首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The ruthenium complexes [RuII(bbp)(L)(Cl)] (1), [RuII(bbp)(L)(H2O)] (2) and [RuII(bbp)(L)(DMSO)] (3) {bbp = 2,6-bis(benzimidazol-2-yl)pyridine, L = o-iminoquinone} have been synthesized in a stepwise manner starting from [RuIII(bbp)Cl3]. The single crystal X-ray structures, except for the complex 2, have been determined. All the complexes were characterized by UV-Vis, FT-IR, 1H NMR, Mass spectroscopic techniques and cyclic voltammetry. The RuIII/RuII couple for complexes 1, 2, and 3 appears at 0.63, 0.49, 0.55 V, respectively versus SCE. It is observed that complex 2, on refluxing in acetonitrile, results into [RuII(bbp)(L)(CH3CN)], 4 which has been prepared earlier in a different method. The structural, spectral and electrochemical properties of complexes 1, 2 and 3 were compared to those of earlier reported complex 4, [RuII(bbp)(L)(CH3CN)].  相似文献   

2.
Reactions of labile [MCl3(PPh3)2(NCMe)] (M = Tc, Re) precursors with 1H-benzoimidazole-2-thiol (H2L1), 5-methyl-1H-benzoimidazole-2-thiol (H2L2) and 1H-imidazole-2-thiol (H2L3), in the presence of PPh3 and [AsPh4]Cl gave a new series of trigonal bipyramidal M(III) complexes [AsPh4]{[M(PPh3)Cl(H2L1-3)3]Cl3} (M = Re, 1-3; M = Tc, 4-6). The molecular structures of 1 and 3 were determined by X-ray diffraction. When the reactions were carried out with benzothiazole-2-thiol (HL4) and benzoxazole-2-thiol (HL5), neutral paramagnetic monosubstituted M(III) complexes [M(PPh3)2Cl2(L4,5)] (M = Re, 8, 9; M = Tc, 10, 11) were obtained. In these compounds, the central metal ions adopt an octahedral coordination geometry as authenticated by single crystal X-ray diffraction analysis of 8 and 11. Rhenium and technetium complexes 1, 4 and rhenium chelate compounds 8, 9 have been also synthesized by reduction of [MO4] with PPh3 and HCl in the presence of the appropriate ligand. All the complexes were characterized by elemental analyses, FTIR and NMR spectroscopy.  相似文献   

3.
Reaction of cis-[Ru(acac)22-C8H14)2] (1) (acac = acetylacetonato) with two equivalents of PiPr3 in THF at −25 °C gives trans-[Ru(acac)2(PiPr3)2], trans-3, which rapidly isomerizes to cis-3 at room temperature. The poorly soluble complex [Ru(acac)2(PCy3)2] (4), which is isolated similarly from cis-[Ru(acac)22-C2H4)2] (2) and PCy3, appears to exist in the cis-configuration in solution according to NMR data, although an X-ray diffraction study of a single crystal shows the presence of trans-4. In benzene or toluene 2 reacts with PiPr3 or PCy3 to give exclusively cis-[Ru(acac)22-C2H4)(L)] [L = PiPr3 (5), PCy3 (6)], whereas in THF species believed to be either square pyramidal [Ru(acac)2L], with apical L, or the corresponding THF adducts, can be detected by 31P NMR spectroscopy. Complexes 3-6 react with CO (1 bar) giving trans-[Ru(acac)2(CO)(L)] [L = PiPr3 (trans-8), PCy3 (trans-9)], which are converted irreversibly into the cis-isomers in refluxing benzene. Complex 5 scavenges traces of dinitrogen from industrial grade dihydrogen giving a bridging dinitrogen complex, cis-[{Ru(acac)2(PiPr3)} 2(μ-N2)] (10). The structures of cis-3, trans-4, 5, 6 and 10 · C6H14 have been determined by single-crystal X-ray diffraction. Complexes trans- and cis-3, 5, 6, cis-8, and trans- and cis-9 each show fully reversible one-electron oxidation by cyclic voltammetry in CH2Cl2 at −50 °C with E1/2(Ru3+/2+) values spanning −0.14 to +0.92 V (versus Ag/AgCl), whereas for the vinylidene complexes [Ru(acac)2 (CCHR)(PiPr3)] [R = SiMe3 (11), Ph (12)] the process is irreversible at potentials of +0.75 and +0.62 V, respectively. The trend in potentials reflects the order of expected π-acceptor ability of the ligands: PiPr3, PCy3 <C 2H4 < CCHR < CO. The UV-Vis spectrum of the thermally unstable, electrogenerated RuIII-ethene cation 6+ has been observed at −50 °C. Cyclic voltammetry of the μ-dinitrogen complex 10 shows two, fully reversible processes in CH2Cl2 at −50 °C at +0.30 and +0.90 V (versus Ag/AgCl) corresponding to the formation of 10+ (RuII,III) and 102+ (RuIII,III). The former, generated electrochemically at −50 °C, shows a band in the near IR at ca. 8900 cm−1 (w1/2 ca. 3700 cm−1) consistent with the presence of a valence delocalized system. The comproportionation constant for the equilibrium 10 + 102+ ? 2 10+ at 223 K is estimated as 1013.6.  相似文献   

