首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a racemic mixture of the tridentate ligand, (((2-pyridyl)ethylamine)methyl)phenolate ion (L) and , NCS, (NC)2N, OAc as coligands, complexes having the formula [Ni(L)(N3)] (1), [Ni(L)(NCS)]2 (2), [Ni2(L)2(OAc)(N(CN)2)]n (3) were prepared and structurally characterized. In 1, Ni(II) has a square planar geometry and phenolate oxygen is involved in dipolar ?Nδ+ interaction with electrophilic central nitrogen atom of coordinated azide ion. Complex 2 is dimeric in nature and nickel(II) is penta-coordinated. Compounds 1 and 2 exist as centrosymmetric dimers made up of a pair of R and S enantiomers of L. In 3, an acetate and phenoxo bridged dinickel complex is present which is further linked to a zig-zag coordination polymer by the dicyanamide ion. In a given chain of 3, both L have same enantiomeric form and either RR or SS dimers are repeated along the chain. The magnetic properties are described.  相似文献   

2.
《Inorganica chimica acta》2010,363(13):3302-8934
The reactions of L1-3Li salts containing different Y,C,Y-chelating ligands L1 = 2,6-(t-BuOCH2)2C6, L2 = 2,6-(MesOCH2)2C6 and L3 = 2,6-(Me2NCH2)2C6 with PCl3 is reported. While the presence of ligands L2,3 afforded the synthesis of dichlorophosphines L2PCl2 (2) and L3PCl2 (3), the use of ligand L1 resulted to the isolation of O → P coordinated 1-chloro-7-(t-butoxymethyl)-3H-2,1-benzoxaphosphole (1) as the result of the cyclization type reaction of dichlorophosphines L1PCl2. The hydrolysis of compounds 1-3 as well as the preparation of phosphanes L2PH2 (7), L3PH2 (8), L2PH(SnMe3) (9) and L3PH(SnMe3) (10) is also discussed. The presence of N → P coordination enabled the isolation of N → P coordinated diselenoxophosphorane L3PSe2 (11). Compounds 1-11 were characterized by the help of multinuclear NMR spectroscopy, ESI mass spectrometry and the structure of compound 11 was established by X-ray diffraction analysis.  相似文献   

3.
The ligand 1,3-bis[3-(2-pyridyl)pyrazol-1-yl]propane (L8) has afforded six-coordinate monomeric and dimeric complexes [(L8)CoII(H2O)2][ClO4]2 (1), [(L8)NiII(MeCN)2][BPh4]2 (2), [(L8)NiII(O2CMe)][BPh4] (3), and . The crystal structures of 1, 2 · MeCN, 3, and 4 revealed that the ligand L8 is flexible enough to expand its coordinating ability by fine-tuning the angle between the chelating fragments and hence folds around cobalt(II)/nickel(II) centers to act as a tetradentate chelate, allowing additional coordination by two trans-H2O, cis-MeCN, and a bidentate acetate affording examples of distorted octahedral , , and coordination. The angles between the two CoN2/NiN2 planes span a wide range 23.539(1)° (1), 76.934(8)° (2), and 69.874(14)° (3). In contrast, complex 4 is a bis-μ-1,3-acetato-bridged (syn-anti coordination mode) dicobalt(II) complex [Co?Co separation: 4.797(8) Å] in which L8 provides terminal bidentate pyridylpyrazole coordination to each cobalt(II) center. To our knowledge, this report provides first examples of such a coordination versatility of L8. Absorption spectral studies (MeCN solution) have been done for all the complexes. Complexes 1-3 are uniformly high-spin. Temperature-dependent (2-300 K) magnetic studies on 4 reveal weak ferromagnetic exchange coupling between two cobalt(II) (S = 3/2) ions. The best-fit parameters obtained are: Δ (axial splitting parameter) = −765(5) cm−1, λ (spin-orbit coupling) = −120(3) cm−1, k (orbital reduction factor) = 0.93, and J (magnetic exchange coupling constant) = +1.60(2) m−1.  相似文献   

