首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scots pine ( Pinus sylvetris L.) plants, about 2 m high, were placed in controlled conditions for 2 weeks in January, April and November. During the experiments made in January, the conditions in the climate chambers simulated either a gradual or abrupt advancement of spring. In April they simulated either the advancement of the season or its reversal back to January. In November the plants were transferred to conditions that resembled spring. In January, pieces of buds collected at the end of the experiment were also fixed for electron microscope studies.
Isolation of the ribosomes and the determination of their in vitro translation capacity revealed that in January the response to environmental changes was evident. An increase in synthesized proteins was caused by a rise in the translation capacity of ribosome assemblies rather than by an increase in their quantity. The cellular ultras-structure changed in conformity with the changes characteristic of the spring. In April, the plants transferred to the climate chambers maintained their ability to synthesize proteins, but the buds were judged to be under stress. In November die ability of the buds to respond to environmental changes was retarded or inhibited.  相似文献   

2.
The amount of total ribosome assemblies extractable from the vegetative buds of 2 m high Scots pine ( Pinus sylvestrís L.) plants remained more or less constant throughout the sampling period from September to May. The stability of the ribosomes, the shape of the polysome profiles obtained after sucrose density gradient centrifugation and the clustering of material as seen in the scanning electron micrographs suggested the presence of storage formations during the winter.
All samples of isolated ribosomes were able to synthesize proteins in vitro. During midwinter the translation capacity, when calculated on a ribosome unit basis, was about one third of that found in September and May. This reflects not only the occurrence of storage formation during the winter, but also the amount of initiated translation processes at any given time. The decrease in the in vitro translation capacity in the autumn ceases around the end of November. Ribosome activity starts to increase as early as the end of January or beginning of February. It seems that the reactions are triggered either by an endogenous clock or by the change in the daylength.  相似文献   

3.
G. Vogg  R. Heim  J. Hansen  C. Schäfer  E. Beck 《Planta》1998,204(2):193-200
Photosynthetic CO2 uptake, the photochemical efficiency of photosystem II, the contents of chlorophyll and chlorophyll-binding proteins, and the degree of frost hardiness were determined in three-year-old Scots pine (Pinus sylvestris L.) trees growing in the open air but under controlled daylength. The following conditions were compared: 9-h light period (short day), 16-h light period (long day), and natural daylength. Irrespective of induction by short-day photoperiods or by subfreezing temperatures, frost hardening of the trees was accompanied by a long-lasting pronounced decrease in the photosynthetic rates of one-year-old needles. Under moderate winter conditions, trees adapted to a long-day photoperiod, assimilated CO2 with higher rates than the short-day-treated trees. In the absence of strong frost, photochemical efficiency was lower under short-day conditions than under a long-day photoperiod. Under the impact of strong frost, photochemical efficiency was strongly inhibited in both sets of plants. The reduction in photosynthetic performance during winter was accompanied by a pronounced decrease in the content of chlorophyll and of several chlorophyll-binding proteins [light-harvesting complex (LHC)IIb, LHC Ib, and a chlorophyll-binding protein with MW 43 kDa (CP 43)]. This observed seasonal decrease in photosynthetic pigments and in pigment-binding proteins was irrespective of the degree of frost hardiness and was apparantly under the control of the length of the daily photoperiod. Under a constant 9-h daily photoperiod the chlorophyll content of the needles was considerably lower than under long-day conditions. Transfer of the trees from short-day to long-day conditions resulted in a significantly increased chlorophyll content, whereas the chlorophyll content decreased when trees were transferred from a long-day to a short-day photoperiod. The observed changes in photosynthetic pigments and pigment-binding proteins in Scots pine needles are interpreted as a reduction in the number of photosynthetic units induced by shortening of the daily light period during autumn. This results in a reduction in the absorbing capacity during the frost-hardened state. Received: 3 March 1997 / Accepted: 16 July 1997  相似文献   