4.
Complex fac-[RuCl3(NO)(P-N)] (1) was synthesized from the reaction of [RuCl3(H2O)2(NO)] and the P-N ligand, o-[(N,N-dimethylamino)phenyl]diphenylphosphine) in refluxing methanol solution, while complex mer,trans-[RuCl3(NO)(P-N)] (2) was obtained by photochemical isomerization of (1) in dichloromethane solution. The third possible isomer mer,cis-[RuCl3(NO)(P-N)] (3) was never observed in direct synthesis as well as in photo- or thermal-isomerization reactions. When refluxing a methanol solution of complex (2) a thermally induced isomerization occurs and complex (1) is regenerated.The complexes were characterized by NMR (31P{1H}, 15N{1H} and 1H), cyclic voltammetry, FTIR, UV-Vis, elemental analysis and X-ray diffraction structure determination. The 31P{1H} NMR revealed the presence of singlet at 35.6 for (1) and 28.3 ppm for (2). The 1H NMR spectrum for (1) presented two singlets for the methyl hydrogens at 3.81 and 3.13 ppm, while for (2) was observed only one singlet at 3.29 ppm. FTIR Ru-NO stretching in KBr pellets or CH2Cl2 solution presented 1866 and 1872 cm−1 for (1) and 1841 and 1860 cm−1 for (2). Electrochemical analysis revealed a irreversible reduction attributed to RuII-NO+ → RuII-NO0 at −0.81 V and −0.62 V, for (1) and (2), respectively; the process RuII → RuIII, as expected, is only observed around 2.0 V, for both complexes.Studies were conducted using 15NO and both complexes were isolated with 15N-enriched NO. Upon irradiation, the complex fac-[RuCl3(NO)(P-N)] (1) does not exchange 14NO by 15NO, while complex mer,trans-[RuCl3(NO)(P-N)] (2) does. Complex mer,trans-[RuCl3(15NO)(P-N)] (2′) was obtained by direct reaction of mer,trans-[RuCl3(NO)(P-N)] (2) with 15NO and the complex fac-[RuCl3(15NO)(P-N)] (1′) was obtained by thermal-isomerization of mer,trans-[RuCl3(15NO)(P-N)] (2′).DFT calculation on isomer energies, electronic spectra and electronic configuration were done. For complex (1) the HOMO orbital is essentially Ru (46.6%) and Cl (42.5%), for (2) Ru (57.4%) and Cl (39.0%) while LUMO orbital for (1) is based on NO (52.9%) and is less extent on Ru (38.4%), for (2) NO (58.2%) and Ru (31.5%).  相似文献   

