首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geranylgeraniol (GGO) induces apoptosis in various lines of human tumor cells through a mitochondrion-dependent pathway. The present study describes identification of a 21-kDa cytochrome c-releasing factor that appears in the cytosolic fraction after treatment of human leukemia U937 cells with GGO. Incubation of isolated mitochondria with a lysate of U937 cells that had been treated with GGO resulted in the release of cytochrome c from the mitochondria. Utilizing this cell-free system, we purified a 21-kDa protein that induced the release of cytochrome c from mitochondria and appeared to be involved in the apoptosis that is induced in U937 cells by GGO. We designated this protein cytochrome c-releasing factor 21 (CRF21). Overexpression of CRF21 in HeLa cells induced the release of cytochrome c from mitochondria, with subsequent apoptosis. Our results suggest that CRF21 might play an important role in the induction of apoptosis by GGO in leukemia U937 cells.  相似文献   

2.
We have examined the effects of the CDK1 inhibitor CGP74514A on cell cycle- and apoptosis-related events in human leukemia cells. An 18-hr exposure to 5 microM CGP74514A induced mitochondrial damage (i.e., loss of Delta psi(m)) and apoptosis in multiple human leukemia cell lines (e.g., U937, HL-60, KG-1, CCRF-CEM, Raji, and THP; range 30-95%). In U937 cells, CGP74514A- induced apoptosis (5 microM) became apparent within 4 hr and approached 100% by 24 hr. The pan- caspase inhibitor Boc-fmk and the caspase-8 inhibitor lETD-fmk opposed CGP74514A-induced caspase-9 activation and PARP degradation, but not cytochrome c or Smac/DIABLO release. CGP74514A-mediated apoptosis was substantially blocked by ectopic expression of full-length Bel- 2, a loop-deleted mutant Bcl-2, and Bcl-x(L). CGP74514A treatment (5 microM; 18 hr) resulted in increased p21(CIP1) expression, p27(KIP1) degradation, diminished E2F1 expression, and dephosphorylation of p34(CDC2). It also induced early (i.e., within 2 hr) inhibition of CDK1 activity and dephosphorylation of pRb, followed by pRb degradation, but did not block pRb phosphorylation at CDK2- and CDK4- specific sites. These findings indicate that the selective CDK1 inhibitor, CGP74514A, induces complex changes in cell cycle-related proteins in human leukemia cells accompanied by extensive mitochondrial damage, caspase activation, and apoptosis.  相似文献   

3.
Interactions between the histone deacetylase inhibitor sodium butyrate (SB) and phorbol 12-myristate 13-acetate (PMA) were examined in human myeloid leukemia cells (U937 and HL-60). Exposure of U937 cells to 1 mM SB and 1 nM PMA (24 h) markedly induced caspase activation and apoptosis, events accompanied by impaired differentiation induction (e.g., reduced plastic adherence and diminished expression of CD11b) as well as reduced clonogenic survival. The PKC inhibitor GF109203X blocked SB-/PMA-mediated apoptosis. Comparable results were obtained in HL-60 cells. Apoptosis was associated with early procaspase 8 activation and Bid cleavage, accompanied by pronounced mitochondrial damage (e.g., loss of mitochondrial membrane potential (DeltaPsi(m)) and cytochrome c release). Neutralization of endogenous TNFalpha by a human soluble TNF receptor substantially blocked SB-/PMA-induced cytochrome c release and apoptosis. Consistent with this, ectopic expression of a mutant dominant-negative caspase 8 or CrmA resulted in a significant decrease in SB-/PMA-induced apoptosis, whereas Bcl-2 overexpression did not. SB/PMA treatment also triggered a decline in the S and G(2)M populations, and dephosphorylation of p34(cdc2). These results indicate that SB interacts with low concentrations of PMA to induce apoptosis in human leukemia cells and that this process proceeds through a PKC-/TNFalpha-dependent pathway in which procaspase 8 and Bid activation play key roles.  相似文献   