4.
Questions: (1) How do extreme climatic events and climate variability influence radial growth of conifers (silver fir, Norway spruce, Scots pine)? (2) How do elevation and soil water capacity (SWC) modulate sensitivity to climate? Location: The sampled conifer stands are in France, in western lowland and mountain forests, at elevations from 400 to 1700 m, and an SWC from 50 to 190 mm. Methods: We established stand chronologies for total ring width, earlywood and latewood width for the 33 studied stands (985 trees in total). Responses to climate were analysed using pointer years and bootstrapped response functions. Principal component analysis was applied to pointer years and response function coefficients in order to elucidate the ecological structure of the studied stands. Results: Extreme winter frosts are responsible for greater growth reductions in silver fir than in Norway spruce, especially at the upper elevation, while Scots pine was the least sensitive species. Exceptional spring droughts caused a notable growth decrease, especially when local conditions were dry (altitude<1000 m and SWC<100 mm for silver fir, western lowlands for Scots pine). Earlywood of silver fir depended on previous September and November and current‐year February temperature, after which current June and July water supply influenced latewood. Earlywood of Norway spruce was influenced by previous September temperature, after which current spring and summer droughts influenced both ring components. In Scots pine, earlywood and latewood depended on the current summer water balance. Local conditions mainly modulated latewood formation. Conclusions: If the climate becomes drier, low‐elevation dry stands or trees growing in western lowlands may face problems, as their growth is highly dependent on soil moisture availability.  相似文献   

5.
Seasonal variation in dehydrins and other soluble proteins of Scots pine (Pinus sylvestris L.) needles, buds and bark were analyzed monthly for 1 year from 1998 to 1999. Dehydrin-related proteins of 60 and 56 kDa were identified immunologically in all tissues. The concentration of the 60-kDa dehydrin was highest during the winter (October-February) in buds and bark but increased in early spring (March-May) in needles. Accumulation of the 60-kDa dehydrin in the needles in springtime was related to the decreasing osmotic potentials of the needles. The 56-kDa dehydrin was present only during the growing season, as was a 50-kDa dehydrin, which only appeared in bud and bark tissues. The soluble protein concentration of needles did not differ significantly between seasons, but in bark and bud tissues the protein concentrations were at their lowest level in newly grown tissues (June-August). The level of several polypeptides was higher during the winter-spring period than in the growing season, especially in bark and bud tissues. These proteins may be related to cold hardiness or dormancy in overwintering Scots pine. Dehydrin-related proteins in needles are linked to springtime changes in the osmotic status of needles rather than to their cold acclimation.  相似文献   

6.
The cytosolic and membrane-bound ribosome assemblies were isolated from the microsporangiate strobili of Scots pine ( Pinus sylvestris L.). Both assemblies studied were able to incorporate [3H]-leucine into trichloroacetic acid-insoluble material throughout the sampling period from October to April, indicating that the isolation procedure employed preserves the ability of the ribosomes to synthesize protein. Samples of identical size, taken from cytosolic as well as from membrane-bound ribosomes isolated from the same source, behaved similarly in vitro: they were both active, their activity was arrested by ribonnuclease and, as shown by aurintricarboxylic acid treatment, most of their mRNA molecules were complexed with the ribosomes. Variation in translation capacities seemed to depend on the season and physiological stage of the bud tissue.  相似文献   