5.
The trinuclear [{RuII(bpy)2(bpy-terpy)}2CoII]6+ complex (16+) in which a Co(II)-bis-terpyridine-like centre is covalently linked to two Ru(II)-tris-bipyridine-like moieties by a bridging bipyridine-terpyridine ligand has been synthesised and characterised. Its electrochemical, photophysical and photochemical properties have been investigated in CH3CN. The cyclic voltammetry exhibits two successive reversible oxidation processes, corresponding to the CoIII/CoII and RuIII/RuII redox couples at E1/2 = −0.06 and 0.91 V vs Ag/Ag+ 10 mM, respectively. The one-electron oxidized form of the complex, [{RuII(bpy)2(bpy-terpy)}2CoIII]7+ (17+) obtained after exhaustive electrolysis carried out at 0.2 V is fully stable. 16+ and 17+ are only poorly luminescent, indicating that the covalent linkage of the Ru(II)-tris-bipyridine centre to the cobalt subunit leads to a strong quenching of the RuII excited state by an intramolecular process. Luminescence lifetime experiments carried out at different temperatures indicate that the transfer is more efficient for 17+ compare to 16+ due to lower activation energy. Continuous irradiation of 17+ performed at 405 nm in the presence of P(Ph)3 acting as sacrificial electron donor leads to its quantitative reduction into 16+, whereas similar experiment starting from 16+ with a sulfonium salt as sacrificial electron acceptor converts 16+ into 17+ with a slower rate and a maximum yield of 80%. These photoinduced electron transfers were followed by UV-Visible spectroscopy and compared with those obtained with a simple mixture of both mononuclear parent complexes i.e. [RuII(bpy)3]2+ and [CoII(tolyl-terpy)2]2+ or [CoIII(tolyl-terpy)2]3+ (tolyl-terpy = 4′-(4-methylphenyl)-2,2′:6′,2′′-terpyridine).  相似文献   

6.
A novel bridging ligand 2,2′-bis(1,2,4-triazino[5,6-f]phenanthren-3-yl)-4,4′-bipyridine (btpb) and its mononuclear ruthenium(II) complex [Ru(bpy)2(btpb)]2+ (Rubtpb; bpy = 2,2′-bipyridyl) and dinuclear ruthenium(II) complex [Ru(bpy)2(btpb)Ru(bpy)2]4+ (Ru2btpb) have been synthesized and characterized by elemental analyses, fast atom bombardment or electrospray mass spectra, 1H NMR, and electronic spectroscopy. Binding behaviors of the mono- and dinuclear complexes with calf thymus DNA (CT-DNA) have been investigated by absorption spectra, viscosity measurements, and equilibrium dialysis experiments. As the concentration of DNA is increased, the electronic absorption spectra bands at the metal-ligand charge transfer of the mononuclear complex Rubtpb at 501.0 nm exhibit hypochromism of about 17.4% and bathochromism of 2.0 nm, the dinuclear complex Ru2btpb at 511.0 nm exhibits hypochromism of about 24.8% and bathochromism of 1.0 nm. The increasing amounts of the complexes on the relative viscosities of CT-DNA are much smaller than that of the classic intercalators. The experiments suggest that the Rubtpb and Ru2btpb may be bound to DNA by non-intercalating binder.  相似文献   

7.
We herein describe the synthesis and characterization of a series of homoleptic, Ru(II) complexes bearing peripheral carboxylic acid functionality based upon the novel ligand 4′-(4-carboxyphenyl)-4,4″-di-(tert-butyl)tpy (L1), as well as 4′-(4-carboxyphenyl)tpy (L2) and 4′-(carboxy)tpy (L3) (where tpy = 2,2′: 6′,2″-terpyridine). Inspection of the metal-based oxidations (E1/2 = 1.22-1.42 V) indicates an anodic shift (∼0.2 V) for (L3)2Ru2+ (3b) (E1/2 = 1.40 V) relative to (L2)2Ru2+ (2b) (E1/2 = 1.22 V). The metal-based oxidation (E1/2 = 1.22 V) and ligand-based reductions (E1/2 = −1.25 to −1.52 V) of (L1)2Ru2+ (1) are essentially invariant relative to those of the structural analogue 2b (PF6)2, which suggests no significant electronic effect caused by the tert-butyl groups. This is supported by invariance in the metal-to-ligand charge transfer bands in both the electronic absorption (494-489 nm) and emission spectra (654-652 nm). However, contrary to 2b, complex 1 is both very soluble and exhibits a highly porous solid-state structure with internal cavity dimensions of 15 Å × 14 Å due to the preclusion of inter-annular interactions by the bulky tert-butyl substituents.  相似文献   