4.
Bacterial infection induces apoptotic cell death in human monoblastic U937 cells that have been pretreated with interferon gamma (U937IFN). Apoptosis occurs in a manner that is independent of bacterial virulence proteins. In the present study, we show that lipopolysaccharide (LPS), a membrane constituent of gram-negative bacteria, also induces apoptosis in U937IFN cells. LPS treatment led to the appearance of characteristic markers of apoptosis such as nuclear fragmentation and activation of caspases. While the caspase inhibitor Z-VAD-fmk prevented LPS-induced apoptosis as judged by its inhibition of nuclear fragmentation, it failed to inhibit cytochrome c release and loss of mitochondrial membrane potential. Transfection of peptides containing the BH4 (Bcl-2 homology 4) domain derived from the anti-apoptotic protein Bcl-XL blocked LPS-induced nuclear fragmentation and the limited digestion of PARP. These results suggest that LPS does not require caspase activation to induce mitochondrial dysfunction and that mitochondria play a crucial role in the regulation of LPS-mediated apoptosis in U937IFN cells.  相似文献   

5.
Tumor necrosis factor-alpha (TNFalpha) mediates cytochrome c release from mitochondria, loss of mitochondrial membrane potential (DeltaPsim) and apoptosis in sensitive leukemic cells. In the present study, by using the human leukemic U937 cell line, we demonstrate that the cytochrome c release is caspase-8-dependent and can be blocked by an inhibitor of caspase-8, Z-Ile-Glu (OMe)-Thr-Asp(OMe)-fluoromethyl ketone (Z-IETD.fmk), or a pan caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD.fmk). However, TNFalpha-mediated loss of DeltaPsim was not inhibited by caspase inhibitors. The apoptotic process was blocked by either Z-IETD.fmk or Z-VAD.fmk in cells with lower DeltaPsim. U937 cells with stable transfection of the cellular inhibitor of apoptosis protein 1 (c-IAP1) are resistant to TNFalpha-induced activation of caspases, Bid cleavage, cytochrome c release and DeltaPsim collapse. In addition, both c-IAP1 and XIAP were not up-regulated upon prolonged exposure to TNFalpha. In contrast, there was a caspase-dependent cleavage of XIAP, but not c-IAP1, during treatment with TNFalpha for 7 days. These results demonstrate that c-IAP1 blocks TNFalpha signaling at a level controlling both activation of caspase-8 and a signal to cause loss of DeltaPsim. The sensitive U937 cell line failed to acquire resistance and gain a self-protecting advantage against apoptosis, upon induction of c-IAP1 expression.  相似文献   

6.
The effects of pharmacologic MEK1/2 inhibitors on ara-C-mediated mitochondrial injury, caspase activation, and apoptosis have been examined in HL-60 leukemic cells. Coadministration of subtoxic concentrations of the MEK1/2 inhibitors U0126 (20 microM), PD98059 (40 microM), or PD184352 (10 microM) with 10-100 microM ara-C (6 h) potentiated apoptosis (i.e., by approx twofold), and pro-caspase 3, pro-caspase 8, Bid, and PARP cleavage. Unexpectedly, MEK1/2 inhibitors failed to enhance ara-C-mediated loss of mitochondrial membrane potential (DeltaPsi(m)), but instead induced substantial increases in cytosolic release of cytochrome c and Smac/DIABLO. U0126/ara-C-mediated apoptosis and pro-caspase 3 activation, but not cytochrome c or Smac/DIABLO release, were blocked by the pan-caspase inhibitor ZVAD-fmk. Together, these findings indicate that potentiation of ara-C-mediated lethality in HL-60 cells by MEK1/2 inhibitors involves enhanced cytosolic release of cytochrome c and Smac/DIABLO but not discharge of DeltaPsi(m), implicating activation of an apoptotic pathway that differs, at least with respect to the nature of the accompanying mitochondrial injury, from that triggered by ara-C alone.  相似文献   

7.
Huh JE  Kang KS  Ahn KS  Kim DH  Saiki I  Kim SH 《Life sciences》2003,73(17):2249-2262
Mylabris phalerata (MP) is an insect that has been used for the treatment of cancer in oriental medicine. In the present study, the butanol (BuOH) fraction of MP (BFMP) was examined to determine whether it can exert anti-cancer activity through an apoptotic pathway with little toxicity. BFMP was found to have a specific cytotoxic effect on human monocytic leukemic U937 cells (IC(50) = 140 microg/ml) rather than on peripheral blood mononuclear lymphocytes (PBML, IC(50) = over 500 microg/ml). BFMP also induced the morphological changes of apoptosis, such as chromatin condensation, cell shrinking and DNA fragmentation at a concentration of 31.25 microg/ml. In addition, BFMP significantly increased the portion of apoptotic annexin-V positive cells in a dose-dependent manner, and effectively activated caspases (cysteine aspartase) cascade involving caspases 8, 9 and 3. BFMP also effectively cleaved Bid, a death agonist member of the Bcl-2 family and (poly(ADP-ribose)polymerase) (PARP) and induced the subsequent release of cytochrome c from mitochondria into the cytosol. However, it did not affect Bcl-2 and Bax expression. Taken together, these data suggest that the BuOH extract of Mylabris phalerata can induce apoptosis in U937 cells by caspase cascade activation in conjunction with cytochrome c release, induced by a product of Bid. Therefore, we conclude that BFMP has anti-cancer activity, which is achieved through apoptosis and is associated with little toxicity.  相似文献   