7.
Sirkka Soikkeli 《Protoplasma》1980,103(3):241-252
Summary Resolution of the ultrastructure of the needles of both Scots pine (Pinus silvestris L.) and Norway spruce [Picea abies (L.) Karst.] is strongly influenced by the molarity of the buffer used in fixation. When 0.2 M or 0.1 M buffer is used in fixation during the summer, the constituents of the cytoplasm are precipitated, resulting in poor resolution of the membranes and lamellae and often in negative staining. The tannin in the central vacuole appears as a thick ribbon. By using correct molarities of buffer during each season (0.1 M for autumn and winter and ca. 0.05 M for the growing season), the best possible resolution will be achieved. With good resolution the tannin in the central vacuole appears in granular form throughout the year, and the cytoplasm and its organelles are clearly distinguishable during every season. During the growing season, the chloroplasts in the needles of Scots pine are spread to the cell walls and have large starch grains; the stroma and grana lamellae are well developed; the stroma and cytoplasm are rich in polysomes. Mitochondria and microbodies can be clearly resolved. During hardening and afterwords throughout the winter, the chloroplasts, which at this time contain no starch, and other cytoplasmic organelles aggregate in the corners of the cells. The chloroplast envelopes and the stroma and grana lamellae stay intact. The cytoplasm is netlike and rich in ribosomes, mitochondria and microbodies, all of which are intact and clearly distinguishable. During spring activation the structure returns to that described for the growing season.  相似文献   

8.
Quantifying climate-growth associations is needed to evaluate how forest productivity will respond to climate change. Year-to-year fluctuations in forest productivity and radial growth are partly explained by local climatic conditions driven by large-scale atmospheric patterns. This is illustrated by Iberian forests in the western Mediterranean Basin, which are subjected to complex climatic and atmospheric influences such as Atlantic and Mediterranean cyclogenesis. The North Atlantic Oscillation (NAO) is one of the major atmospheric circulation patterns affecting Iberian forests since positive winter NAO phases lead to dry and warm conditions. The Western Mediterranean Oscillation (WeMO) may also explain Iberian forest growth in some areas since this index captures Mediterranean cyclogenesis and WeMO negative phases are linked to warm and wet spring to summer conditions. Here, we analyze the associations between atmospheric patterns, climate and tree growth and we determine if they are changing through time. We use dendrochronology to relate radial growth of four tree species (Pyrenean oak, Sweet chestnut, Maritime pine and Scots pine) growing in western Spain to climate conditions and the NAO and WeMO indices. Winter and early spring temperatures increased since the 1950s in the area whereas the negative association between winter precipitation and the NAO strengthened since then. However, mean temperature rise was particularly evident since the 1970s. Growth was reduced by dry conditions during the growing season (spring and summer), but also by cold and dry conditions during the previous autumn and winter. This explains why the NAO January and the WeMo April indices were negative to growth of three species excluding Pyrenean oak. The early 1970s reflected an inflection point in the instability of climate-growth associations in the study area. We conclude that the winter NAO is a relevant driver of forest growth in the western Iberian Peninsula forests but additional atmospheric patterns (WeMO) also affect, albeit to a minor extent, these forests.  相似文献   

9.
Callus cultures from shoot tips of mature Scots pine ( Pinus sylvestris L.) were characterized by rapid browning and an inability to regenerate. The peroxidase (POD) and polyphenol oxidase (PPO) activities and relationship to browning in such cultures were compared with embryogenic and non-embryogenic cultures of Scots pine, started from immature embryos of three different pine clones. The browning in callus cultures derived from pine buds was visible approximately after 2 weeks of culture, and continued thereafter until the callus was dark brown and poorly growing. The non-embryogenic cultures induced from immature embryos showed either light yellow coloring or browning, whereas the embryogenic cultures showed browning. POD activity increased during the first 4 weeks in callus tissue initiated from pine buds, and was significantly higher than in pine buds or cultures derived from immature embryos. The ability of cultures initiated from pine buds to oxidize catechol was notably high compared with cultures initiated from immature embryos, regardless of the time of measurement. Addition of catalase revealed that both POD and PPO were able to use catechol as substrate. An antibody raised against broad bean ( Vicia faba ) chloroplast PPO was used to recognize PPO. One polypeptide with a molecular mass of 50 kDa was detected in all pine samples on SDS-PAGE and non-denaturing PAGE. Another polypeptide with a molecular mass of 70 kDa was shown exclusively in the light-yellow non-embryogenic cultures. The results suggest that especially the high POD activities in callus tissues started from mature trees cause rapid and early browning and possibly subsequent cell death.  相似文献   

