首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven new organic-inorganic hybrid compounds containing inorganic polyoxometalates and trigonal organic ligand 2,4,6-tris-(3/4-pyridyl)-1,3,5-triazine (3/4-tpt), namely [Mo8O26M(Htpt)2(H2O)2]n (M = Zn (1), Co (2), Ni (3)), [Mo8O26Cu(Htpt)2(H2O)2]n·2nH2O (4), [Mo8O26(H2tpt)2]·6H2O (5), [Mn(Mo4O13)(4-tpt)2]n (6) and [Fe3(Mo4O15)(3-tpt)]n·nH2O (7), were synthesized hydrothermally and characterized by EA, IR, TG, and PXRD techniques. Single crystal X-ray structural analysis revealed that compounds 1-4 are 1-D coordination polymers constructed from [Mo8O26]4− cluster and [M(Htpt)2(H2O)2]4+ fragments. Compound 5 is an isolated cluster composed of [Mo8O26]4− anion and monodentate H2tpt2+ cation. 3-Tpt ligands in 1-5 are partially protonated and act as monodentate ligands. Octamolybdates adopt β- and γ-[Mo8O26]4− structural mode in compounds 1-4 and 5, respectively. In compound 6, each [Mo4O13]2− tetramer links four Mn(II) ions to form a 2-D wave-like polymeric layer. The 2-D [MnMo4O13] bimetallic layers are pillared by neutral 4-tpt bidentately to generate a 3-D metal-organic framework. Compound 7 is a 3-D coordination polymer constructed from 2-D [Fe3(Mo4O15)] bimetallic polymeric layer and pillared by neutral tridentate 3-tpt. These compounds are thermal stable under 250 °C. The compounds 1 and 5 display luminescence with emission maximum at 481 and 442 nm, respectively.  相似文献   

2.
Synthesis and crystal structure of two coordination polymers of composition [MnII(H2bpbn)1.5][ClO4]2 · 2MeOH · 2H2O (1) and [CoII(H2bpbn)(H2O)2]Cl2 · H2O (2) [H2bpbn = N,N′-bis(2-pyridinecarboxamido)-1,4-butane], formed from the reaction between [Mn(H2O)6][ClO4]2/CoCl2 · 4H2O with H2bpbn in MeCN, are described. In 1 each MnII ion is surrounded by three pyridine amide units, providing three pyridine nitrogen and three amide oxygen donors. Each MnII center in 1 has distorted MnN3O3 coordination. In 2 each CoII ion is coordinated by two pyridine amide moieties in the equatorial plane and two water molecules provide coordination in the axial positions. Thus, the metal center in 2 has trans-octahedral geometry. In both 1 and 2, the existence of 1D zigzag network structure has been revealed. Owing to π-π stacking of pyridine rings from adjacent layers 1 forms 2D network; 2 forms 2D and 3D network assemblies via N-H?Cl and O-H?Cl secondary interactions. Both the metal centers are high-spin.  相似文献   

3.
Three new Zn(II) complexes based on different organic-carboxylic acids, [Zn(mba)2(2,2′-bipy)] (1), [Zn(mpdaH)2(H2O)4] · 4H2O (2) and [Zn(cda)2(H2O)2]n (3) (Hmba = 4-methylbenzoic acid, H2mpda = 2,6-dimethylpyridine-3,5-dicarboxylic acid and H2cda = chelidonic acid) have been synthesized successfully under hydrothermal conditions. X-ray single crystal diffractions show that compounds 1 and 2 are the mononuclear and 3 is one-dimensional chain, in which the Zn(II) centers have different coordination geometries with octahedron for 1 and 2 and tetrahedron for 3. Through π-π stacking and/or hydrogen bonding (O-H?O and O-H?N) interactions, different supramolecular structures are assembled, namely, 2D supramolecular layer for 1 and 3D supramolecular networks for 2 and 3. Furthermore, the IR, TGA and luminescent properties are also investigated in this work.  相似文献   