4.
Substitution, abstraction and addition processes have been shown to be viable chemistries for the modification of ligand systems featuring heavier group 13 element donor atoms. Thus substitution of the bromide in CpFe(CO)2In(Br)Mes (1) can be carried out with retention of the Fe-In bond, using 1 equiv. of the aryloxide nucleophile [OC6H4tBu-4] to give CpFe(CO)2In(OC6H4tBu-4)Mes (2). Structural and spectroscopic comparisons of 1 and 2 reveal that variation in the steric and/or π donor properties of the indyl ligand substituents have little effect on the nature of the Fe-In bond. Sequential reaction of [CpFe(CO)2]2GaCl (3) with the halide abstraction agent and 4-picoline in dichloromethane proceeds via the known two-coordinate gallium cation (4). The net result is replacement of the gallium bound chloride substituent with a 4-picoline moiety, yielding (5) via a two-step abstraction/addition process. 5 represents only the second structurally characterized complex containing a cationic three-coordinate gallium centre, and the first displaying bonds to a transition metal.  相似文献   

5.
Treatment of TeCl4 with either K[{N(C6H3Pri2-2,6)C(H)}2CPh] [≡K(L)] (1) in thf/Et2O or [H2(L)]Cl (2) in Et2O furnished [Cl4Cl?HH?OEt2]·0.5(Et2O) (3), whilst 2TeCl4 with a mixture of single equivalent portions of 2,6-Pri2C6H3NH2 and H(L) produced [Cl4] (4). The X-ray structures of each of crystalline 3 and 4 show that the Te atom is at the centre of an only slightly distorted square pyramid, with a Cl atom of 3 or a C of 4 in the axial position. The N1 and N2 atoms of the π-delocalised β-dialdiminium moiety of 3 have H-bond contacts, involving short N1-H?OEt2 and N2-H?Cl5 distances. The two longer of the four Te-Cl bonds of 4 are close to the N atom of the neighbouring molecule; whilst two of the H atoms of each H3 fragment are H-bonded to the O atoms of the two thf ligands, the third being close to two Cl atoms of an adjacent molecule, thus forming H-bonded chains of molecules.  相似文献   

6.
Some cobalt carboxylate (both mononuclear as well as binuclear) complexes have been prepared by using hindered hydrotris(3,5-diisopropyl-1-pyrazolyl)borate (TpiPr2) as supporting ligand. The reaction of [TpiPr2Co(NO3)] (2) with sodium benzoate resulted in the formation of acetonitrile coordinated complex [TpiPr2Co(OBz)(CH3CN)] (3) whereas the reaction of 2 with sodium fluorobenzoate gave coordinately unsaturated five coordinate complex of the type [TpiPr2Co(F-OBz)] (4). The oxidation of compound 4 in the presence of 3,5-diisopropylpyrazole resulted in the formation of a unique compound (5) where only one methine carbon of isopropyl group on pyrazole ring of hydrotris(3,5-diisopropyl-1-pyrazolyl)borate oxidized and coordinated with cobalt center. In compound 5, the binding behavior of fluorobenzoate also changes from bidentate to monodentate and the nonbonded oxygen atom formed intramolecular hydrogen bond with the hydrogen atom of the NH fragment of the coordinated . X-ray crystallography and IR studies confirmed the existence of hydrogen bonding in complex 5. The pyrazolato bridged binuclear cobalt(II) complex (6) was prepared by the reaction of hydrated cobalt(II) nitrate, 3,5-diisopropylpyrazole and sodium nitrobenzoate where, each cobalt is four coordinate. The X-ray structure of 6 showed that the NH fragment of terminally coordinated formed intramolecular hydrogen bonding with nonbonded oxygen atom of monodentately coordinated nitrobenzoate.  相似文献   

