some mutants overproduce R-phycoerythrin while others possess only traces of phycobiliprotein; however, no phycoerythrin minus mutants were found. Two of the mutants are unique; one overproduces phycocyanin relative to allophycocyanin while the nuclear mutant obr synthesizes a phycoerythrin which is spectroscopically distinct from the R-phycoerythrin of the wild type. The phycoerythrin of obr lacks the typical absorption peak at 545 nanometers characteristic of R-phycoerythrin and possesses a phycoerythrobilin to phycourobilin chromophore ratio of 2.6 in contrast to a ratio of 4.2 found in the wild type. Such a lesion provides evidence for the role of nuclear genes in phycoerythrin synthesis. In addition, comparisons are made of the pigment compositions of the Gracilaria strains with those of Neoagardhiella bailyei, a macrophytic red alga which has a high phycoerythrin content, and Anacystis nidulans, a cyanobacterium which lacks phycoerythrin. The mutants described here should prove useful in the study of the genetic control of phycobiliprotein synthesis and phycobilisome structure and assembly.  相似文献   

7.
8.
Many cyanobacteria are able to alter the pigment composition of the phycobilisome in a process called complementary chromatic adaptation (CCA). The regulatory mechanisms of CCA have been identified in Fremyella diplosiphon, which regulates both phycoerythrin and phycocyanin levels, and Nostoc punctiforme, which regulates only phycoerythrin production. Recent studies show that these species use different regulatory proteins for CCA. We chose to study the CCA response of Gloeotrichia UTEX 583 in an effort to expand our knowledge about CCA and its regulation. We found that Gloeotrichia 583 has a CCA pigment response more similar to that of N. punctiforme rather than F. diplosiphon and exhibits none of the CCA-regulated morphological responses seen in F. diplosiphon. Preliminary experiments suggest that Gloeotrichia 583 contains a homolog to the CCA photoreceptor from N. punctiforme but not the CCA photoreceptor from F. diplosiphon. Additionally, two spontaneous mutants lacking phycoerythrin production were identified. Analysis has shown that these mutants contain a transposon-like insertion in the cpeA gene, which encodes the α subunit of phycoerythrin. These results suggest that CCA in Gloeotrichia UTEX 583 is more similar to that of N. punctiforme than it is to F. diplosiphon, a closely related species.  相似文献   

9.
We have identified the function of the `extra' polypeptides involved in phycobilisome assembly in Nostoc sp. These phycobilisomes, as those of other cyanobacteria, are composed of an allophycocyanin core, phycoerythrin- and phycocyanin-containing rods, and five additional polypeptides of 95, 34.5, 34, 32, and 29 kilodaltons. The 95 kilodalton polypeptide anchors the phycobilisome to the thylakoid membrane (Rusckowski, Zilinskas 1982 Plant Physiol 70: 1055-1059); the 29 kilodalton polypeptide attaches the phycoerythrin- and phycocyanin-containing rods to the allophycocyanin core (Glick, Zilinskas 1982 Plant Physiol 69: 991-997). Two populations of rods can exist simultaneously or separately in phycobilisomes, depending upon illumination conditions. In white light, only one type of rod with phycoerythrin and phycocyanin in a 2:1 molar ratio is synthesized. Associated with this rod are the 29, 32, and 34 kilodalton colorless polypeptides; the 32 kilodalton polypeptide links the two phycoerythrin hexamers, and the 34 kilodalton polypeptide attaches a phycoerythrin hexamer to a phycocyanin hexamer. The second rod, containing predominantly phycocyanin, and the 34.5 and 29 kilodalton polypeptides, is synthesized by redlight-adapted cells; the 34.5 kilodalton polypeptide links two phycocyanin hexamers. These assignments are based on isolation of rods, dissociation of these rods into their component biliproteins, and analysis of colorless polypeptide composition, followed by investigation of complexes formed or not formed upon their recombination.  相似文献   

10.