4.
A series of heterobimetallic polymeric complexes of manganese, cobalt, zinc, cadmium and nickel, [M(Mo2O5L2)(MeOH)2(H2O)2]n·nH2O {M = Mn (2), n = 1, Co (3), n = 0, Zn (4), n = 1 and Cd (5), n = 1} and [Ni(Mo2O5L2)(MeOH)(H2O)3]n·2H2O·MeOH (6) have been synthesized form the reaction of [{Na4(H2O)4(μ-H2O)2} ⊂ (Mo2O5L2)2] (1) {LH2 = 2-(3,5-di-tert-butyl-2-hydroxybenzylamino)acetic acid} with the corresponding metal salts. The complexes have been structurally characterized. The Complexes, 3 and 6 undergo thermal decomposition to afford mixed oxides of the type, MMoO4·MoO3 {M = Co or Ni}.  相似文献   

5.
Three new organic-inorganic hybrid materials with 4,4′-bipy ligands and copper cations as linkers, [CuII(H2O)(4,4′-bipy)2][CuII(H2O)(4,4′-bpy)2]2H[CuIIP8Mo12O62H12] · 5H2O (1), [CuI(4,4′-bipy)][CuII(4,4′-bipy)]2 (BW12O40) · (4,4′-bipy) · 2H2O (2) and [CuI (4,4′-bipy)]3 (PMo12O40) · (pip) · 2H2O (3) (pip = piperazine; 4,4′-bipy = 4,4′-bipyridine), have been hydrothermally synthesized. The single X-ray structural analysis reveals that the structure of 1 is constructed from [Cu(H2O)(4,4′-bipy)2] complexes into a novel, three-dimensional supermolecular network with 1-D channels in which Cu[P4Mo6]2 dimer clusters reside. To the best of our knowledge, compound 1 is the first complex in which the [P4Mo6] clusters have been used as a non-coordinating anionic template for the construction of a novel, three-dimensional supermolecular network. Compound 2 is constructed from the six-supported [BW12O40]5− polyoxoanions and [CuI(4,4′-bipy)] and [CuII(4,4′-bipy)] groups into a novel, 3-D network. Compound 3 exhibits unusual 3-D supramolecular frameworks, which are constructed from tetrasupporting [PMo12O40]3− clusters and [CuI (4,4′-bipy)n] coordination polymer chains. The electrochemical properties of 2 and 3 have been investigated in detail.  相似文献   

6.
The hydrothermal reactions of MoO3, tetra-2-pyridylpyrazine (tpyprz) and M(CH3CO2)2 · 2H2O (M = Co, Ni) yielded the two-dimensional oxides [M2(tpyprz)(H2O)2Mo8O26] · xH2O [M = Co, x = 1.8 (1); M = Ni, x = 0.6 (2)]. However, the reaction of (NH4)6Mo7O24 · 4H2O, tpyprz and Cu(CH3CO2)2 · H2O produced [{Cu2(tpyprz)}2Mo8O26] · 2H2O (3 · 2H2O). The isomorphous structures of 1 and 2 are constructed from clusters linked through {M2(tpyprz)(H2O)2}4+ subunits into two-dimensional networks. While the structure of 3 is also two-dimensional, the molybdate building block is present as the δ-isomer and the secondary-metal/ligand component consists of a one-dimensional chain. The structure of 3 is compared to that of the previously reported three-dimensional material [{Cu2(tpyprz)}2Mo8O26] · 7H2O which contains clusters and structurally distinct chains.  相似文献   