7.
Tellurated alkylamine derivatives , , and have been synthesized by reacting appropriate organic halides with the nucleophile 4-CH3OC6H4Te or Te2− generated in situ by borohydride reduction of (4-CH3OC6H4Te)2 or Te powder followed by reaction with HCl of appropriate concentration. The zwitterionic species was generated when single crystals of 2 were grown in methanol at 0 °C. Complexes 1-4 exhibit characteristic 1H NMR spectra. The single crystal structures of 1-4 and 2a have been determined. In the crystals of 1, C-H?π distances have been found to be 3.31(7)-3.59(5) Å. In both 2 and 2a, weak Te?Cl interactions (3.54(2) -3.62(2) Å) are observed. The C-H?π distance in the crystal of 2 is 3.19(0) Å. In 2a and 3, water hydrogen bonds connect the water molecules with the end groups from different molecules. In the case of 3, Te?Cl weak interactions involving the Cl ions connect together two such chains. The geometry of Te in 1 is V shaped. In 2 and 3 it is pseudo trigonal bipyramidal, and in 2a, it is square pyramidal. However, in the latter case it becomes distorted octahedral due to weak Te?Cl secondary interactions. The geometry about Te in 4 is distorted octahedral due to weak Te?Cl interactions involving Cl ions. However, there are no intermolecular Te?Cl interactions.  相似文献   

8.
The unusual dinucleating properties of a simple bidentate Schiff base (LH, 1) in the presence of weakly coordinating methanol solvent lead to the self-assembly of (2) (b and t refer to bridging and terminally bound ligands, respectively). Complex 2 is the first diiron(II) species in which the two metal centers are triply bridged by single atoms in an asymmetric fashion, involving both μ-OPh and μ-OHMe bridges. This binding mode produces an Fe?Fe distance of 3.139(1) Å. Dinucleation appears to be driven by a combination of ligand deficiency and solvent-mediated chemistry reminiscent of host-guest interactions. The presence of a μ-MeOH ligand is unprecedented in iron chemistry. Parallel-mode EPR spectra of complex 2 recorded at 4 K show an intense negative signal at g≈16, suggesting the dimeric form exists in solution.  相似文献   

9.
The synthesis and characterization of three simple 1:2 silver(I) pyridine adducts of different counter-anions, [Ag(py)2]+ · X (X = ClO4, 1; BF4, 2; PF6, 3), are reported. The structural studies for 1-3 reveal the presence of strong ligand-unsupported argentophilic interactions between [Ag(py)2]+ ions, forming pairs of . The Ag?Ag contact distances are 2.96-3.00 Å. In 1 and 2, pairs of are further linked into 1-D infinite chains by a combined set of multiple Ag?Ag close contacts (3.34-3.37 Å), offset ‘head to head’ π-π stacking, and anion bridging interactions. Such combined set of interactions is anion-dependant with 1 and 2 containing anions of tetrahedral geometry and , affording essentially the same supramolecular architecture. Metal-anion interactions are crucial in organizing the 1-D chains into 3-D networks. The ES-MS studies of 1 and 2 provide positive evidence for the aggregation of silver(I) ions in solution. In contrast, for 3 with the counter-anion of octahedral , pairs of are organized into a 3-D network via a combined set of Ag?F contacts, C(H)?F hydrogen bonds, and ‘head to tail’ π-π stacking interactions. No extended 1-D polymeric chains of silver ions are present in 3.  相似文献   

10.
Reaction of the potentially tetradentate N-donor ligand 6,6′-bis(4-methylthiazol-2-yl)-2,2′-bipyridine (L1) with the transition metal dications CoII, NiII, CuII, CdII and HgII results in the formation of mononuclear [M(L1)]2+ complexes, in which a planar ligand coordinates to the metals via all four N-donors. In contrast, reaction of L1 with CuI and AgI monocations, affords dinuclear double stranded helicate species [M2(L1)2]2+ (where M = CuI or AgI), in which partitioning of the ligand into two bis-bidentate pyridyl-thiazole chelating units allows each ligand to bridge both metal centres. X-Ray crystallography, electrospray mass spectroscopy and NMR spectroscopy reveal that the complexes [Mn(L1)m]z+ (where n = 1, m = 1 and z = 2, when M = CoII, NiII, CuII, CdII and HgII; n = 2, m = 2 and z = 2, when M = CuI), retain their solid-state structures in solution. Conversely, whilst 1H NMR studies suggest that combination of equimolar amounts of Ag(X)(where ) and L1 (in either nitromethane or acetonitrile) results in the formation of a helicate in solution, in the solid-state, an anion-templating effect gives rise to either mononuclear or dinuclear helicate structures [Agn(L1)n][X]n (where n = 2 when X = OTf; n = 1 when ).  相似文献   

