首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Japan has a formidable tradition in immunological research, starting with Shibasaburo Kitasato (1852-1931), who, after returning to Japan from his studies with Robert Koch, went on to build almost single-handedly a research tradition in investigative medical research, while engaging himself in the fight against infectious diseases. Over the past few decades, Japanese immunologists have been involved in many important discoveries at the forefront of immunological research, yet, when it comes to the translation of new discoveries into clinical innovations and new therapies, Japan's track record seems more modest.  相似文献   

2.
The topic of immunity to fungal infections is of interest to a wide range of disciplines, from microbiology to immunology. It is of particular interest in terms of therapy of HIV-infected individuals, and patients with cancer or individuals who have received transplants. Understanding the nature and function of the immune response to fungi is an exciting challenge that might set the stage for new approaches to the treatment of fungal diseases, from immunotherapy to vaccines. The past decade has witnessed the development of a wide range of new approaches to elucidate events that occur at the host-fungus interface.  相似文献   

3.
Pulendran B  Ahmed R 《Cell》2006,124(4):849-863
Vaccination is the most effective means of preventing infectious diseases. Despite the success of many vaccines, there is presently little knowledge of the immunological mechanisms that mediate their efficacy. Such information will be critical in the design of future vaccines against old and new infectious diseases. Recent advances in immunology are beginning to provide an intellectual framework with which to address fundamental questions about how the innate immune system shapes adaptive immunity. In this review, we summarize current knowledge about how the innate immune system modulates the quantity and quality of long-term T and B cell memory and protective immune responses to pathogens. In addition, we point out unanswered questions and identify critical challenges, the solution of which, we believe, will greatly facilitate the rational design of novel vaccines against a multitude of emerging infections.  相似文献   

4.
This study traces American awareness of the work of Louis Pasteur and Robert Koch from the 1860s to the 1890s. In the years before the Civil War, American interest in germ theories had appeared at times of epidemics and persisted to a limited extent among physician-microscopists. Discussions of Pasteur's work occurred primarily in the context of spontaneous generation and antisepsis. Few Americans imitated his work on immunology or studied with Pasteur, but his work on immunity influenced their faith in the potential of bacteriology as a solution to problems of infectious disease. Koch's discoveries of the bacterial agents of tuberculosis and cholera stimulated American medical and public health interest in bacteriology in a more practical way. Americans learned Koch's methods by taking his courses and imported them directly into their own laboratories. A context of enthusiasm for science, educational reform, and problems of infectious disease associated with urbanization and changes in agriculture aided the growth of bacteriology in the American context.  相似文献   

5.
The development of cowpox vaccination by Jenner led to the development of immunology as a scientific discipline. The subsequent eradication of smallpox and the remarkable effects of other vaccines are among the most important contributions of biomedical science to human health. Today, the need for new vaccines has never been greater. However, in developed countries, the public's fear of vaccine-preventable diseases has waned, and awareness of potential adverse effects has increased, which is threatening vaccine acceptance. To further the control of disease by vaccination, we must develop safe and effective new vaccines to combat infectious diseases, and address the public's concerns.  相似文献   

6.
Throughout his career, the problems that attracted Louis Pasteur almost invariably involved considerations of specificity of structure and/or of action. Thus, his work on asymmetric crystals showed that chemical form not only specifies crystalline structure, but affects the affinity of ferments as well. In his studies of diseases of silkworms, of beer, and of wine, he could unerringly distinguish with the microscope the specific agents of disease. From this emerged his concept of the specificity of species and against the nonspecificity of spontaneous generation, whence the germ theory of disease. It was in the new field of immunology, however, where the manifestations of an exquisite specificity were most clearly seen. Here, Pasteur's vaccines worked because he chose the specific pathogen in order to induce a specific immunity, and he succeeded each time. But the two most prominent Pastorian successors in immunology, Elie Metchnikoff and Jules Bordet, were not equally successful. Although each contributed significantly to the birth of immunology, each advanced a theory that neglected the principle of specificity and paid a price in consequence. Metchnikoff's phagocytic theory of immunity could not survive the demonstrable specificity of humoral antibodies, while Bordet's physical adsorptive concept of the antibody-cell interaction quickly fell to Paul Ehrlich's demonstration of the stereochemical determination of immunological specificity.  相似文献   

