首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of initial sodium chloride concentration (6 and 0%, w/v), acetic acid concentration (0.6, 0.3 and 0.0%, v/v), type of process (natural and inoculated), and storage system (anaerobic and aerobic) on the inducement of a lactic fermentation for the preservation stage of Hojiblanca cultivar ripe olives was investigated. The addition of 6% NaCl prevented colonization by lactic acid bacteria in all cases. A high level of acetic acid (0.6%) was effective in preserving olives for 2 months, although yeast growth was not inhibited for longer periods of storage. Natural growth of Lactobacillus plantarum did not occur. Inoculation with this micro-organism was effective only in the two treatments with tap water (with no NaCl) as the initial covering solution, although survival was reduced to a half of the added organisms when the initial pH was corrected with 0.3% acetic acid. In these two treatments pH quickly reached appropriate values (<4.0) for olive stabilization. Aerobic conditions led to low concentrations of carbon dioxide, without disturbing growth of lactic acid bacteria. Thus, the aerobic lactic acid fermentation, with tap water initially, was the most adequate preservation procedure for the storage of ripe olives prior to their oxidation treatment. Results of trials conducted on an industrial scale showed the same pattern and confirmed the viability of the new procedure.  相似文献   

2.
The development of lactic fermentation processes for the storage of directly brined olives (Aloreña cultivar) was investigated by three procedures: (1) a modification of the traditional method with an initial brine containing 9% (w/v) NaCl and 0.2% (w/v) acetic acid; (2) induced lactic fermentation with 6% NaCl and 0.2% acetic acid; and (3) conservation in acidified brine containing 6% NaCl and 0.6% acetic acid. In all cases, strains of Lactobacillus plantarum and Pediococcus spp. were present in each, indicating the great tolerance of these micro-organisms to high levels of lactic and acetic acids. They also appeared in an altered sequence. Counts of Pediococcus remained moderate (higher than Lact. plantarum ) throughout the last part of the preservation period. A commercial starter improved colonization by Lact. plantarum. Yeasts coexisted with the lactic bacteria throughout the preservation period although their importance in the fermentation process was very limited. The brine characteristics obtained after fermentation were suitable for assured product preservation. There was no spoilage. These results encourage research on the mechanism of lactic acid bacteria inhibition in brines and the development of lactic fermentation processes for directly brined olives from other olive cultivars.  相似文献   

3.
Summary The industrial production of ethanol is affected mainly by contamination by lactic acid bacteria besides others factors that act synergistically like increased sulfite content, extremely low pH, high acidity, high alcoholic content, high temperature and osmotic pressure. In this research two strains of Saccharomyces cerevisiae PE-2 and M-26 were tested regarding the alcoholic fermentation potential in highly stressed conditions. These strains were subjected to values up to 200 mg NaHSO3 l−1, 6 g lactic acid l−1, 9.5% (w/v) ethanol and pH 3.6 during fermentative processes. The low pH (3.6) was the major stressing factor on yeasts during the fermentation. The M-26 strain produced higher acidity than the other, with higher production of succinic acid, an important inhibitor of lactic bacteria. Both strains of yeasts showed similar performance during the fermentation, with no significant difference in cell viability.  相似文献   

4.
Green olives of the Tunisian variety "Meski" were treated according to a Spanish-style green olive preservation process by using an alkaline treatment (1.5, 2 and 2.5% (w/v) NaOH) to eliminate bitterness, combined with different brine concentrations (6, 9 and 12% (w/v) NaCl). A spontaneous fermentation by the environmental microflora took place. Results showed that 2% NaOH solution and 9% sodium chloride brine was an optimal combination inducing the best growth of Lactobacillus species (10(8) CFU/ml) and acidity of 0.726 g lactic acid/100 ml brine. In all trials and independently of the treatment, Lb. plantarum was the most dominant strain of Lactobacillus. Moreover, pretreatment with lye and lactic fermentation of olives contributed to coliform elimination.  相似文献   