10.
The effects of raised temperature and extended photoperiod onthe dehardening of quiescent and winter-hardy Scots pine saplingswere examined in an open-top-chamber experiment. The saplingswere exposed during winter to natural, square-curve fluctuating(between 1 and 11 °C with a 14 d interval), and constant(6 °C) temperatures with a natural and an extended (17 h)photoperiod. Frost hardiness of needles was determined by controlledfreezing tests and visual damage scoring. The constant 6 °Ctemperature treatment caused a gradual dehardening of needleswhereas under fluctuating temperatures the level of frost hardinessfluctuated. Trees exposed to extended photoperiods were lesshardy than under natural photoperiods after the initiation ofshoot elongation, but before this there were no clear differencesin frost hardiness between different photoperiodic treatments.The results indicate that the frost hardening competence ofScots pine changes during quiescence. Climate change; frost hardiness; hardening competence; photoperiod; Pinus sylvestris, Scots pine; temperature  相似文献   

11.
Over the past decades, global warming has led to a lengthening of the time window during which temperatures remain favorable for carbon assimilation and tree growth, resulting in a lengthening of the green season. The extent to which forest green seasons have tracked the lengthening of this favorable period under climate warming, however, has not been quantified to date. Here, we used remote sensing data and long-term ground observations of leaf-out and coloration for six dominant species of European trees at 1773 sites, for a total of 6060 species–site combinations, during 1980–2016 and found that actual green season extensions (GS: 3.1 ± 0.1 day decade−1) lag four times behind extensions of the potential thermal season (TS: 12.6 ± 0.1 day decade−1). Similar but less pronounced differences were obtained using satellite-derived vegetation phenology observations, that is, a lengthening of 4.4 ± 0.13 and 7.5 ± 0.13 day decade−1 for GS and TS, respectively. This difference was mainly driven by the larger advance in the onset of the thermal season compared to the actual advance of leaf-out dates (spring mismatch: 7.2 ± 0.1 day decade−1), but to a less extent caused by a phenological mismatch between GS and TS in autumn (2.4 ± 0.1 day decade−1). Our results showed that forest trees do not linearly track the new thermal window extension, indicating more complex interactions between winter and spring temperatures and photoperiod and a justification of demonstrating that using more sophisticated models that include the influence of chilling and photoperiod is needed to accurately predict spring phenological changes under warmer climate. They urge caution if such mechanisms are omitted to predict, for example, how vegetative health and growth, species distribution and crop yields will change in the future.  相似文献   

12.
Rising temperature and altered precipitation regimes will lead to severe droughts and concomitant extreme events in the future. Forest ecosystems have shown to be especially prone to climate change. In assessing climate change impacts, many studies focus on high altitude or ecological edge populations where a climate signal is supposedly most pronounced. While these studies represent only a fraction of the forest ecosystems throughout Europe, findings on climate sensitivity of lowland core populations remain comparatively underrepresented.By using tree-ring widths of a large region-wide network of European beech and Scots pine populations along a precipitation gradient in northeastern Germany, we identify main climatic drivers and spatio-temporal patterns in climate sensitivity. Further, we analyze the resistance of tree growth towards drought. Detailed data on soil characteristics was used to interpret climate-growth relationships.Beech was found to be most sensitive to summer drought during early summer at dry sites, whereas pine displayed highest sensitivity for winter temperature at wet sites. The resistance to extreme drought was lower for beech. By splitting the observation period (1964–2017) into an early and late period, we found non-stationary climate-growth relationships for both study species with beech showing an increase in drought sensitivity and pine in winter temperature sensitivity.Overall, beech populations seem to be especially endangered by prospective climate changes, whereas climate-growth relationships of pine seem more ambiguous with a possible trade-off between enhanced photosynthetic activity caused by early photosynthesis in late winter and reduced activity due to summer drought.  相似文献   