Background  

Marine Synechococcus owe their specific vivid color (ranging from blue-green to orange) to their large extrinsic antenna complexes called phycobilisomes, comprising a central allophycocyanin core and rods of variable phycobiliprotein composition. Three major pigment types can be defined depending on the major phycobiliprotein found in the rods (phycocyanin, phycoerythrin I or phycoerythrin II). Among strains containing both phycoerythrins I and II, four subtypes can be distinguished based on the ratio of the two chromophores bound to these phycobiliproteins. Genomes of eleven marine Synechococcus strains recently became available with one to four strains per pigment type or subtype, allowing an unprecedented comparative genomics study of genes involved in phycobilisome metabolism.  相似文献   

11.
Synechocystis 6701 phycobilisomes contain phycoerythrin, phycocyanin, and allophycocyanin in a molar ratio of approximately 2:2:1, and other polypeptides of 99-, 46-, 33.5-, 31.5-, 30.5-, and 27-kdaltons. Wild- type phycobilisomes consist of a core of three cylindrical elements in an equilateral array surrounded by a fanlike array of six rods each made up of 3-4 stacked disks. Twelve nitrosoguanidine-induced mutants were isolated which produced phycobilisomes containing between 0 and 53% of the wild-type level of phycoerythrin and grossly altered levels of the 30.5- and 31.5-kdalton polypeptides. Assembly defects in these mutant particles were shown to be limited to the phycoerythrin portions of the rod substructures of the phycobilisome. Quantitative analysis of phycobilisomes from wild-type and mutant cells, grown either in white light or chromatically adapted to red light, indicated a molar ratio of the 30.5- and 31.5-kdalton polypeptides to phycoerythrin of 1:6, i.e., one 30.5- or one 31.5-kdaltons polypeptide per (alpha beta)6 phycoerythrin hexamer. Presence of the phycoerythrin-31.5-kdalton complex in phycobilisomes did not require the presence of the 30.5- kdalton polypeptide. The converse situation was not observed. These and earlier studies (R. C. Williams, J. C. Gingrich, and A. N. Glazer. 1980. J. Cell Biol. 85:558-566) show that the average rod in wild type Synechocystis 6701 phycobilisomes consists of four stacked disk-shaped complexes: phycocyanin (alpha beta)6-27 kdalton, phycocyanin (alpha beta)6-33.5 kdalton, phycoerythrin (alpha beta)6-31.5 kdalton, and phycoerythrin-30.5 kdalton, listed in order starting with the disk proximal to the core.  相似文献   

12.
Phycobilisomes of Tolypothrix tenuis, a cyanobacterium capable of complete chromatic adaptation, were studied from cells grown in red and green light, and in darkness. The phycobilisome size remained constant irrespective of the light quality. The hemidiscoidal phycobilisomes had an average diameter of about 52 nanometers and height of about 33 nanometers, by negative staining. The thickness was equivalent to a phycocyanin molecule (about 10 nanometers). The molar ratio of allophycocyanin, relative to other phycobiliproteins always remained at about 1:3. Phycobilisomes from red light grown cells and cells grown heterotrophically in darkness were indistinguishable in their pigment composition, polypeptide pattern, and size. Eight polypeptides were resolved in the phycobilin region (17.5 to 23.5 kilodaltons) by isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Half of these were invariable, while others were variable in green and red light. It is inferred that phycoerythrin synthesis in green light resulted in a one for one substitution of phycocyanin, thus retaining a constant phycobilisome size. Tolypothrix appears to be one of the best examples of phycobiliprotein regulation with wavelength. By contrast, in Nostoc sp., the decrease in phycoerythrin in red light cells was accompanied by a decrease in phycobilisome size but not a regulated substitution.  相似文献   