7.
Jun Zhao  Li Xu 《Inorganica chimica acta》2008,361(8):2385-2395
A series of porous supramolecular complexes (Hoxine)2 · [Mo3O4(C2O4)3(H2O)3] · 5H2O (1),(Hphen)2 · [Mo3O4(C2O4)3(H2)3]  · 0.5C2H5OH · 7H2O (2), H2bpy · [Mo3O4(C2O4)3(H2O)3] · 2.5H2O (3), H2TTD · [Mo3O4(C2O4)3(H2O)3] · C2H5OH · 3H2O (4), (oxine = 8-hydroxyquinoline, phen = 1,10-phenanthroline, bpy = 4,4′-bipyridine, TTD = triethylene diamine) have been prepared and characterized by single-crystal X-ray crystallography, elemental analysis and infrared spectroscopy. Self-assembly of [Mo3O4(C2O4)3(H2O)3]2− directed by H-bonding association between the coordination water molecules and oxalate groups forms 2-D host H-bonded single layer in 1, double layer in 2 and 3, and undulated layer in 4 depending on the nature of the guest protonated N-heterocycles. Unlike cis-Hoxine+ or Hphen+ that employs lattice water molecules H-bonded to them to interconnect the host layers, trans-H2bpy2+ or H2TTD2+ acts a linker between the neighboring host layers to form 3-D supramolecular frameworks with channeled structures wherein the guest protonated cations are located.  相似文献   

8.
The crystallization of 2,3-dihydro-thieno[3,4-b][1,4] dioxine-5,7-dicarboxylic acid (H2tddc) with divalent transitional metal (Co, Ni, Zn, Cd) or with tervalent lanthanide metal (Sm) and with mixed ligand 4,4′-bipyridine (4,4′-bipy) or 1,10-phenanthroline (1,10-phen) formed six new complexes: [Co(C8H4O6S) · 3H2O] (1), [Co(C8H4O6)(1,10-phen)(H2O)] · H2O (2), [Ni(C8H4O6S)(4,4′-bipy)(H2O)] · 3H2O (3) [Sm(C8H4O6S)(NO3)(H2O)4] · 2H2O (4), [Zn(C8H4O6S)(H2O)3] (5), and [Cd2(C8H4O6S)2(4,4′-bipy)2] (6). The structures of these six crystals have been characterized by single-crystal X-ray diffraction analyses, which revealed that complexes 1, 4, 5 are all one-dimensional chain structures and they self-assemble into three-dimensional super-molecules via the hydrogen bond interactions and π-π stacking interactions, 2 is also a one-dimensional chain structure but still self-assembles into one-dimensional double-chains, the complex 3 has two-dimensional undulating parallelogram grid structure extended along the bc-plane, the crystal of 6 is a 3D threefold interpenetration topology framework with 46638 nodes. The photoluminescent properties of the H2tddc ligand and the six compounds have been measured in the solid state at room temperature. Free ligand has no luminescence, while its complexes 1, 4, and 6 all exhibit intense photoluminescence which implies that these complexes may be excellent candidates for potential photoactive materials.  相似文献   

9.
Six 2D and 3D supramolecular complexes [Cu(L1)(O2CCH3)2] · H2O (1), [Cu2(L2)22-O2CCH3)2](BF4)2 (2), [Cu2(L1)2(BDC)(NO3)2] · 0.5H2O (3) [Cu2(L2)2(BDC)(NO3)2] (4), [Cu2(L3)2(BDC)(NO3)2] · 0.5H2O (5) and [Cu2(L2)2(BDC)(H2O)2](BDC) · 8H2O (6) (L1 = 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine, L2 = 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine, L3 = 4′-phenyl-2,2′:6′,2″-terpyridine, BDC = 1,4-benzenedicarboxylate), have been prepared and structurally characterized by X-ray diffraction crystallography. In complexes 1, 3, and 4, 1D channels are formed through C-H?O and C-H?N hydrogen-bonding interactions, and further linked into 3D structure via C-H?O and O-H?O interactions. Complex 2 is a 2D layer constructed from intermolecular C-H?F and π-π stacking interactions. In the structure of 6, the BDC2− ions and solvent water molecules form a novel 2D layer containing left- and right-handed helical chains via hydrogen-bonds, and an unusual discrete water octamer is formed within the layer. In 2, 4, 6 and [Ag2(L2)2](PF6)2 (7) the bonding types of pendent pyridines of L2 depending on the twist about central pyridines are involved in intramolecular (2 and 4), intermolecular (6) or coordination bonds (7) in-twist-order of 5.8°, 3.7°, 28.2° and 38.0°, respectively. Differently, the pendent pyridines of L1 in 1 and 3 form intermolecular hydrogen bonds despite of distinct corresponding twist angles of 25.1° (1) and 42.6°(3). Meanwhile, π-π stacking interactions are present in 1-6 and responsible for the stabilization of these complexes.  相似文献   