11.
The synthesis of two nickel(II) complexes based on a central bridging triaminoguanidine scaffold and a capping ligand per metal ion is reported. When 2,2′-bipyridine (bipy) is utilized as co-ligand the complex [Ni3LBr(bipy)3(H2O)3]NO3 · 9H2O · 1.5DMF (1) is obtained which crystallizes in the hexagonal space group P63/m. Complex 1 shows an interesting supramolecular structure pattern with alternating hydrophilic and hydrophobic layers characterized by extensive hydrogen-bonding and π-π-stacking, respectively. With 2,4,6-(2-pyridyl)-1,3,5-triazine (tptz) as capping ligand, complex [Ni3LBr(tptz)3]ClO4 · 7H2O · 1.5DMF (2) is obtained. The magnetic susceptibility data can be fitted using an equilateral triangle model () with an isotropic coupling constant of J=-31.0±0.6 for 1 and for 2.  相似文献   

12.
13.
Using an anionic precursor [(Tp)FeIII(CN)3] (1) as a building block, two cyano-bridged centrosymmetric heterotrinuclear complexes, (2) and (3) (en = ethylenediamine), have been synthesized and structurally characterized. In each complex, [TpFe(CN)3] acts as a monodentate ligand toward a central [Mn(C2H5OH)4]2+ or [Ni(en)2]2+ core through one of its three cyanide groups, the other two cyanides remaining terminal. The intramolecular Fe-Mn and Fe-Ni distances are 5.2354(4) and 5.0669(11) Å, respectively. The magnetic properties of complexes 2 and 3 have been investigated in the temperature range of 2.0-300 K. A weak antiferromagnetic interaction between the Mn(II) and Fe(III) ions has been found in complex 2. The magnetic data of 2 can be fitted with the isotropic Hamiltonian: where J and J′ are the intramolecular exchange coupling parameters between adjacent and peripheral spin carriers, respectively. This leads to values of J = −1.37 cm−1 and g = 2.05. The same fitting method is applied to complex 3 to give values of J = 1.2 cm−1 and g = 2.25, showing that there is a ferromagnetic interaction between the Fe(III) and Ni(II) ions.  相似文献   

14.
A dinuclear ferric complex with the redox-active ligand (LCl2)2- (H2LCl2 = N,N′-dimethyl-bis(3,5-dichloro-2-hydroxybenzyl)-1,2-diaminoethane), was synthesized and characterized. The two iron(III) ions are six-coordinate in a distorted octahedral environment of the donor set of one (LCl2)2− and one amine and one phenolate donor of a second (LCl2)2−, which bridges the two complex halves. The relatively low-symmetric complex 1 crystallizes in the space group R. The crystal structure contains hexagonal, one-dimensional channels parallel to the c axis with diameters of ∼13 Å. The absorption spectrum of 1 exhibits strong characteristic features of pπ  dπ, pπ  dσ, phenolate-to-metal CTs, and π  π ligand transitions. Electrochemical studies on 1 reveal the redox-activity of the coordinated ligand (LCl2)2− by showing irreversible oxidative electron-transfer waves. The reductive electron transfers at negative potentials seem to originate from metal-centered processes. A detailed comparison to complexes with similar donor sets provides new insights into the electrochemical properties of these kinds of complexes.  相似文献   