13.
Climate condtions constitute some of the main factors affecting variation in annual tree-ring growth. However other exogenous processes including geomorphic activity can affect substantially the rate of tree growth. Currently little is known on how human activity such as trampling affects tree growth along hiking trails.We analyzed annual growth variation in 42 Scots pine trees (Pinus sylvestris L.) subjected to what is known as tourist pressure on a heavily used hiking trail in the Brodnica Lakeland located in Northeastern Poland and compared them with 45 pin. trees growing under natural conditions. Specifically, we compared the climate sensitivity of pine trees growing under trampling pressure with a pine reference site using climate variables such as mean, minimum and maximum monthly air temperature and monthly precipitation. Positive and negative pointer years for two sites were designated using the Becker algorithm and compared.Results revealed that Scots pine annual growth at both sites was highly correlated with winter (January, February) and spring (March) air temperatures and February precipitation. However, both the response function analysis and pointer year analysis revealed higher climatic sensitivity of trees subjected to trampling. It was revealed that thermal and pluvial conditions play an important role for Scots pine growth at the trampling site (PRES), especially in June and July when cambium is probably most active. At the same time, these are the months during which tourist activity is the most intense. Tree growth on a hiking trail was positively correlated with higher precipitation and lower maximum air temperature in June and July. This may indicate that pine trees subjected to trampling are threatened by a potential moisture limitation that occurs within and around the studied hiking trail due to an increase in soil compaction. Additionally, the study revealed growth reduction in pine trees subjected to trampling pressure starting from the late 1970s, i.e., right at a time when a strong increase in tourist traffic was noted across the Brodnica Lakeland.The study shows that human impact associated with trampling on hiking trails significantlly affects the growth of Scots pine and should be taken into account in future dendroecological studies.  相似文献   

14.
Background and Aims Climate change is advancing the leaf-out times of many plant species and mostly extending the growing season in temperate ecosystems. Laboratory experiments using twig cuttings from woody plant species present an affordable, easily replicated approach to investigate the relative importance of factors such as winter chilling, photoperiod, spring warming and frost tolerance on the leafing-out times of plant communities. This Viewpoint article demonstrates how the results of these experiments deepen our understanding beyond what is possible via analyses of remote sensing and field observation data, and can be used to improve climate change forecasts of shifts in phenology, ecosystem processes and ecological interactions.Scope The twig method involves cutting dormant twigs from trees, shrubs and vines on a single date or at intervals over the course of the winter and early spring, placing them in containers of water in controlled environments, and regularly recording leaf-out, flowering or other phenomena. Prior to or following leaf-out or flowering, twigs may be assigned to treatment groups for experiments involving temperature, photoperiod, frost, humidity and more. Recent studies using these methods have shown that winter chilling requirements and spring warming strongly affect leaf-out and flowering times of temperate trees and shrubs, whereas photoperiod requirements are less important than previously thought for most species. Invasive plant species have weaker winter chilling requirements than native species in temperate ecosystems, and species that leaf-out early in the season have greater frost tolerance than later leafing species.Conclusions This methodology could be extended to investigate additional drivers of leaf-out phenology, leaf senescence in the autumn, and other phenomena, and could be a useful tool for education and outreach. Additional ecosystems, such as boreal, southern hemisphere and sub-tropical forests, could also be investigated using dormant twigs to determine the drivers of leaf-out times and how these ecosystems will be affected by climate change.  相似文献   