10.
A series of malonato complexes of molybdenum(V) was prepared by reacting (PyH)5[MoOCl4(H2O)]3Cl2 or (PyH)n[MoOBr4]n with malonic acid (H2mal) or a half-neutralized acid, hydrogen malonate (Hmal), at ambient conditions: (PyH)3[Mo2O4Cl42-Hmal)] · CH3CN (1), (PyH)3[Mo2O4Br42-Hmal)] · CH3CN (2), (PyH)2[Mo2O4Cl(η2-mal)(μ2-Hmal)Py] (3), (3,5-LutH)2(H3O) [Mo2O42-mal)22-Hmal)] (4), (PyH)[Mo2O4Cl22-Memal)Py2] (5), (3,5-LutH)[Mo2O4Cl22-Memal)(3,5-Lut)2] (6), (PyH)[Mo2O4Cl22-Etmal)Py2] (7), (3,5-LutH)[Mo2O4Cl22-Prmal)(3,5-Lut)2] (8) and [{Mo2O42-Memal)Py2}22-OCH3)2] (9) (where Py = pyridine, C5H5N; PyH+ = pyridinium cation, C5H5NH+; 3,5-Lut = 3,5-lutidine, C7H9N; 3,5-LutH+ = 3,5-lutidinium cation, C7H9NH+; mal2− = malonate, OOCCH2COO; Memal = monomethyl malonate, OOCCH2COOCH3; Etmal = monoethyl malonate, OOCCH2COOC2H5 and Prmal = monopropyl malonate, OOCCH2COOC3H7). The complex anions of compounds 1-8 have a common structural feature: a dinuclear, singly metal-metal bonded {Mo2O4}2+ core with the carboxylate moiety of the malonato ligand coordinated in a syn-syn bidentate bridging manner to the pair of metal atoms. The remaining four coordination sites of the {Mo2O4}2+ core are occupied with halides in 1 and 2, with halides/pyridine ligands in 5-8, with a pair of bidentate malonate ions in 4 and with the combination of all in 3. The neutral molecules of 9 consist of two {Mo2O4}2+ cores linked with a pair of methoxide ions into a chain-like, tetranuclear cluster. An esterification of malonic acid was observed to take place in the reaction mixtures containing alcohols. Solvothermal reactions with malonic acid carried out at 115 °C produced anionic acetato complexes as found in (PyH)[Mo2O4Cl22-OOCCH3)Py2] · Py (10), (PyH)[Mo2O4Cl22-OOCCH3)Py2] (11), (3,5-LutH)[Mo2O4Cl22-OOCCH3)(3,5-Lut)2] (12) and (4-MePyH)3[Mo2O4Cl22-OOCCH3)(4-MePy)2]2Cl (13) (4-MePy = 4-methylpyridine, C6H7N). The acetate coordinated in the syn-syn bidentate bridging mode in all. Reactions of (PyH)5[MoOCl4(H2O)]3Cl2 with succinic acid (H2suc) at ambient conditions resulted in a complex with a half-neutralized acid, (PyH)[Mo2O4Cl22-Hsuc)Py2] · Py (14) (Hsuc = hydrogen succinate, OOC(CH2)2COOH), while those carried out at 115 °C in a tetranuclear succinato complex, (4-MePyH)2[{Mo2O4Cl2(4-MePy)2}24-suc)] (15) (suc2− = succinate, OOC(CH2)2COO). The tetranuclear anion of 15 consists of two {Mo2O4}2+ cores covalently linked with a tetradentate succinato ligand. The compounds were fully characterized by infrared vibrational spectroscopy, elemental analyses and X-ray diffraction studies.  相似文献   