13.
Phycobilisomes from a blue-green alga Nostoc species   总被引:9,自引:1,他引:8  
Phycobilisomes were isolated from a Nostoc sp. strain Mac in phosphate buffer (pH 7.0) by treatment with 1% Brij 56 and centrifugation on discontinuous sucrose gradients (2.0, 1.0, 0.5, and 0.25 M in the proportions 6:4:4:10 ml, respectively). Absorption spectra of isolated phycobilisomes showed the presence of phycoerythrin, phycocyanin, and allophycocyanin. The phycobilisome pigments were partially resolved by electrophoresis on acrylamide gels. Stained gels demonstrated that each main protein band corresponded to a pigmented region. The phycobilisomes appeared compact with a rounded surface and flattened base (about 40-nm diameter) at the attachment site to the photosynthetic lamellae. Fixation in glutaraldehyde caused a significant reduction in total pigment absorption, as well as shifts in the absorption maxima, particularly that of phycoerythrin.  相似文献   

14.
Phycobilisome structure and function   总被引:3,自引:0,他引:3  
Phycobilisomes are aggregates of light-harvesting proteins attached to the stroma side of the thylakoid membranes of the cyanobacteria (blue-green algae) and red algae. The water-soluble phycobiliproteins, of which there are three major groups, tetrapyrrole chromophores covalently bound to apoprotein. Several additional protiens are found within the phycobilisome and serve to link the phycobiliproteins to each other in an ordered fashion and also to attach the phycobilisome to the thylakoid membrane. Excitation energy absorbed by phycoerythrin is transferred through phycocyanin to allophycocyanin with an efficiency approximating 100%. This pathway of excitation energy transfer, directly confirmed by time-resolved spectroscopic measurements, has been incorporated into models describing the ultrastructure of the phycobilisome. The model for the most typical type of phycobilisome describes an allophycocyanin-containing core composed of three cylinders arranged so that their longitudinal axes are parallel and their ends form a triangle. Attached to this core are six rod structures which contain phycocyanin proximal to the core and phycoerythrin distal to the core. The axes of these rods are perpendicular to the longitudinal axis of the core. This arrangement ensures a very efficient transfer of energy. The association of phycoerythrin and phycocyanin within the rods and the attachment of the rods to the core and the core to the thylakoid require the presence of several linker polypeptides. It is recently possible to assemble functionally and structurally intact phycobilisomes in vitro from separated components as well as to reassociate phycobilisomes with stripped thylakoids. Understanding of the biosynthesis and in vivo assembly of phycobilisomes will be greatly aided by the current advances in molecular genetics, as exemplified by recent identification of several genes encoding phycobilisome components.Combined ultrastructural, biochemical and biophysical approaches to the study of cyanobacterial and red algal cells and isolated phycobilisome-thylakoid fractions are leading to a clearer understanding of the phycobilisome-thylakoid structural interactions, energy transfer to the reaction centers and regulation of excitation energy distribution. However, compared to our current knowledge concerning the structural and functional organization of the isolated phycobilisome, this research area is relatively unexplored.  相似文献   

15.
Summary Nitrosoguanidine-induced pigment mutants with elevated phycocyanin content and diminished phycoerythrin have been isolated from the phycoerythrin rich wild type blue-green alga Aphanothece stagnina. The phycocyanin: chlorophyll ratio varied among the mutant strains which invariably showed an impairment in their N2-dependent growth and accumulation of fixed nitrogen. Phycoerythrin was virtually eliminated from the mutant strains in contrast with the wild type. The observations are in consistence with the biosynthetic interconvertibility of chromophoric precursors of the two phycobilins and perhaps a greater efficiency of phycocyanin in the oxygenic part (PSII) of photosynthesis.  相似文献   