8.
Bioassay-guided phytochemical study of Androsace umbellata led to the successful isolation of saxifragifolin B (SB) for the first time. The anti-tumor effect of SB was firstly reported that it was shown to have potent cytotoxicity on human hepatoma HepG2 cells with IC50 value of 11.9 microM at 24 h. Mechanistic studies were conducted, the accumulation of sub-G1 population and the externalization of phosphatidylserine suggested that SB exerted its cytotoxic effect by induction of programmed cell death, which was confirmed by activation of PARP and caspase-3. Furthermore, SB-induced apoptosis on HepG2 cells was mediated by activation of caspase-8 and -9, mitochondrial membrane potential (Deltapsim) collapse and the leakage of cytochrome c. In summary, this study provided evidence that SB isolated from A. umbellata could induce apoptosis on human hepatoma HepG2 cells and described the molecular mechanism. Our finding revealed the potential of SB as new chemotherapeutic agent for human hepatoma.  相似文献   

9.
Okadaic acid is a specific inhibitor of serine/threonine protein phosphatase 1 (PP-1) and 2A (PP-2A). The phosphorylation and dephosphorylation at the serine/threonine residues on proteins play important roles in regulating gene expression, cell cycle progression, and apoptosis. In this study, phosphatase inhibitor okadaic acid induces apoptosis in U937 cells via a mechanism that appears to involve caspase 3 activation, but not modulation of Bcl-2, Bax, and Bcl-X(L) expression levels. Treatment with 20 or 40 nM okadaic acid for 24 h produced DNA fragmentation in U937 cells. This was associated with caspase 3 activation and PLC-gamma1 degradation. Okadaic acid-induced caspase 3 activation and PLC-gamma1 degradation and apoptosis were dose-dependent with a maximal effect at a concentration of 40 nM. Moreover, PMA (phorbol myristate acetate), PKC (protein kinase C) activator, protected U937 cells from okadaic acid-induced apoptosis, abrogated okadaic acid-induced caspase 3 activation, and specifically inhibited downregulation of XIAP (X-linked inhibitor of apoptosis) by okadaic acid. PMA cotreated U937 cells exhibited less cytochrome c release and sustained expression levels of the IAP (inhibitor of apoptosis) proteins during okadaic acid-induced apoptosis. In addition, these findings indicate that PMA inhibits okadaic acid-induced apoptosis by a mechanism that interferes with cytochrome c release and activity of caspase 3 that is involved in the execution of apoptosis.  相似文献   

10.
Curcumin, a natural, biologically active compound extracted from rhizomes of Curcuma species, has been shown to possess potent anti-inflammatory, anti-tumor, and anti-oxidative properties. The mechanism by which curcumin initiates apoptosis remains poorly understood. In the present report we investigated the effect of curcumin on the activation of the apoptotic pathway in human leukemia U937 cells. Curcumin induces apoptosis in U937 cells via a mechanism that appears to involve down-regulation of the anti-apoptotic Bcl-xL, and IAP proteins, release of cytochrome c, and activation of caspase 3. Ruthenium red, an inhibitor of mitochondrial uniporter, specifically inhibits curcumin-induced apoptosis in U937 cells. Cotreatment with ruthenium red markedly prevented the activation of caspase 3, cytochrome c release, and cell death, suggesting a role for intracellular Ca(2+) in this process. Curcumin induced a marked depletion of [Ca(2+)](i) in Caki cells bathed with both Ca(2+)-containing and -free solutions. Thapsigargin (TG), cyclopiazonic acid (CPA), and dantolene (DAN) had no effect. Ruthenium red, an inhibitor of mitochondrial uniporter, only attenuated the curcumin-induced [Ca(2+)](i) depletion in a dose-dependent manner. These data indicate that curcumin acts as a stimulator of intracellular Ca(2+) uptake into mitochondria via uniporter pathway and may involve in the execution of apoptosis.  相似文献   