15.
η5-2,5-Diphenylphosphacymantrene (1) in benzene or CH2Cl2 solution does not react with amines. However, with amines NHEt2, NEt3, NEt(i-Pr)2 in excess and in the presence of small amounts of water 1 reacts to form anionic complexes [(CO)3Mn(η4-Ph2H2C4P(O)H] A+, where cation (2a), (2b), (2c). Probably, first an unstable intermediate with Р-ОН bond is formed as a result of the attack by the activated H2O molecule at the P atom. Afterwards, the rapid rearrangement occurs with migration of H from O to P which leads to the ligand 2,5-diphenyl-1-Н-phosphol-1-oxide, Ph2H2C4P(O)H. Salts -с have been characterized by 1H, 31P, 13C NMR- and IR-spectra and the structures of 2a and 2c established by single crystal X-ray diffraction analyses. The phosphoryl ligand in anions 2a and 2c has the “envelope” conformation and is η4-coordinated with Mn(CO)3. The phosphorus atom is not involved in the coordination with Mn because the Mn-P distances (2.7670(4) and 2.7732(8) Å) are greater than the sum of covalent radii of P and Mn.  相似文献   

16.
Reaction of CuII, K3 [Fe(CN)6] and bidentate diimine ligands by hydrothermal synthesis under different conditions affords one novel heteronuclear FeII-CuI complex, (bipy = 2,2′-bipyridine), and two homonuclear CuI complexes, [CuI(μ-CN)(bipy)]n (2) and (3) (phen = 1,10-phenanthroline). Although all the three complexes are 1D cyanide bridged helical chains, they have different helicoids of pseudo-square, pseudo-trigonal and head-to-head bistrigonal for 1, 2 and 3, respectively. The structure of 1 is extended to 2D hexagonal meshed layers by the hydrogen bonding between terminal cyanides and lattice water molecules, which also contain π-π interactions between adjacent sheets. CuI ions in 1 are distorted trigonal planar coordinated by two bridging cyanides and one terminal cyanide, whereas that in 2 and 3 are pseudo-tetrahedral coordinated by two bridging cyanides and two N atoms of a diimine. Both the latter homometallic polymers exhibit similar chain structure, and these chains are close packed with their six adjacent chains in a parallel fashion along the c-axis to form a honeycomb network. It should be noted that complex 1 is the first cyanide bridged FeII-CuI complex of helical chain structure. The spectroscopic properties of complexes 1-3 have also been investigated.  相似文献   

17.
An efficient procedure for the synthesis of the novel bidentate ligand 4-(diphenylphosphinomethyl)pyridine (PMP-41, 1) has been developed and its coordination behavior with Ag(I) has been studied. Reaction of the PMP-41 ligand with the silver(I) salts of tetrafluoroborate , trifluoromethanesulfonate (Otf), and trifluoroacetate (tfa) produces discrete molecules and polymeric structures that depend on the varying degrees of interaction of the corresponding anion with the metal centers. When the proportion of ligand to metal is 1:1, a bimetallic box conformation is obtained with AgBF4 and AgOtf (2 and 5, respectively). Varying the ratio to 2:1, a polymeric chain of bimetallic boxes is constructed when the salt is used (3). With Agtfa two distinct structural motifs are formed (8A and 8B), arising from the crystallization process of using two different solvent systems. Further reaction of the AgBF4/PMP-41 and AgOtf/PMP-41 adducts with the chelating 5,5′-dimethyl-2,2′-bipyridine or the bridging 4,4′-bipyridine ligands affords dimeric and bridged structural motifs, depending upon the coordination ability of the corresponding bipyridine fragment. Addition of the 5,5′-dimethyl-2,2′-bipyridine ligand to a solution containing AgBF4 and PMP-41 results the capping of the silver atoms by the bipyridine fragment 4, and the disruption of the bimetallic box in the AgOtf(PMP-41) structure to generate an infinite chain in a 1:1:1 ratio of the reactants 6. As expected, the 4,4′-bipyridine acts as a bridging ligand by connecting [AgOtf(PMP-41)]2 molecules, which results in the formation of compound 7. Low-temperature luminescence spectra were also collected for all compounds and are compared.  相似文献   