16.
The biliproteins of the unicellular, thylakoid-less cyanobacterium Gleobacter violaceus were resolved by chromatography on hydroxylapatite and DEAE-cellulose into five components: phycoerythrin I and II, phycocyanin I and II, and allophycocyanin. Allophycocyanin B was not detected. Three of these components, phycoerythrin II, phycocyanin II, and allophycocyanin, were purified to homogeneity. Phycoerythrin II crystallized as hexagonal prisms. G. violaceus allophycocyanin crystallized as thin plates; unter similar conditions other cyanobacterial allophycocyanins crystallize as needles. The biliproteins in the phycoerythrin I and phycocyanin I components were present in polydisperse, high molecular weight aggregates, which may represent incompletely dissociated substructures of the phycobilisome.Both phycoerythrin components from G. violaceus carry phycoerythrobilin and phycourbilin groups in the ratio of 6:1. Separation of the and subunits of these biliproteins revealed that the phycoerythrobilins were equally distributed between the two subunits, and that the subunit alone carried the phycourobilin. These phycoerythrins are the first cyanobacterial phycobiliproteins found to carry a phycourobilin prosthetic group.Abbreviations used PE poycoerythrin - PC phycocyanin - AP allophycocyanin - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - B Bangiophycean - R Rhodophytan - C Cyanobacterial  相似文献   

17.
18.
Anabaena sp. PCC 7120 mutants defective in phycobiliprotein biosynthesis or phycobilisome assembly were generated by transposon mutagenesis. Four mutants with grossly reduced content of the major phycobiliprotein, phycocyanin, were found to have insertions within the cpcBACDEFG1G2G3G4 operon coding for phycocyanin biosynthesis and assembly. The insertion in mutant B646 separated the promoter from the open reading frames and eliminated production of the phycocyanin (CpcA) and (CpcB) subunits. Insertion in cpcC in mutant B642 eliminated production of the L36 Rlinker polypeptide required for assembly of phycocyanin into the distal discs of the phycobilisome rod substructures. Mutants B64328 and B64407 had insertions, respectively, in cpcE and cpcF, genes coding for the subunits of the heterodimeric lyase which catalyzes the attachment of phycocyanobilin to the phycocyanin apo- subunit. Mutant SB12, often unable to survive under low light, was found to have an insertion in the apcE gene coding for the large core-membrane linker (L128 CM) that provides the scaffold for assembly of the phycobilisome core. DNA sequencing 3 of apcE revealed genes apcABC, coding for the and subunits of allophycocyanin and for the small core linker L7.8 C. Amino acid sequence comparisons showed that the ApcA and ApcB proteins are 37% identical and that each of these polypeptides is highly similar to corresponding polypeptides from the distantly related filamentous strains Calothrix sp. PCC7601 and Mastigocladus laminosus.  相似文献   

19.
《BBA》2020,1861(8):148215
Marine Synechococcus are widespread in part because they are efficient at harvesting available light using their complex antenna, or phycobilisome, composed of multiple phycobiliproteins and bilin chromophores. Over 40% of Synechococcus strains are predicted to perform a type of chromatic acclimation that alters the ratio of two chromophores, green-light–absorbing phycoerythrobilin and blue-light–absorbing phycourobilin, to optimize light capture by phycoerythrin in the phycobilisome. Lyases are enzymes which catalyze the addition of bilin chromophores to specific cysteine residues on phycobiliproteins and are involved in chromatic acclimation. CpeY, a candidate lyase in the model strain Synechococcus sp. RS9916, added phycoerythrobilin to cysteine 82 of only the α subunit of phycoerythrin I (CpeA) in the presence or absence of the chaperone-like protein CpeZ in a recombinant protein expression system. These studies demonstrated that recombinant CpeY attaches phycoerythrobilin to as much as 72% of CpeA, making it one of the most efficient phycoerythrin lyases characterized to date. Phycobilisomes from a cpeY mutant showed a near native bilin composition in all light conditions except for a slight replacement of phycoerythrobilin by phycourobilin at CpeA cysteine 82. This demonstrates that CpeY is not involved in any chromatic acclimation-driven chromophore changes and suggests that the chromophore attached at cysteine 82 of CpeA in the cpeY mutant is ligated by an alternative phycoerythrobilin lyase. Although loss of CpeY does not greatly inhibit native phycobilisome assembly in vivo, the highly active recombinant CpeY can be used to generate large amounts of fluorescent CpeA for biotechnological uses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号