11.
Rhein is an anthraquinone compound enriched in the rhizome of rhubarb, a traditional Chinese medicine herb showing anti-tumor promotion function. In this study, we first reported that rhein could induce apoptosis in human promyelocytic leukemia cells (HL-60), characterized by caspase activation, poly(ADP)ribose polymerase (PARP) cleavage, and DNA fragmentation. The efficacious induction of apoptosis was observed at 100 microM for 6h. Mechanistic analysis demonstrated that rhein induced the loss of mitochondrial membrane potential (DeltaPsi(m)), cytochrome c release from mitochondrion to cytosol, and cleavage of Bid protein. Rhein also induced generation of reactive oxygen species (ROS) and the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 kinase. However, these actions seem not to be associated with the apoptosis induction because antioxidants including N-acetyl cysteine (NAC), Tiron, and catalase did not block rhein-induced apoptosis, although they could block the generation of ROS and the phosphorylation of JNK and p38 kinase. Our data demonstrate that rhein induces apoptosis in HL-60 cells via a ROS-independent mitochondrial death pathway.  相似文献   

12.
Polyalthia longifolia is a lofty evergreen tree found in India and Sri Lanka. We are reporting first time the anticancer potential of P. longifolia leaves extract (A001) and its chloroform fraction (F002). Both inhibited cell proliferation of various human cancer cell lines in which colon cancer cells SW-620 showed maximum inhibition with IC(50) value 6.1 microg/ml. Furthermore, F002 induce apoptosis in human leukemia HL-60 cells as measured by several biological end points. F002 induce apoptotic bodies formation, DNA ladder, enhanced annexin-V-FITC binding of the cells, increased sub-G(0) DNA fraction, loss of mitochondrial membrane potential (DeltaPsi(mt)), release of cytochrome c, activation of caspase-9, caspase-3, and cleavage of poly ADP ribose polymerase (PARP) in HL-60 cells. All the above parameters revealed that F002-induced apoptosis through the mitochondrial-dependent pathway in HL-60 cells.  相似文献   

13.
We have examined the effects of the CDK1 inhibitor CGP74514A on cell cycle- and apoptosis-related events in human leukemia cells. An 18-hr exposure to 5 mM CGP74514A induced mitochondrial damage (i.e., loss of Dym) and apoptosis in multiple human leukemia cell lines (e.g., U937, HL-60, KG-1, CCRF-CEM, Raji, and THP; range 30-95%). In U937 cells, CGP74514A- induced apoptosis (5 mM) became apparent within 4 hr and approached 100% by 24 hr. The pan- caspase inhibitor Boc-fmk and the caspase-8 inhibitor IETD-fmk opposed CGP74514A-induced caspase-9 activation and PARP degradation, but not cytochrome c or Smac/DIABLO release. CGP74514A-mediated apoptosis was substantially blocked by ectopic expression of full-length Bcl- 2, a loop-deleted mutant Bcl-2, and Bcl-xL. CGP74514A treatment (5 mM; 18 hr) resulted in increased p21CIP1 expression, p27KIP1 degradation, diminished E2F1 expression, and dephosphorylation of p34cdc2. It also induced early (i.e., within 2 hr) inhibition of CDK1 activity and dephosphorylation of pRb, followed by pRb degradation, but did not block pRb phosphorylation at CDK2- and CDK4- specific sites. These findings indicate that the selective CDK1 inhibitor, CGP74514A, induces complex changes in cell cycle-related proteins in human leukemia cells accompanied by extensive mitochondrial damage, caspase activation, and apoptosis.

Key Words:

Leukemia, CDK1 Inhibitor, Apoptosis, CGP74514A  相似文献   

14.
The mechanism of acacetin-induced apoptosis of human breast cancer MCF-7 cells was investigated. Acacetin caused 50% growth inhibition (IC50) of MCF-7 cells at 26.4% 0.7% M over 24 h in the MTT assay. Apoptosis was characterized by DNA fragmentation and an increase of sub-G1 cells and involved activation of caspase-7 and PARP (poly-ADP-ribose polymerase). Maximum caspase 7 activity was observed with 100 microM acacetin for 24 h. Caspase 8 and 9 activation cascades mediated the activation of caspase 7. Acacetin caused a reduction of Bcl-2 expression leading to an increase of the Bax:Bcl-2 ratio. It also caused a loss of mitochondrial membrane potential that induced release of cytochrome c and apoptosis inducing factor (AIF) into the cytoplasm, enhancing ROS generation and subsequently resulting in apoptosis. Pretreatment of cells with N-acetylcysteine (NAC) reduced ROS generation and cell growth inhibition, and pretreatment with NAC or a caspase 8 inhibitor (Z-IETD-FMK) inhibited the acacetin-induced loss of mitochondrial membrane potential and release of cytochrome c and AIF. Stress-activated protein kinase/c-Jun NH4-terminal kinase 1/2 (SAPK/ JNK1/2) and c-Jun were activated by acacetin but extracellular-regulated kinase 1/2 (Erk1/2) nor p38 mitogen-activated protein kinase (MAPK) were not. Our results show that acacetin-induced apoptosis of MCF-7 cells is mediated by caspase activation cascades, ROS generation, mitochondria-mediated cell death signaling and the SAPK/JNK1/2-c-Jun signaling pathway, activated by acacetin-induced ROS generation.  相似文献   

15.
Kim HJ  Kang SK  Mun JY  Chun YJ  Choi KH  Kim MY 《FEBS letters》2003,555(2):217-222
Vitamin K-related analogs induce growth inhibition via a cell cycle arrest through cdc25A phosphatase inhibition in various cancer cell lines. We report that 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone (DDN), a naphthoquinone analog, induces mitochondria-dependent apoptosis in human promyelocytic leukemia HL-60 cells. DDN induced cytochrome c release, Bax translocation, cleavage of Bid and Bad, and activation of caspase-3, -8, -9 upon the induction of apoptosis. Cleavage of Bid, the caspase-8 substrate, was inhibited by the broad caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk), whereas cytochrome c release was not affected, suggesting that activation of caspase-8 and subsequent Bid cleavage occur downstream of cytochrome c release. DDN inhibited the activation of Akt detected by decreasing level of phosphorylation. Overexpression of constitutively active Akt protected cells from DDN-induced apoptosis, while dominant negative Akt moderately enhanced cell death. Furthermore, Akt prevented release of cytochrome c and cleavage of Bad in DDN-treated HL-60 cells. Taken together, DDN-induced apoptosis is associated with mitochondrial signaling which involves cytochrome c release via a mechanism inhibited by Akt.  相似文献   

16.
Lee EJ  Min HY  Joo Park H  Chung HJ  Kim S  Nam Han Y  Lee SK 《Life sciences》2004,75(23):2829-2839
Stilbenoids, including resveratrol (3,5,4'-trihydroxy-trans-stilbene) which is a naturally occurring phytoalexin abundant in grapes and several plants, have been shown to be active in inhibiting proliferation and inducing apoptosis in human cancer cell lines. Using resveratrol as the prototype, we have synthesized various analogs and evaluated their growth inhibitory effects in cultured human cancer cells. In the present study, we show that one of the stilbenoids, 3,4,5-trimethoxy-4'-bromo-cis-stilbene (BCS), was more effective than its corresponding trans-isomer and resveratrol on the inhibition of cancer cell growth. Prompted by the strong growth inhibitory activity of BCS (IC50; 0.03 microM) compared to its trans-isomer (IC50; 6.36 microM) and resveratrol (IC50; 33.0 microM) in cultured human lung cancer cells (A549), we investigated its mechanism of action. BCS induced arrest at the G2/M phase cell cycle in the early time and subsequently increased in the sub-G1 phase DNA contents in a time-dependent manner, indicating induction of apoptosis. Morphological observation with round-up shape and DNA fragmentation was also revealed the apoptotic phenomena. BCS treatment elevated the expression levels of the pro-apoptotic protein p53, the cyclin-dependent kinase inhibitor p21, and the release of cytochrome c in the cytosol. The down-regulation of checkpoint protein cyclin B1 by BCS was well correlated with the cell cycle arrest at G2/M. These data suggest the potential of BCS to serve as a cancer chemotherapeutic or chemopreventive agent by virtue of arresting the cell cycle and induction of apoptosis of human lung cancer cells.  相似文献   

17.
Cellular stress may stimulate cell survival pathways or cell death depending on its severity. 6-Hydroxydopamine (6-OHDA) is a neurotoxin that targets dopaminergic neurons that is often used to induce neuronal cell death in models of Parkinson's disease. Here we present evidence that 6-OHDA induces apoptosis in rat PC12 cells that involves release of cytochrome c and Smac/Diablo from mitochondria, caspase-3 activation, cleavage of PARP, and nuclear condensation. 6-OHDA also induced the heat shock response, leading to increased levels of Hsp25 and Hsp70. Increased Hsp25 expression was associated with cell survival. Prior heat shock or overexpression of Hsp27 (human homologue of Hsp25) delayed cytochrome c release, caspase activation, and reduced the level of apoptosis caused by 6-OHDA. We conclude that 6-OHDA induces a variety of responses in cultured PC12 cells ranging from cell survival to apoptosis, and that induction of stress proteins such as Hsp25 may protect cells from undergoing 6-OHDA-induced apoptosis.  相似文献   