15.
Recovery of photosynthesis in winter-stressed Scots pine   总被引:9,自引:5,他引:4  
Abstract. . Winter-induced inhibition of photosynthesis in Scots pine (Pinns sylvestris L.) is caused by the combined effects of light and freezing temperatures; light causes photoinhibition of photosystem II (Strand & Oquist, 1985b, Physiologic Plantarum, 65 , 117–123), whereas frost causes inhibition of enzymatic steps of photosynthesis (Strand & Öquist, 1988, Plant, Cell & Environment, 11 , 231–238). To reveal limiting steps during recovery from winter stress, the potential of photosynthesis to recover and the actual recovery outdoors during spring, were studied in Scots pine. Studies of light dependent O2-evolution under saturating CO2 and recordings of room temperature fluorescence induction kinetics were used. When branches of pine, in February and March, were brought into the laboratory and kept at 18°Cand 100μmol m?2 s?1, light saturated rates and apparent quantum yields of photo-synthetic O2-evolution recovered fully within approximately 48h. The photochemical efficiency of photosystem II, as measured by Fv/Fm ratios, recovered fully within 24h after an initial lag-phase of 2-3 h. Under natural winter conditions, the Fv/Fm ratio decreased more in exposed than in shaded pine, whereas the efficiency of photosynthesis was similarly inhibited in exposed and shadedpine. However, when recovery from winter stress occurred during spring, the Fv/Fm ratios of both shaded and exposed pine recovered well before photosynthesis. It is concluded that the light-induced photoinhibition component of winter stress in photosynthesis of pine recovers well before the frost induced component(s) of winter stress. In this context, reversible photoinhibition of photosynthesis in evergreen conifers is considered as a dynamic down-regulation of photosystem II to prevent more severe photodynamic damage of the thylakoid membrane when photosynthesis is inhibited by frost.  相似文献   

16.
During winter and early spring, evergreen boreal conifers are severely stressed because light energy cannot be used when photosynthesis is pre‐empted by low ambient temperatures. To study photosynthetic performance dynamics in a severe boreal climate, seasonal changes in photosynthetic pigments, chloroplast proteins and photochemical efficiency were studied in a Scots pine forest near Zotino, Central Siberia. In winter, downregulation of photosynthesis involved loss of chlorophylls, a twofold increase in xanthophyll cycle pigments and sustained high levels of the light stress‐induced zeaxanthin pigment. The highest levels of xanthophylls and zeaxanthin did not occur during the coldest winter period, but rather in April when light was increasing, indicating an increased capacity for thermal dissipation of excitation energy at that time. Concomitantly, in early spring the D1 protein of the photosystem II (PSII) reaction centre and the light‐harvesting complex of PSII dropped to their lowest annual levels. In April and May, recovery of PSII activity, chloroplast protein synthesis and rearrangements of pigments were observed as air temperatures increased above 0°C. Nevertheless, severe intermittent low‐temperature episodes during this period not only halted but actually reversed the physiological recovery. During these spring low‐temperature episodes, protective processes involved a complementary function of the PsbS and early light‐induced protein thylakoid proteins. Full recovery of photosynthesis did not occur until the end of May. Our results show that even after winter cold hardening, photosynthetic activity in evergreens responds opportunistically to environmental change throughout the cold season. Therefore, climate change effects potentially improve the sink capacity of boreal forests for atmospheric carbon. However, earlier photosynthesis in spring in response to warmer temperatures is strongly constrained by environmental variation, counteracting the positive effects of an early recovery process.  相似文献   

17.
Plant phenology is expected to be sensitive to climate warming. In boreal trees, spring flush is primarily temperature driven, whereas height growth cessation and autumn leaf senescence are predominantly controlled by photoperiod. Cuttings of 525 genotypes from the full range of balsam poplar were planted into two common gardens (Vancouver and Indian Head, Canada) at similar latitudes, but with differing winter temperatures and growing seasons. There was clinal variation in spring and, particularly, summer and fall phenology. Bud flush and, despite milder climate, bud set and leaf drop were earlier at Vancouver than at Indian Head by 44, 28 and 7 d, respectively. Although newly flushed growth is insensitive to photoperiod, many genotypes at both sites became competent before the summer solstice. At Vancouver, high‐latitude genotypes set dormant terminal buds in mid‐spring. Most other genotypes grew until midsummer or set bud temporarily and then experienced a second flush. In both gardens and in a growth chamber experiment, earlier bud set was associated with reduced height growth and higher root/shoot ratios. Shoots attained competency ~5 weeks after flushing, which would normally prevent dormancy induction before the solstice, but may be insufficient if spring advances by more than a few weeks.  相似文献   