7.
Cellular microbiology: can we learn cell physiology from microorganisms?   总被引:1,自引:0,他引:1  
Cellularmicrobiology is a new discipline that is emerging at the interfacebetween cell biology and microbiology. The application of moleculartechniques to the study of bacterial pathogenesis has made possiblediscoveries that are changing the way scientists view thebacterium-host interaction. Today, research on the molecular basis ofthe pathogenesis of infective diarrheal diseases of necessity transcends established boundaries between cell biology, bacteriology, intestinal pathophysiology, and immunology. The use of microbial pathogens to address questions in cell physiology is just now yieldingpromising applications and striking results.  相似文献   

8.
Immunology has contributed to biomedical education in many important ways since the creation of scientific medicine in the last quarter of the 19th century. Today, immunology is a major area of biomedical research. Nevertheless, there are many basic problems unresolved in immunological activities and phenomena. Solving these problems is probably necessary to devise predictable and safe ways to produce new vaccines, treat allergy and autoimmune diseases and perform safe transplants. This challenge involves not only technical developments but also changes in attitude, of which the most fundamental is to abandon the traditional stimulus-response perspective in favor of more "systemic" views. Describing immunological activities as the operation of a complex multi connected network, raises biological and epistemological issues not usually dealt with in biomedical education. Here we point to one example of systemic approaches. A new form of immunoblot (Panama blot), by which the reaction of natural immunoglobulins with complex protein mixtures may be analyzed by a special software and multivariate statistics, has been recently used to characterize human autoimmune diseases. Our preliminary data show that Panama blots can also be used to characterize global (systemic) immunological changes in chronic human parasitic diseases, such as malaria and schistosomiasis mansoni, that correlate with the clinical status.  相似文献   

9.
CpG motifs: the active ingredient in bacterial extracts?   总被引:21,自引:0,他引:21  
Krieg AM 《Nature medicine》2003,9(7):831-835
The use of bacteria and bacterial extracts for immunotherapy has a checkered past. Recent developments in immunology reveal that these nonspecific immune activators actually work by triggering specific receptors that are expressed by subsets of immune cells. Identification of these receptors and the molecular signaling pathways that they activate has enabled a new era of specific targeted immunotherapy using chemically synthesized mimics of pathogen molecules.  相似文献   

10.
One candidate cause of Gulf War illness is vaccination against infectious diseases including medical counter-measures against biological weapons. One influential theory has suggested that such mass-vaccination caused a shift in immune response to a Type 2 cytokine pattern (Th2), which it was suggested was accompanied by a chronic fatigue syndrome-like illness. This article critically appraises this theory. We start by examining epidemiological evidence, which indicates that single vaccines are unlikely to be a substantial cause of Gulf War illness, but that there was a modest relationship with multiple vaccines, which was strongest in those vaccinated while deployed to the Gulf. These relationships may be affected by recall bias. We conclude by examining the results of immunological studies carried out in veterans or in a relevant setting in vitro. The balance of evidence from immunological studies on veterans returning from the War, including those developing multi-symptom illness, is that the immune response has not become polarized towards Th2. In summary, the epidemiological evidence for a multiple vaccine effect on Gulf War-related illness remains a potentially important aetiological lead, but mechanistic studies available at this stage do not identify any immunological basis for it.  相似文献   

11.
上皮细胞转分化现象及其与疾病发生发展的关系,近年已成为细胞生物学、免疫学等多学科关注的聚焦点。转分化作为细胞分化发育的基本生物学现象,存在于机体诸多生理病理过程,也受表观遗传学的调控。相对于经典遗传学而言,表观遗传学作为一门新兴学科,其为生物体的基因表达调控及遗传现象提供了新的理论阐释。现知,DNA甲基化、组蛋白修饰及非编码RNA等均可导致上皮细胞基因发生表观遗传改变,与上皮细胞转分化的发生发展密切相关,并在该过程中发挥重要的调控作用。进一步阐明细胞转分化的分子基础及其表观遗传学调控机制,将有助于认识生命现象基本过程,并可为炎症性疾病、自身免疫病、器官纤维化,以及肿瘤发生与转移等机制的研究与防治,提供新的思路和应对策略。对上皮细胞转分化与表观遗传学调控关系作一简述。  相似文献   