18.
A new mononuclear Cu(II) complex, [CuL(ClO4)2] (1) has been derived from symmetrical tetradentate di-Schiff base, N,N′-bis-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L) and characterized by X-ray crystallography.The copper atom assumes a tetragonally distorted octahedral geometry with two perchlorate oxygens coordinated very weakly in the axial positions.Reactions of 1 with sodium azide, ammonium thiocyanate or sodium nitrite solution yielded compounds [CuL(N3)]ClO4 (2), [CuL(SCN)]ClO4 (3) or [CuL(NO2)]ClO4 (4), respectively, all of which have been characterized by X-ray analysis.The geometries of the penta-coordinated copper(II) in complexes 2-4 are intermediate between square pyramid and trigonal bipyramid (tbp) having the Addition parameters (τ) 0.47, 0.45 and 0.58, respectively.In complex 4, the nitrite ion is coordinated as a chelating ligand and essentially both the O atoms of the nitrite occupy one axial site.Complex 1 shows distinct preference for the anion in the order in forming the complexes 2-4 when treated with a mixture. Electrochemical electron transfer study reveals CuIICuI reduction in acetonitrile solution.  相似文献   

19.
A series of compounds [FeIIH3LMe]Br·Y·nMeOH ( (1), (2), (3), (4); n = 0 or 1) were synthesized, where H3LMe is a hexadentate N6 tripodal ligand of the neutral form, tris[2-(((2-methylimidazol-4-yl)methylidene)amino)ethyl]amine, and their structures and magnetic properties were investigated. The compounds 13 with counter anions , , and contain methanol as a crystal solvent, and show no SCO behaviors, while the corresponding Cl compounds have no crystal solvent and show a variety of SCO behaviors. The compound [FeIIH3LMe]Br·CF3SO3 (4) has no crystal solvent and has isomorphous structure to the Cl compounds, and shows an abrupt spin transition between the HS (S = 2) and LS (S = 0) states with a hysteresis about 2 K and large frozen-in effect below 72 K. The T1/2↑ and T1/2↓ values are 98 and 96 K, whose values are higher than those of corresponding Cl compound about 15 K and the width of hysteresis is narrower than that of corresponding Cl compound about 2 K. The crystal structures of 4 were determined at 296 and 93 K, where the crystal system and space group showed no change between these temperatures. The structures at both temperatures have a same 2D layered structure, which is composed of NH?Br hydrogen bonds between the Br ion and the imidazole NH groups of three neighboring cations [FeIIH3LMe]2+. This network structure is the same as that of corresponding Cl compound. The 600 nm light irradiation at 5 K induced the LIESST effect.  相似文献   

20.
The reaction of 1,3-bis(4,5-dihydro-1H-imidazol-2-yl)benzene (bib) ligand with silver(I) nitrate in a 1:1 molar ratio generated a [2 + 2] metallocyclic complex [Ag2(bib)2](NO3)2 · 2H2O, in which bib ligand displayed in cis configuration. When the additional competing ligands/counterions, such as oxlate salt, 1,2-diaminoethene (en), 1,3-diaminopropane (pn), and were introduced, respectively, to the above-mentioned reaction solution, ring-open polymerization of sliver(I) complexes {[Ag(bib)]NO3 · H2O}n (1), {[Ag(bib)2]X}n ( (2), (3)), {[Ag2(bib)2(NO2)](NO2) · 19/8H2O}n (4) and {[Ag2(bib)2](V4O12)0.5 · 3H2O · 2MeCN}n (5) were generated. In compounds 1, 4 and 5, bib ligand adopts trans configuration and twists around the Ag-Ag axis, giving rise to single-stranded helical structure with short adjacent Ag?Ag distances of 3.56, 3.56, 3.50 and 3.63 Å, respectively. Compounds 2 and 3 are 1D coordination polymers fusing the [2 + 2] metallocycle [Ag2(bib)2]2+, in which bib ligand exhibits in cis configuration and the metallocycles have longer Ag?Ag distances of 8.52 Å in 2 and 8.61 Å in 3 along with the strong intracyclicπ-π interactions between phenyl groups. Cis and trans configurations of bib coexist in solution and crystallize in complexes 1 and 2 in the solid state in the presence of en or pn. The solution of 1 and 2 can be converted into 3 via the addition of the bulky counter anion or into 4 through introduction of the competing ligand/conuterion .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号