5.
Oleuropein, the bitter glucoside in green olives, and products of its hydrolysis were tested for antibacterial action against certain species of lactic acid bacteria involved in the brine fermentation of olives. Oleuropein was not inhibitory, but two of its hydrolysis products, the aglycone and elenolic acid, inhibited growth of the four species of lactic acid bacteria tested. Another hydrolysis product, beta-3,4-dihydroxyphenylethyl alcohol, was not inhibitory. The aglycone of oleuropein and elenolic acid were much more inhibitory when the broth medium contained 5% NaCl; 150 mug of either compound per ml prevented growth of Lactobacillus plantarum. A crude extract of oleuropein, tested by paper disk bioassay, was inhibitory to 3 of 17 species of bacteria screened, none of which were lactic acid bacteria. The acid hydrolysate of the extract was inhibitory to 11 of the bacteria, which included four species of lactic acid bacteria and other gram-positive and gram-negative species. Neither crude preparation was inhibitory to growth of the seven species of yeasts tested. A possible explanation is given for the previously reported observation that heating (3 min, 74 C) olives prior to brining renders them more fermentable by lactic acid bacteria. Results of a brining experiment indicated that oleuropein is degraded to antibacterial compounds when unheated olives are brined.  相似文献   

6.
Kwak WS  Kim YI  Seok JS  Oh YK  Lee SM 《Bioresource technology》2009,100(3):1471-1473
A small-silo study was conducted to develop an effective ensiling storage method for the use of cotton waste-based spent mushroom substrate (SMS) as an animal feed. The SMS was ensiled with 5% molasses (DM basis), 0.5% (v/w) lactic acid bacteria (LAB, Lactobacillus plantarum) inoculant or 0.5% (v/w) yeast (Saccharomyces cerevisiae) inoculant. The treatments included 100% SMS (control), 95% SMS+5% molasses (T1), 95% SMS+5% molasses+0.5% LAB (T2) and 95% SMS+5% molasses+5% LAB+0.5% yeast (T3). The treatments were ensiled for 10. Change in chemical compositions was little (P>0.05) according to the ensiling process and treatments. Compared with those before ensiling, 100% SMS (control) after ensiling showed unstable fermentative properties with high pH (5.2) and little lactic acid production. Compared with the ensiled control, treatments (T1, T2 and T3) resulted in decreased pH, 18-20 times higher concentrations of lactic acid, and greater populations of total bacteria (P<0.07), LAB and yeast (P<0.07). The addition of 5% molasses, 0.5% LAB and 0.5% yeast (T3) to the SMS resulted in the lowest pH (4.25) and the greatest microbial populations. Treatment T3 was selected for a large scale silo study which was ensiled for 10, 20 and 30 d. As in the small-silo study, the T3 treatment showed favorable fermentative and microbial parameters, compared with the control, by decreasing pH and increasing lactic acid concentrations, LAB and yeast populations. The minimum ensiling period was 20 d, when pH was reasonably low and LAB and yeast populations were greatest. In conclusion, molasses and microbial inoculation improved silage quality of SMS.  相似文献   

7.
Mexican fermented maize dough, pozol, including traditional banana leaf-wrapped samples and material in plastic bags, was purchased. All samples were pH 4.7 to 5.7 approx. 12 h after preparation, pH declining to 3.6 to 3.9 after 6 to 9 days storage at ambient temperature. These latter samples had dry matter contents of 31% to 48% (w/w), 0.35% to 0.75% titratable acidity as lactic acid and lactic acid bacteria as predominant microbial flora at about 108 c.f.u./ml. The lactic acid bacteria included strains of Leuconostoc mesenteroides, Lactobacillus plantarum, Lactobacillus confusus, Lactococcus lactis and Lactococcus raffinolactis. Fungi were not found in the samples stored in plastic bags. The samples wrapped in banana leaf, however, developed a large surface mycoflora within 2 days. This included Geotrichum candidum, yeasts and moulds. The majority of the lactic acid bacteria and approx. 50% of yeasts hydrolysed starch to some extent. No Geotrichum isolate hydrolysed starch. Lactate was assimilated by all the Geotrichum isolates and by 17 of 39 yeast strains.  相似文献   