12.
The Australian scientist Frank Macfarlane Burnet-winner of the Nobel Prize in 1960 for his contributions to the understanding of immunological tolerance-is perhaps best recognized as one of the formulators of the clonal selection theory of antibody production, widely regarded as the 'central dogma' of modern immunology. His work in studies in animal virology, particularly the influenza virus, and rickettsial diseases is also well known. Somewhat less known and publicized is Burnet's research on bacteriophages, which he conducted in the first decade of his research career, immediately after completing medical school. For his part, Burnet made valuable contributions to the understanding of the nature of bacteriophages, a matter of considerable debate at the time he began his work. Reciprocally, it was while working on the phages that Burnet developed the scientific styles, the habits of mind and laboratory techniques and practices that characterized him for the rest of his career. Using evidence from Burnet's published work, as well as personal papers from the period he worked on the phages, this paper demonstrates the direct impact that his experiments with phages had on the development of his characteristic scientific style and approaches, which manifested themselves in his later career and theories, and especially in his thinking regarding various immunological problems.  相似文献   

13.
In 2004, we celebrate the 150th anniversary of the birth of Paul Ehrlich, considered the founder of immunology. His life and work can be divided into three creative periods: first, he developed histological staining, then he accomplished his ground-breaking work on immunology, and eventually invented chemotherapy. Paul Ehrlich can be perceived as a man whose success was not the consequence of a will to power, but of his substantial interest in science.  相似文献   

14.
The field of primary immunodeficiencies (PIDs) is one of several in the area of clinical immunology that has not been static, but rather has shown exponential growth due to enhanced physician, scientist and patient education and awareness, leading to identification of new diseases, new molecular diagnoses of existing clinical phenotypes, broadening of the spectrum of clinical and phenotypic presentations associated with a single or related gene defects, increased bioinformatics resources, and utilization of advanced diagnostic technology and methodology for disease diagnosis and management resulting in improved outcomes and survival. There are currently over 200 PIDs with at least 170 associated genetic defects identified, with several of these being reported in recent years. The enormous clinical and immunological heterogeneity in the PIDs makes diagnosis challenging, but there is no doubt that early and accurate diagnosis facilitates prompt intervention leading to decreased morbidity and mortality. Diagnosis of PIDs often requires correlation of data obtained from clinical and radiological findings with laboratory immunological analyses and genetic testing. The field of laboratory diagnostic immunology is also rapidly burgeoning, both in terms of novel technologies and applications, and knowledge of human immunology. Over the years, the classification of PIDs has been primarily based on the immunological defect(s) ("immunophenotype") with the relatively recent addition of genotype, though there are clinical classifications as well. There can be substantial overlap in terms of the broad immunophenotype and clinical features between PIDs, and therefore, it is relevant to refine, at a cellular and molecular level, unique immunological defects that allow for a specific and accurate diagnosis. The diagnostic testing armamentarium for PID includes flow cytometry - phenotyping and functional, cellular and molecular assays, protein analysis, and mutation identification by gene sequencing. The complexity and diversity of the laboratory diagnosis of PIDs necessitates many of the above-mentioned tests being performed in highly specialized reference laboratories. Despite these restrictions, there remains an urgent need for improved standardization and optimization of phenotypic and functional flow cytometry and protein-specific assays. A key component in the interpretation of immunological assays is the comparison of patient data to that obtained in a statistically-robust manner from age and gender-matched healthy donors. This review highlights a few of the laboratory assays available for the diagnostic work-up of broad categories of PIDs, based on immunophenotyping, followed by examples of disease-specific testing.  相似文献   

15.
Computational immunology: The coming of age   总被引:3,自引:0,他引:3  
The explosive growth in biotechnology combined with major advances in information technology has the potential to radically transform immunology in the postgenomics era. Not only do we now have ready access to vast quantities of existing data, but new data with relevance to immunology are being accumulated at an exponential rate. Resources for computational immunology include biological databases and methods for data extraction, comparison, analysis and interpretation. Publicly accessible biological databases of relevance to immunologists number in the hundreds and are growing daily. The ability to efficiently extract and analyse information from these databases is vital for efficient immunology research. Most importantly, a new generation of computational immunology tools enables modelling of peptide transport by the transporter associated with antigen processing (TAP), modelling of antibody binding sites, identification of allergenic motifs and modelling of T-cell receptor serial triggering.  相似文献   

16.
Evolution is of interest not only to developmental biology but also to genetics and genomics. We are witnessing a new era in which evolution, development, genetics and genomics are merging to form a new discipline, a good example of which is the study of the origin and evolution of the chordates. Recent studies on the formation of the notochord and the dorsal neural tube in the increasingly famous Ciona intestinalis tadpole larva, and the availability of its draft genome, show how the combination of comparative molecular development and evolutionary genomics might help us to better understand our chordate ancestor.  相似文献   