18.
The proteolytic caspase cascade plays a central role in the signaling and execution steps of apoptosis. This study investigated the activation of different caspases in apoptosis induced by MAL (a folding variant of human alpha-lactalbumin) isolated from human milk. Our results show that the caspase-3-like enzymes, and to a lesser extent the caspase-6-like enzymes, were activated in Jurkat and A549 cells exposed to MAL. Activated caspases subsequently cleaved several protein substrates, including PARP, lamin B, and alpha-fodrin. A broad-range caspase inhibitor, zVAD-fmk, blocked the caspase activation, the cleavage of proteins, and DNA fragmentation, indicating an important role for caspase activation in MAL-induced apoptosis. Since an antagonistic anti-CD95 receptor antibody, ZB4, did not influence the MAL-induced killing, we conclude that this process does not involve the CD95-mediated pathway. While MAL did not directly activate caspases in the cytosol, it colocalized with mitochondria and induced the release of cytochrome c. Thus, these results demonstrate that caspases are activated and involved in apoptosis induced by MAL and that direct interaction of MAL with mitochondria leads to the release of cytochrome c, suggesting that this release is an important step in the initiation and/or amplification of the caspase cascade in these cells.  相似文献   

19.

Background

Agaricus blazei Murrill (ABM) has been shown to exhibit immunostimulatory and anti-cancer activities; however, its mechanism of action is poorly understood. We recently found that the diffusible fraction of hot-water extract of ABM exhibits anti-tumor activity toward leukemic cells, and identified it as agaritine, a hydrazine-containing compound. In the present study, we examined the morphological and cytochemical effects of agaritine on U937 cells to elucidate the tumoricidal mechanism of agaritine.

Methods

Surface expression of phosphatidylserine (evaluated by annexin V binding), Fas antigen, DNA cleavage using TUNEL staining, changes in caspase activities and cytochrome c release, before and after treatment with agaritine, were examined using U937 cells.

Results

Nuclear damage, DNA fragmentation, was observed by Wright–Giemsa, TUNEL staining and agarose gel electrophoresis when U937 cells were incubated with 10 μg/mL of agaritine for 48 h. Flow cytometric analysis indicated that agaritine augments the proportion of annexin V-positive U937 cells without significant change in Fas antigen expression. Activities of caspase-3, -8 and -9 were gradually increased after the addition of agaritine. In the presence of caspase-3 or granzyme B inhibitor, except for the caspase-8 inhibitor, annexin V expression was significantly decreased, suggesting that mainly caspase-3 and -9 participate in the apoptotic pathway. Furthermore, cytochrome c release was detected by western blotting analysis after agaritine treatment.

Conclusions

These results strongly suggest that the ABM constituent agaritine moderately induces apoptosis in U937 leukemic cells via caspase activation through cytochrome c release from mitochondria.

General significance

This is the first report suggesting that the anti-tumor effect of agaritine is mediated through apoptosis. The present results might provide helpful suggestions for the design of anti-tumor drugs toward leukemia patients.  相似文献   

20.
Flavopiridol (FP), an inhibitor of cyclin dependent kinases 1, 2 and 4, potently induced apoptosis in U937 human monoblastic leukemia cells. This process was accompanied by characteristic morphological changes, inner mitochondrial membrane permeability transition, release of cytochrome c, processing of procaspases, and generation of reactive oxygen species. Significantly, the general caspase inhibitor Boc-FMK did not block the release of cytochrome c, whereas it did block cleavage of BID and the loss of Deltapsi(m). Neither FP-induced apoptosis nor cytochrome c release was inhibited by the pharmacological caspase-8 inhibitor IETD-FMK or endogenous expression of viral caspase-8 inhibitor CrmA. Finally, FP-mediated apoptosis, but not cytochrome c release, was partially blocked by the free radical scavenger LNAC. Collectively, these findings indicate that FP induces apoptosis in U937 cells via the release of cytochrome c from the mitochondria and independently of activation of procaspase-8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号