8.
Aims: To assess the yeast community structure and dynamics during Greek‐style processing of natural black Conservolea olives in different brine solutions. Methods and Results: Black olives were subjected to spontaneous fermentation in 6% (w/v) NaCl brine solution or brine supplemented with (i) 0·5% (w/v) glucose, (ii) 0·2% (v/v) lactic acid and (iii) both glucose and lactic acid. Yeast species diversity was evaluated at the early (2 days), middle (17 days) and final (35 days) stages of fermentation by restriction fragment length polymorphism and sequence analyses of the 5·8S internal transcribed spacer and the D1/D2 ribosomal DNA (rDNA) regions of isolates. Analysis revealed a relatively broad range of biodiversity composed of 10 genera and 17 species. In all treatments, yeasts were the main micro‐organisms involved in fermentation together with lactic acid bacteria that coexisted throughout the processes. Metschnikowia pulcherrima was the dominant yeast species at the onset of fermentation, followed by Debaryomyces hansenii and Aureobasidium pullulans. Species heterogeneity changed as fermentations proceeded and Pichia membranifaciens along with Pichia anomala evolved as the main yeasts of olive elaboration, prevailing at 17 and 35 days of the process. Molecular techniques allowed for the identification of five yeast species, namely A. pullulans, Candida sp., Candida silvae, Cystofilobasidium capitatum and M. pulcherrima, which have not been reported previously in black olive fermentation. Conclusions: By using molecular techniques, a rich yeast community was identified from Conservolea black olive fermentations. Metschnikowia pulcherrima was reported for the first time to dominate in different brines at the onset of fermentation, whereas Pichia anomala and P. membranifaciens evolved during the course. The addition of glucose and/or lactic acid perturbed yeast succession and dominance during fermentation. Significance and Impact of the Study: Yeasts have an important role in black olive fermentation and contribute to the development of the organoleptic characteristics of the final product. At the same time, certain species can cause significant spoilage. The present study adds to a better knowledge of yeast communities residing in olive fermentations towards a well‐controlled process with minimization of product’s losses.  相似文献   

9.
Crude extract from sweet sorghum supplemented with vetch juice was utilized as the carbohydrate source for fermentative production of lactic acid. Fermentation of media containing 7%(w/v) total sugar was complex completed in 60–80 hr by Lactobacillus plantarum, product yield averaging 85%. Maximum acid production rates were dependent on pH, initial substrate distribution, and concentration, the rates varying from 2 to 5 g(liter·hr.) The lactic acid yield was lowered to 67% under limited medium supplementation. The fermented ammoniated product contained over eight times as much equivalent crude protein (N × 6.25) as the original medium. Unstructured kinetic models were developed for cell growth, lactic acid formation, and substrate consumption in batch fermentation. With the provision of experimentally determined kinetic parameters, the proposed models accurately the fermentation process.  相似文献   

10.
The effect of NaNO2 and NaCl on the growth of 24 lactic acid bacteria strains isolated from vacuum-packed cooked ring sausages were examined by analyzing different growth parameters with Bioscreen. NaNO2 had a very limited effect on the growth of lactic acid bacteria at 50 and 100 mg/l but at 400 mg/l a more pronounced inhibitory effect was found. Bacterial growth was enhanced by 1–2% (w/v) of added NaCl, while NaCl concentrations above 3% (w/v) had a clear inhibitory effect. Leuconostoc isolates seemed to be more sensitive to sodium nitrite and sodium chloride than homofermentative lactobacilli strains. Among homofermentative lactobacilli, the strains resembling Lactobacillus curvatus were more sensitive to NaCl than those resembling Lactobacillus sake.  相似文献   