8.
Subsequent addition of 1,2-benzenedithiol (S2-H2) and nBuLi to a solution of [Ru(NO)Cl3 · xMeOH] in THF afforded exclusively the monomeric species NBu4[RuII(NO)(S2)2] (1). Formation of dimeric (NBu4)2[RuII(NO)(S2)2]2 (2) has been confirmed when the deprotonated ligand S2-Li2 was added to [Ru(NO)Cl3 · xMeOH] and allowed to stir for 30 h. The monomer 1 undergoes aerial oxidation to give (NBu4)2[RuIV(S2)3] (3). The reaction between RuCl3 · xH2O and S2-H2 in the presence of NaOMe, afforded the dinulear RuIII species (NMe4)2[RuIII(S2)2]2 (4). A modified method for the preparation of 1 is being employed to synthesize the osmium analogue NBu4[Os(NO)(S2)2] (5) effectively. The solid state structures of 1, 2 and 3 were determined by X-ray crystal structure analysis. A comparison of relevant bond distance data suggests that 1,2-benzenedithiolate acts as an “innocent” ligand.  相似文献   

9.
The new complex, [RuII(bpy)2(4-HCOO-4′-pyCH2 NHCO-bpy)](PF6)2 · 3H2O (1), where 4-HCOO-4′-pyCH2NHCO-bpy is 4-(carboxylic acid)-4′-pyrid-2-ylmethylamido-2,2′-bipyridine, has been synthesised from [Ru(bpy)2(H2dcbpy)](PF6)2 (H2dcbpy is 4,4′-(dicarboxylic acid)-2,2′-bipyridine) and characterised by elemental analysis and spectroscopic methods. An X-ray crystal structure determination of the trihydrate of the [Ru(bpy)2(H2dcbpy)](PF6)2 precursor is reported, since it represented a different solvate to an existing structure. The structure shows a distorted octahedral arrangement of the ligands around the ruthenium(II) centre and is consistent with the carboxyl groups being protonated. A comparative study of the electrochemical and photophysical properties of [RuII(bpy)2(4-HCOO-4′-pyCH2NHCO-bpy)]2+ (1), [Ru(bpy)2(H2dcbpy)]2+ (2), [Ru(bpy)3]2+ (3), [Ru(bpy)2Cl2] (4) and [Ru(bpy)2Cl2]+ (5) was then undertaken to determine their variation upon changing the ligands occupying two of the six ruthenium(II) coordination sites. The ruthenium(II) complexes exhibit intense ligand centred (LC) transition bands in the UV region, and broad MLCT bands in the visible region. The ruthenium(III) complex, 5, displayed overlapping LC bands in the UV region and a LMCT band in the visible. 1, 2 and 3 were found, via cyclic voltammetry at a glassy carbon electrode, to exhibit very positive reversible formal potentials of 996, 992 and 893 mV (versus Fc/Fc+) respectively for the Ru(III)/Ru(II) half-cell reaction. As expected the reversible potential derived from oxidation of 4 (−77 mV (versus Fc/Fc+)) was in excellent agreement with that found via reduction of 5 (−84 mV (versus Fc/Fc+)). Spectroelectrochemical experiments in an optically transparent thin-layer electrochemical cell configuration allowed UV-Vis spectra of the Ru(III) redox state to be obtained for 1, 2, 3 and 4 and also confirmed that 5 was the product of oxidative bulk electrolysis of 4. These spectrochemical measurements also confirmed that the oxidation of all Ru(II) complexes and reduction of the corresponding Ru(III) complex are fully reversible in both the chemical and electrochemical senses.  相似文献   