17.
If you haven't taken the time to read up on purinergic signaling, consider this: of the ten most cited scientists in pharmacology for the past decade, no less than four work on biological responses to purines and related molecules(1). If you're surprised by this statistic, you're in good company: until a few weeks ago, the fact was also unknown to Geoffrey Burnstock, the single-most cited researcher on the list and the scientist who coined the term "purinergic nerves" in the early 70s. (He is also about to launch a new journal devoted to the discipline, Purinergic Signalling, as Editor-in-Chief ). At that time, Burnstock's depiction of ATP as an important neurotransmitter was met with considerable skepticism, even among those who otherwise accepted and studied the intracellular actions of purines. This year in June, Burnstock appeared at the Purines 2004 Meeting, appropriately enough, to deliver the "First Burnstock Lecture." Many of the symposia presenters openly acknowledged Burnstock's work in driving the purinergic field to its present state of fruition; this acknowledgment, along with the genuine affection that typically accompanies it, seems to surprise as much as it delights Burnstock, who remembers very well the many meetings where his results went hotly challenged. The following interview took place at Purines 2004 in Chapel Hill.  相似文献   

18.
Novartis Foundation sponsored a Symposium which brought together a group of experimental immunologists, theoretical immunologists, and bioinformaticians to discuss the new field of immunoinformatics. The discussion focused on immunological databases, antigen processing and presentation, immunogenomics, host-pathogen interactions, and mathematical modelling of the immune system. A main conclusion of the meeting is the critical role played by immunoinformatics in current immunology research. In particular, immunoinformatics provides a foundation for the emerging fields of systems immunology and immunogenomics.  相似文献   

19.
Riley EM  Viney ME 《Molecular ecology》2011,20(23):4827-4829
The immune system has evolved, and continues to evolve, in response to the selection pressure that infections exert on animals in their natural environments, yet much of our understanding about how the immune system functions comes from studies of model species maintained in the almost complete absence of such environmental selection. The scientific discipline of immunology has among its aims the improvement of human and animal health by the application of immunological knowledge. As research on humans and domesticated animals is highly constrained-ethically, logistically and financially-experimental animal models have become an invaluable tool for dissecting the functioning of the immune system. The house mouse (Mus musculus) is by far the most widely used animal model in immunological research but laboratory-reared mice provide a very narrow view of the immune system-that of a well-fed and comfortably housed animal with minimal exposure to microbial pathogens. Indeed, so much of our immunological knowledge comes from studies of a very few highly inbred mouse strains that-to all intents and purposes-our immunological knowledge is based on enormously detailed studies of very small numbers of individual mice. The limitations of studies in inbred strains of laboratory mice are well-recognized (Pedersen & Babayan 2011), but serious attempts to address these limitations have been few and far between. However, the emerging field of 'ecological immunology' where free-living populations are studied in their natural habitat is beginning to redress this imbalance (Viney et al. 2005; Martin et al. 2006; Owen et al. 2010; Abolins et al. 2011). As demonstrated in the work by Boysen et al. (2011) in this issue of Molecular Ecology, studies in wild animal populations-especially free-living M. musculus-represent a valuable bridge between studies in humans and livestock and studies of captive animals.  相似文献   

20.
Non-infectious inhaled microbial particles can cause illness by triggering an inappropriate immunological response. From the pathogenic point of view these illnesses can be seen to be related to on one hand autoimmune diseases and on the other infectious diseases.In this review three such illnesses are discussed in some detail. Hypersensitivity pneumonitis (HP) is the best known of these illnesses and it has also been widely studied in animal models and clinically. In contrast to HP Pulmonary mycotoxicosis (PM) is not considered to involve immunological memory, it is an acute self-limiting condition is caused by an immediate "toxic" effect. Damp building related illness (DBRI) is a controversial and from a diagnostic point poorly defined entity that is however causing, or attributed to cause, much more morbidity than the two other diseases.In the recent decade there has been a shift in the focus of immunology from the lymphocyte centered, adaptive immunity towards innate immunity. The archetypal cell in innate immunity is the macrophage although many other cell types participate. Innate immunity relies on a limited number of germline coded receptors for the recognition of pathogens and signs of cellular damage. The focus on innate immunity has opened new paths for the understanding of many chronic inflammatory diseases. The purpose of this review is to discuss the impact of some recent studies, that include aspects concerning innate immunity, on our understanding of the pathogenesis of inflammatory diseases associated with exposure to inhaled microbial matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号