11.
Fermentation conditions and microorganisms were determined, based on acid production, glucose concentration as carbohydrate source. Inoculation levels to obtain a stable shrimp waste silage were also determined. Shrimp waste ensilation was an efficient method of preservation, allowing the recovery of chitin and another added-value products such as pigments, proteins and enzymes. From the various lactic acid bacteria tested, Lactobacillus pentosus and Lactobacillus sp. (B2) were the best lactic acid producers, although small quantities of acetic acid were detected in samples inoculated with Lactobacillus pentosus. Therefore B2 was chosen for the analysis of glucose consumption as well as for the determination of optimum inoculation levels. The best results were obtained at 10% (w/w wet basis) and 5% (v/w wet basis) respectively. Presence of starters and initial glucose concentration were critical factors in the fermentation of shrimp waste. High initial glucose and starter concentrations reduced the time and increased the amount of lactic acid produced. The fermentation pattern changed during ensilation from hetero to homofermentative. Shrimp waste ensilation prevented the growth of spoilage microorganisms keeping their microbial counts steady and pH values within the acid region.  相似文献   

12.
AIMS: To investigate the effects of the salt concentration, incubation temperature and initial pH of the medium on the fermentative ability of the halophilic lactic acid bacteria, Tetragenococcus muriaticus and T. halophilus. METHOD AND RESULTS: The growth, lactic acid production and pH reduction ability of five strains of T. muriaticus and T. halophilus in MRS broth medium under various culture conditions such as salt concentration (3, 7, 15 and 23% NaCl), temperature (20, 30 and 40 degrees C), and initial medium pH (5.8, 6.5 and 7.5) were investigated. Those of T. halophilus were seriously affected by a high salinity (23% NaCl); in contrast, those of T. muriaticus were affected by a low initial pH (5.8). CONCLUSIONS: The results indicate that high saline concentrations and low pH values have significant impact on the growth, lactic acid production and pH reduction ability of T. halophilus and T. muriaticus, respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: This study appears to be important in biopreservation during the manufacture of fermented food products. Both T. muriaticus and T. halophilus may support each other in reducing pH in hypersaline or low pH environment. To our knowledge, this is the first report on the fermentation ability of T. muriaticus.  相似文献   

13.
J.C. DE REU, F.M. ROMBOUTS AND M.J.R. NOUT. 1995. During the soaking of soya beans according to an accelerated acidification method organic acids were formed, resulting in a pH decrease from 6·0 to 3·9. After 24 h of fermentation at 30°C, lactic acid was the major organic acid (2·1% w/v soak water), while acetic acid (0·3% w/v soak water) and citric acid (0·5% w/v soak water) were also found. During cooking with fresh water (ratio raw beans: water, 1: 6·5) the concentrations of lactate/lactic acid and acetate/acetic acid in the beans were reduced by 45% and 51%, respectively.
The effect of organic acids on the germination of Rhizopus olgosporus sporangiospores was studied in liquid media and on soya beans. Germination in aqueous suspensions was delayed by acetic acid: within 6 h no germination occurred at concentrations higher than 0·05% (w/v incubation medium), at pH 4·0. When soya beans were soaked in the presence of acetic acid, the inhibitory concentration depended on the pH after soaking. Lactic acid and citric acid enhanced germination in liquid medium, but not in tempe.
Inoculation of soya beans with R. oligosporus at various temperatures followed by incubation at 30°C resulted in both increased and decreased periods for the lag phase of fungal growth. A maximum difference of 3 h lag phase was found between initial bean temperatures of 25 and 37°C.
When pure cultures of homofermentative lactic acid bacteria were used in the initial soaking process, less lactic acid and acetic acid was formed during soaking than when the accelerated acidification method was used. This resulted in a reduction of the lag phase before growth of R. oligosporus by up to 4·7 h.  相似文献   