11.
In this paper, we report the syntheses and crystal structures of two intercluster salt compounds, [Al13O4(OH)24(H2O)12][H2W12O40](OH) · 20H2O (1) and [Al13O4(OH)24(H2O)12][H2W12O40](OH) · 24H2O (2). The crystal structures of these compounds show that they are polymorphs to each other with different modes of packing of the and ions. The structures of 1 and 2 can be described as alternating arrangements of ionic clusters that optimize electrostatic interactions and hydrogen bonds between them. The structure of 1 is analogous to the PtS structure and that of 2 is similar to the β-BeO structure with the clusters forming tetrahedral or square planar coordination geometries to each other.  相似文献   

12.
A series of pyrazole-bridged heterometallic 3d-4f complexes, [CuDy(ipdc)2(H2O)4] · (2H2O)(H3O+) (1) and [CuLn(pdc)(ipdc)(H2O)4] · H3O+ (Ln = Ho (2), Er (3), Yb (4); H3ipdc = 4-iodo-3,5-pyrazoledicarboxylic acid; H3pdc = 3,5-pyrazoledicarboxylic acid), {[Cu3Ln4(ipdc)6(H2O)16] · xH2O}n (Ln = Sm (5), x = 8.5; Ln = Eu (6), x = 7; Ln = Gd (7), Tb (8), x = 9), have been synthesized and structurally characterized. Ligand H3ipdc was in situ obtained by iodination of ligand H3pdc. Complexes 1-4 are pyrazole-bridged heterometallic dinuclear complexes, and 2-4 are isostructural. Complexes 5-8 are isostructural and comprised of an unusual infinite one-dimensional tape-like chain based on pyrazole-bridged heterometallic dinuclear units. The magnetic properties of compounds 1-4, 7 and 8 have been investigated through the magnetic measurement over the temperature range of 1.8-300 K.  相似文献   

13.
A series of aryldiazenido polyoxomolybdates of the type (nBu4N)2[Mo5O13(OMe)4(NNAr){Na(MeOH)}] (Ar = C6F5, 1; Ar = O2N-o-C6H4, 2; Ar = O2N-m-C6H4, 3; Ar = O2N-p-C6H4, 4a; Ar = (O2N)2-o,p-C6H3, 5) have been obtained by controlled degradation of the parent compounds (nBu4N)3[Mo6O18(NNAr)] with NaOH in methanol. They have been characterized by elemental analysis and UV-Vis and IR spectroscopy. In addition, 4a has been characterized by 95Mo NMR spectroscopy and the crystal structure of (nBu4N)2[Mo5O13(OMe)4(NNC6H4-p-NO2){Na(H2O))]·H2O (4b) has been determined by X-ray diffraction. The molecular structure of the anion of 4b features a lacunary Lindqvist-type anion [Mo5O13(OMe)4(NNC6H4-p-NO2)]3− interacting with a sodium cation through the four terminal axial oxygen atoms. The 1:1 sodium complexes react with BaCl2 and BiCl3 to yield 2:1 complexes which have been isolated as (nBu4N)4[Ba{Mo5O13(OMe)4(NNAr)}2] (Ar = C6F5, 6; Ar = O2N-p-C6H4, 7) and (nBu4N)3[Bi{Mo5O13(OMe)4(NNAr)}2] (Ar = C6F5, 8; Ar = O2N-p-C6H4, 9). X-ray crystallography analysis of 9·Me2CO has shown that the tetradentate [Mo5O13(OMe)4(N2C6H4-p-NO2)]3− anions provide a square-antiprismatic environment for Bi. In contrast, IR spectroscopy provides evidence for a square-prismatic environment of Ba in 6 and 7. In acetonitrile-methanol mixed solvent, [Mo5O13(OMe)4(NNAr)]3− and [PW11O39]7−, generated in situ by alkaline degradation of their respective parents, [Mo6O18(NNAr)]3− and [PW12O40]3−, react together to give the Keggin-type diazenido compounds (nBu4N)4[PW11O39(MoNNAr)] (Ar = O2N-o-C6H4, 10; Ar = O2N-m-C6H4, 11; Ar = O2N-p-C6H4, 12), which have been characterized by 31P and 183W NMR spectroscopy.  相似文献   