10.
The First examples of (Te, N, S) type ligands, 2-CH3SC6H4CHNCH2CH2TeC6H4-4-OCH3 (L1) and 2- CH3SC6H4CHNHCH2CH2TeC6H4-4-OCH3 (L2), and their metal complexes, [PdCl(L1)]PF6 · CHCl3 · 0.5H2O (4), [PtCl(L1)]PF6 (5), [PdCl(L2)]ClO4.CHCl3 (6), [PtCl(L2)]ClO4 (7), and [Ru(p-cymene)(L2)](PF6)2 · CHCl3 (8), have been synthesized and characterized. The single crystal structures of 4, 6 and 8 have revealed that both the ligands coordinate in them in a tridentate (Te, N, S) mode. The geometry around Pd in both the complexes has been found to be square planar, whereas for Ru in a half sandwich complex 8, it is found to be octahedral. Between two molecules of 4 there are intra and inter molecular weak Te?Cl [3.334(3) and 3.500(3) Å, respectively] interactions along with weak intermolecular Pd?Te [3.621(2) Å] interactions. The Pd-Te bond lengths are between 2.517(6) and 2.541(25) Å and the Ru-Te bond length is 2.630(6) Å. The crystal structure of [PdCl2(4-MeO-C6H4- TeCH2CH2NH2)] (9) is also determined. It is formed when KPF6 is not added in the synthesis of 4 and Pd-complex of L1 is recrystallized. Apart from Te?Cl secondary interactions, C-H?π interactions also exist in the crystal of 9.  相似文献   

11.
In our continuing efforts to explore the effects of substituent groups of ligands in the formation of supramolecular coordination structures, seven new CuII complexes formulated as [Cu2(L1)4(DMF)2] (1), {[Cu2(L1)4(Hmta)](H2O)0.75} (2), [Cu2(L2)4(2,2′-bipy)2] (3), [Cu2(L3)4(H2O)2] (4), [Cu2(L3)4(Hmta)] (5), [Cu2(L3)4(Dabco)] (6) and [Cu2(L3)4(Pz)] (7) with three monocarboxylate ligands bearing different substituent groups HL1-HL3 (HL1 = phenanthrene-9-carboxylic acid, HL2 = 2-phenylquinoline-4-carboxylic acid, HL3 = adamantane-1-carboxylic acid, Hmta = hexamethylenetetramine, 2,2′-bipy = 2,2′-bipyridine, Dabco = 1,4-diazabicyclo[2.2.2] octane and Pz = pyrazine), have been prepared and characterized by X-ray diffraction. In 1, 2 and 4-7, each CuII ion is octahedrally coordinated, and carboxylate acid acts as a syn-syn bridging bidentate ligand. While each CuII ion in 3 is penta-coordinated in a distorted square-pyramidal geometry. 1 and 4 both show a dinuclear paddle-wheel block, while 2, 5, 6 and 7 all exhibit an alternated 1D chain structure between dinuclear paddle-wheel units of the tetracarboxylate type Cu2-(RCO2)4 and the bridging auxiliary ligands Hmta, Dabco and Pz. Furthermore, 3 has a carboxylic unidentate and μ1,1-oxo bridging dinuclear structure with the chelating auxiliary ligand 2,2′-bipy. Moreover, complexes 1-6 were characterized by electron paramagnetic resonance (EPR) spectroscopy.  相似文献   