14.
Kefir is a beverage produced by lactic-alcoholic fermentation of milk using kefir grain. For the first time in Iran, the microbial flora of kefir grain was isolated and identified (Motaghi et al. 1997). In this paper various ratios of starter cultures of kefir grains were investigated. Various ratios of lactic acid bacteria, yeasts and acetic acid bacteria were tested and the quality (colour, smell, flavour, acidity, effervescence and viscosity) of the product was assessed. At constant incubation time and temperature (24 h, 25 °C using homogenised milk with 2.5% fat), samples with various ratios of starter culture (3–5% w/v) were examined and analysed for protein, fat, sugar, alcohol, carbon dioxide, acidity, density, and riboflavin content. Samples produced with 3% (v/v) bacterial mixed culture and 2% (v/v) yeast (K3 procedure) culture were considered as best with respect to quality and organoleptic quality. The comparison of the results with the organoleptic tests of previous studies showed that the kefir produced with kefir grain is more desirable as compared with kefir produced with starter cultures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Investigation of the microbial flora, various enzyme activities, and acidity of mash during the aging of tou-pan-chiang, a Chinese traditional fermented condiment was done. During the 3-months aging period, the population of mold and aerobic microorganisms gradually decreased after 42 d of fermentation, while counts of lactic acid bacteria and yeasts increased. In general, the activities of proteases, amylases, cellulase and α-galactosidase rose, then declined. Changes of lipase activity showed no consistent treand. The acidity of mash increased from the initial value of 0.72 to 2.35%, while the pH declined from 6.2 to 5.4.  相似文献   

16.
Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) is a lactic acid bacteria species found on plants that is essential for many plant food fermentations. In this study, we investigated the intraspecific phenotypic and genetic diversity of 13 L. plantarum strains isolated from different plant foods, including fermented olives and tomatoes, cactus fruit, teff injera, wheat boza and wheat sourdough starter. We found that strains from the same or similar plant food types frequently exhibited similar carbohydrate metabolism and stress tolerance responses. The isolates from acidic, brine-containing ferments (olives and tomatoes) were more resistant to MRS adjusted to pH 3.5 or containing 4% w/v NaCl, than those recovered from grain fermentations. Strains from fermented olives grew robustly on raffinose as the sole carbon source and were better able to grow in the presence of ethanol (8% v/v or sequential exposure of 8% (v/v) and then 12% (v/v) ethanol) than most isolates from other plant types and the reference strain NCIMB8826R. Cell free culture supernatants from the olive-associated strains were also more effective at inhibiting growth of an olive spoilage strain of Saccharomyces cerevisiae. Multi-locus sequence typing and comparative genomics indicated that isolates from the same source tended to be genetically related. However, despite these similarities, other traits were highly variable between strains from the same plant source, including the capacity for biofilm formation and survival at pH 2 or 50°C. Genomic comparisons were unable to resolve strain differences, with the exception of the most phenotypically impaired and robust isolates, highlighting the importance of utilizing phenotypic studies to investigate differences between strains of L. plantarum. The findings show that L. plantarum is adapted for growth on specific plants or plant food types, but that intraspecific variation may be important for ecological fitness and strain coexistence within individual habitats.  相似文献   

17.
This study aims at designing a lactic starter for caper fermentation isolated from Tunisian fermented vegetables to improve the process and produce consistent and high-quality product. In this study, the lactic starter was isolated by exploring the lactic acid bacteria (LAB) of Tunisian artisanal fermented vegetables. Identification was carried out by partial 16S rRNA gene sequencing. Screening was based on salt tolerance and antagonistic activities against Escherichia coli ATCC 10536 and Enterococcus faecalis ATCC 10541. Caper fermentation was optimized through a full factorial experimental design (23), by exploring three factors: starter inoculum size, NaCl concentration, and acetate content. Differences in pH values, Total aerobic mesophilic bacteria and LAB counts between the beginning and end of fermentation are selected as responses and corresponding regression coefficients were calculated. The lactic microbiota is mainly represented by Lactobacillus plantarum group. Based on salt tolerance and antimicrobial activity, the strain Lactobacillus plantarum F3 was selected as starter for caper fermentation. The effect of NaCl concentration, acetate content, and inoculum size on acidity, total aerobic mesophilic bacteria count, and LAB count after 1 week and 1 month of caper fermentation was studied. Depending on the fermentation time, either 1 week or 1 month, the initial conditions should comprise 0% acetate, 108 CFU/mL inoculum, and 5% NaCl for 1 week against 5% acetate, 107 CFU/mL inoculum, and 10% NaCl for 1 month lasting caper fermentation. A protocol for caper fermentation was set up ensuring hygienic quality and LAB viability. Lb. plantarum F3 was selected as lactic starter for caper fermentation, and initial fermentation conditions were optimized through a full factorial design. This work has shown loss in LAB viability after 1 week of fermentation. Based on results obtained, an optimized fermentation protocol was set up. This protocol ensures LAB survival and high hygienic quality of the product.  相似文献   