14.
Two complexes of gold of the compositions [Au(DMG)ClPy] (1) and [AuCl2Py2][AuCl4] · 2[AuCl3Py] (2), where H2DMG was dimethylglyoxime, were synthesized as the products of interaction of H[AuCl4] · 4H2O with H2DMG in the presence of pyridine and characterized by X-ray structural analysis. It was shown that depending on the synthetic conditions, the final product represents a molecular complex 1 or an ionic complex 2, in the latter one the charged and neutral species being combined via Au?Cl or Au?Au interactions.  相似文献   

15.
The hydrothermal reactions of MoO3, As2O5, Cu(CH3CO2)2 · H2O and an appropriate organonitrogen ligand in the presence of HF as mineralizer yield a series of bimetallic oxides of the Cu/Mo/O/As system. The compounds [{Cu2(4,7-phen)(4,7-phenH)2}Mo12AsO40] · 2.66H2O (1 · 2.66H2O) and [{Cu3(qtpyr)2}Mo12AsO40] · 0.4H2O (2 · 0.4H2O) (qtpyr = 2,4′:5′, 3″:4″,2?-quaterpyridine) are two-dimensional phases constructed from Keggin clusters linked through binuclear {Cu2(4,7-phen)(4,7-Hphen)2}2+ units in metal organic networks in 2. In contrast, the structure of [{Cu2(2,4′-Hbpy)4}Mo18As2O62] · 2H2O (3 · 2H2O) is one-dimensional, consisting of Dawson clusters linked through binuclear {Cu2(Hbpy)4}6+ subunits. In the case of the compounds [{Cu(5,5′-dimethyl-2,2′-bpy)}2Mo2O4F2(AsO4)2] (4) and [{Cu(phen)}2Mo2O4F2(AsO4)2] (5), the fluoride mineralizer has been incorporated into the structure to give one-dimensional phases constructed from oxyfluoride {Mo2O4F2(AsO4)2}2−clusters bridged through {Cu(organonitrogen)}2+ units.  相似文献   

16.
Two novel hybrid host-guest architectures based on metal-organic fragments and Keggin polyoxometalates, namely [α-Cu12(trz)8][PMo12O40] · H2O (1) and [β-Cu12(trz)8][PMo12O40] · 2H2O (2) (trz = 1,2,4-triazole), have been prepared under hydrothermal conditions and characterized by single-crystal X-ray diffraction (XRD), elemental analysis, powder XRD, ESR, FT-IR, UV-Vis, and thermogravimetric analysis (TGA). The [Cu12(trz)8]4+ hosts in compounds 1 and 2 are two-dimensional (2D) supramolecular isomers, which present 44 topology based on Cu4(trz)4 cyclic units and 63 topology based on Cu3(trz)3 cyclic units, respectively. The metalmacrocyclic Cu8(trz)8 and Cu9(trz)9 rings represent the largest examples in the coordination chemistry of 1,2,4-triazole. 2D metal-organic fragments and Keggin anions both are connected via hydrogen bonds and Cu?O short contacts to form interesting 3D host-guest architectures of 1 and 2.  相似文献   

17.
Hydrothermal reactions were used in the preparation of a series of bimetallic organic-inorganic hybrid materials of the M(II)/VxOy/organonitrogen ligand class. Compound 1, [{Cu2(bpa)2(C2O4)}2V4O12]·H2O, is molecular, while [{Cu(terpy)}2V6O17] (2), [Cu2(bpyrm)V4O12] (4) and [{Cu(phen)(H2O)2}VOF4(H2O)]·2H2O (5) are two-dimensional, three-dimensional and one-dimensional, respectively (bpa = 2,2′-bipyridylamine; terpy = 2,2′:6,2″-terpyridine; bpyrm = 2,2′-bipyrimidine; phen = 1,10-phenanthroline). In contrast to the 2-D structure of 2, the Ni(II) analogue [{Ni(terpy)}2V4O12]·2H2O (3) is one-dimensional. The {V4O12}4− cluster is a building block of structures 1, 3, and 4 while 2 is constructed from {V6O17}4− rings.  相似文献   