18.
Preconditions of phloem transport in conifers are relatively unknown. We studied the variation of needle and inner bark axial osmotic gradients and xylem water potential in Scots pine and Norway spruce by measuring needle and inner bark osmolality in saplings and mature trees over several periods within a growing season. The needle and inner bark osmolality was strongly related to xylem water potential in all studied trees. Sugar concentrations were measured in Scots pine, and they had similar dynamics to inner bark osmolality. The sucrose quantity remained fairly constant over time and position, whereas the other sugars exhibited a larger change with time and position. A small osmotic gradient existed from branch to stem base under pre‐dawn conditions, and the osmotic gradient between upper stem and stem base was close to zero. The turgor in branches was significantly driven by xylem water potential, and the turgor loss point in branches was relatively close to daily minimum needle water potentials typically reported for Scots pine. Our results imply that xylem water potential considerably impacts the turgor pressure gradient driving phloem transport and that gravitation has a relatively large role in phloem transport in the stems of mature Scots pine trees.  相似文献   

19.
Duchemin  M. B.  Audet  C.  & Lambert  Y. 《Journal of fish biology》2004,65(S1):328-328
The winter flounder is an in‐shore flatfish living in shallow waters on the east coast of North America from Labrador to Georgia. In the St Lawrence estuary, the reproductive season is May and June. Our objective was to test the effects of winter‐spring photoperiod and temperature conditions on the timing of sexual maturation in both males and females. Groups (16 animals each) of winter flounder breeders were maintained from mid‐January to mid‐May under five different experimental conditions: (1) natural photoperiod and temperature conditions; (2) natural photoperiod, 6° C; (3) 15L : 9D, natural temperature conditions; (4) 15L : 9D, 6° C; (5) accelerated photoperiod increase from winter to spring conditions, 6° C. Natural photoperiod and temperature conditions correspond to a gradual increase in light period from 8L : 16D (January) to 15L : 9D (May) and in temperature from −1° C (January to April) to 6° C (May). GSI and condition factor did not differ among the treatments ( P  > 0·05). In males, milt production occurred simultaneously in the different treatments and histological examination did not indicate any significant effect of either photoperiod or temperature on testes development. In females, seven stages of oocyte development were observed. Both the number of oocytes at the cortical alveoli stage and number of atretic oocytes increased at 6° C (warm temperature conditions). Overall, neither photoperiod nor temperature modified the reproductive period. Warm winter‐spring temperature conditions, however, may decrease egg numbers and egg quality.  相似文献   

20.
LEINONEN  ILKKA 《Annals of botany》1996,78(6):687-693
The changes in the frost hardiness of Scots pine were modelledby a dynamic model where the input variables were temperatureand photoperiod and the phase of annual development. The damagecaused by freezing was described by the sigmoidal relationshipbetween the relative needle damage and freezing temperature.The model simulations were carried out using temperature datafrom two sites in central Finland—Suonenjoki and Tampere.The validity of the frost hardiness model was tested with measuredfrost hardiness data from Suonenjoki. The effects of climaticwarming were also simulated by increasing temperature of thelong-term climatic data. Genotypic differences in chilling requirement,which determines the timing of the reduction of hardening competence,were included in the simulations. The simulated needle damageincreased as a result of climatic warming, and the differencesin the chilling requirement had a stronger effect on the amountof damage in the warmed climate than in the present climate.A large variation between years was found in the level of damage. Annual development; climatic change; dynamic model; freeze damage; frost hardiness,Pinus sylvestris ; Scots pine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号