18.
Pure culture fermentation of green olives   总被引:12,自引:9,他引:3       下载免费PDF全文
The method previously developed by us for the pure-culture fermentation of brined cucumbers and other vegetables has been applied successfully to Manzanillo variety olives. Field-run grade fruit was processed first by conventional procedures to remove most of the bitterness. Then the relative abilities of Lactobacillus plantarum, L. brevis, Pediococcus cerevisiae, and Leuconostoc mesenteroides to become established and produce acid in both heat-shocked (74 C for 3 min) and unheated olives, brined at 4.7 to 5.9% NaCl (w/v basis), were evaluated. The heat-shock treatment not only proved effective in ridding the fruit of naturally occurring, interfering, and competitive microbial groups prior to brining and inoculation, but also made the olives highly fermentable with respect to growth and acid production by the introduced culture, particularly L. plantarum. Of the four species used as inocula, L. plantarum was by far the most vigorous in fermentation ability. It consistently produced the highest levels of brine acidity (1.0 to 1.2% calculated as lactic acid) and the lowest pH values (3.8 to 3.9) during the fermentation of heat-shocked olives. Also, L. plantarum completely dominated fermentations when used in two-species (with P. cerevisiae) and three-species (with P. cerevisiae and L. brevis) combinations as inocula. In contrast, when L. plantarum was inoculated into the brines of unheated olives it failed to become properly established; the same was true for the other species tested, but even to a more pronounced degree. L. brevis was the only species used that failed to develop in brines of both heat-shocked and unheated olives. Modification of the curing brine by the addition of lactic acid at the outset, either with or without dextrose, led to a much earlier onset of fermentation with accompanying acid development, as compared to treatments with dextrose alone or nonadditive controls. Reasons for the marked improvement of the fermentability of Manzanillo olives receiving the prebrining heat-shock treatment are discussed.  相似文献   

19.
Current study was focused on the development of a non-fastidious lactic acid producing strain having better growth rate, low pH tolerance and good productivity by genome shuffling of a mutant strain of Lactobacillus delbrueckii NCIM 2025 and an amylase producing non-fastidious Bacillus amyloliquefaciens ATCC 23842. After the third cycle of the protoplast fusion, lactic acid production by few fusants was monitored and the best fusant was selected for further studies. Optimization of the important process parameters for lactic acid production was conducted using Plackett-Burman design and response surface methodology. Selected fusant could utilize the liquefied cassava bagasse starch directly with minimum nutrient supplementation for lactic acid production. During validation, 40g/L of lactic acid was obtained ( approximately 96% conversion of starch to lactic acid) by using fusant inoculum (3%, v/v) from 83g/L cassava bagasse (starch content 50% w/w) supplemented with yeast extract and peptone (0.2% each, w/v) and the buffering agent (2% CaCO(3), w/v).  相似文献   

20.
AIMS: To establish the site of microbial growth on naturally black fermented table olives, and to monitor the population dynamics of yeasts and selected micro-organisms together with the changes in organic acid profile and pH in the cover brine during fermentation. METHODS AND RESULTS: During fermentation, the numbers of Enterobacteriaceae and Pseudomonas spp. in the brine decreased whilst lactic acid bacteria and yeast populations increased. Scanning electron microscopy showed that a yeast-rich biofilm developed on the epicuticular wax of the olive skin during fermentation. Yeasts also predominated in the stomatal openings, but bacteria were more numerous in intercellular spaces in the sub-stomatal flesh. Citric, malic and tartaric acids were the major organic acids accumulating in the brine during fermentation. CONCLUSIONS: Micro-organisms associated with the skin, stomata and flesh in fermenting black olives may experience different local conditions to those prevailing in the cover brine. SIGNIFICANCE AND IMPACT OF THE STUDY: These are the first observations of the micro-organisms associated with the fruit of naturally fermented black olives and of the accumulation of specific organic acids during fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号