18.
The hydrothermal reaction of La2O3 and Pr2O3 with pyridine-2,6-dicarboxylic acid (H2pydc), CuO, and H2O with a mole ratio of 1:2:4:300 resulted in the formation of two polymeric Cu(II)-Ln(III) complexes, [{Ln4Cu2(pydc)8(H2O)8} · 18H2O]n (Ln = La (1); Pr (2)). 1 and 2 are isomorphous and crystallize in monoclinic space group C2/c. Complexes 1 and 2 have one-dimensional infinite chains with “∞” shape. The 1D chains are linked by the hydrogen bonds and π?π stacking interactions to form layer structures which are further linked by the hydrogen bonds and π?π stacking interactions to form the three-dimensional (3D) structures with nanoscale porosities. Temperature-dependent magnetic susceptibilities and the thermal stabilities of complexes 1 and 2 were studied.  相似文献   

19.
A series of inorganic-organic hybrid compounds built from bis(undecatungstophosphate) lanthanates and copper-complexes, namely, H8[Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][La(PW11O39)2]}2·18H2O (1), H6[Na2(en)2(H2O)5][Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][Ce(PW11O39)2]}2·16H2O (2), H6[Na2(en)2(H2O)5][Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][Pr(PW11O39)2]}2·18H2O (3), H6[Na2(en)2(H2O)4][Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][Nd(PW11O39)2]}2·14H2O (4), H6[Na2(en)2(H2O)5][Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][Sm(PW11O39)2]}2·20H2O (5), and H7[Cu(en)2]2[Sm(PW11O39)2]·10H2O (6) (where en = 1,2-ethylenediamine), have been prepared. In these compounds, two lacunary [PW11O39]7− anions sandwich an eight-coordinated Ln(III) cation to yield [Ln(PW11O39)2]11− anion in a twisted square anti-prismatic geometry, which is further bridged by [Cu(en)2]2+ fragments to generate a 1D zigzag-like chain. In 1-6, the coordination bond interactions and weak interactions between adjacent 1D chains play an important role in the zigzagging distances and angles of different 1D chains. The magnetic studies indicate that antiferromagnetic interactions exist in compounds 1, 2 and 4.  相似文献   

20.
Reaction between the dinuclear model hydrolases [M2(μ-OAc)2(OAc)2(μ-H2O)(tmen)2]; M = Ni (1); M = Co (2) and trimethylsilyltrifluoromethanesulphonate (TMS-OTf) under identical reaction conditions gives the mononuclear complex [Ni(OAc)(H2O)2(tmen)][OTf] · H2O (3) in the case of nickel and the dinuclear complex [Co2(μ-OAc)2(μ-H2O)2(tmen)2][OTf]2 (4) in the case of cobalt.Reaction of (3) with urea gives the previously reported [Ni(OAc)(urea)2(tmen)][OTf] (5), whereas (4) gives [Co2(OAc)3(urea)(tmen)2][OTf] (6) previously obtained by direct reaction of (2) with urea. Both (3) and (4) react with monohydroxamic acids (RHA) to give the dihydroxamate bridged dinuclear complexes [M2(μ-OAc)(μ-RA)2(tmen)2][OTf]; M = Ni (7); M = Co (8) previously obtained by the reaction of (1) and (2) with RHA, illustrating the greater ability of hydroxamic acids to stabilize dinuclear complexes over that of urea by means of their bridging mode, and offering a possible explanation for the inhibiting effect of hydroxamic acids by means of their displacing bridging urea in a possible intermediate invoked in the action of urease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号