12.
A new type of multidentate ligand with both acetylacetonate and bis(2-pyridyl) units on the 1,3-dithiole moiety, 3-[2-(dipyridin-2-yl-methylene)-5-methylsulfanyl-[1,3]dithiol-4-ylsulfanyl]-pentane-2, 4-dione (L), has been prepared. Through reactions of the ligand with Re(CO)5X (X = Cl, Br), new rhenium(I) tricarbonyl complexes ClRe(CO)3(L) (2) and BrRe(CO)3(L) (3), have been obtained. With the use of 2 or 3 as the precursors, the further reactions with (TpPh2)Co(OAc)(HpzPh2) (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate); HpzPh2 = 3,5-diphenyl-pyrazole) or M(OAc)2(M = Mn, Zn), afford four new heteronuclear complexes: ClRe(CO)3(L)Co(TpPh2) (4), BrRe(CO)3(L)Co(TpPh2) (5), [ClRe(CO)3(L)]2Mn(CH3OH)2 (6) and [ClRe(CO)3(L)]2Zn(CH3OH)2 (7), respectively. Crystal structures of complexes 2 and 4-7 have been determined by X-ray diffraction. Their absorption spectra, photoluminescence and magnetic properties have been studied.  相似文献   

13.
Crystallisation of simple cyanoruthenate complex anions [Ru(NN)(CN)4]2− (NN = 2,2′-bipyridine or 1,10-phenanthroline) in the presence of Lewis-acidic cations such as Ln(III) or guanidinium cations results, in addition to the expected [Ru(NN)(CN)4]2− salts, in the formation of small amounts of salts of the dinuclear species [Ru2(NN)2(CN)7]3−. These cyanide-bridged anions have arisen from the combination of two monomer units [Ru(NN)(CN)4]2− following the loss of one cyanide, presumably as HCN. The crystal structures of [Nd(H2O)5.5][Ru2(bipy)2(CN)7] · 11H2O and [Pr(H2O)6][Ru2(phen)2(CN)7] · 9H2O show that the cyanoruthenate anions form Ru-CN-Ln bridges to the Ln(III) cations, resulting in infinite coordination polymers consisting of fused Ru2Ln2(μ-CN)4 squares and Ru4Ln2(μ-CN)6 hexagons, which alternate to form a one-dimensional chain. In [CH6N3]3[Ru2(bipy)2(CN)7] · 2H2O in contrast the discrete complex anions are involved in an extensive network of hydrogen-bonding involving terminal cyanide ligands, water molecules, and guanidinium cations. In the [Ru2(NN)2(CN)7]3− anions themselves the two NN ligands are approximately eclipsed, lying on the same side of the central Ru-CN-Ru axis, such that their peripheries are in close contact. Consequently, when NN = 4,4′-tBu2-2,2′-bipyridine the steric bulk of the t-butyl groups prevents the formation of the dinuclear anions, and the only product is the simple salt of the monomer, [CH6N3]2[Ru(tBu2bipy)(CN)4] · 2H2O. We demonstrated by electrospray mass spectrometry that the dinuclear by-product [Ru2(phen)2(CN)7]3− could be formed in significant amounts during the synthesis of monomeric [Ru(phen)(CN)4]2− if the reaction time was too long or the medium too acidic. In the solid state the luminescence properties of [Ru2(bipy)2(CN)7]3− (as its guanidinium salt) are comparable to those of monomeric [Ru(bipy)(CN)4]2−, with a 3MLCT emission at 581 nm.  相似文献   

14.
Two new pyrazole-derived ligands, 1-ethyl-3,5-bis(2-pyridyl)pyrazole (L1) and 1-octyl-3,5-bis(2-pyridyl)pyrazole (L2), both containing alkyl groups at position 1 were prepared by reaction between 3,5-bis(2-pyridyl) pyrazole and the appropriate bromoalkane in toluene using sodium ethoxide as base.The reaction between L1, L2 and [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) resulted in the formation complexes of formula [MCl2(L)] (M = Pd(II), L = L1 (1); M = Pd(II), L = L2 (2); M = Pt(II), L = L1 (3); M = Pt(II), L = L2 (4)). These complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H, 13C{1H} NMR and HMQC spectroscopies. The X-ray structure of the complex [PtCl2(L2)] (4) was determined. In this complex, Npyridine and Npyrazole donor atoms coordinate the ligand to the metal, which complete its coordination with two chloro ligands in a cis disposition.  相似文献   

15.
A novel polypyridyl ligand CNPFIP (CNPFIP = 2-(5(4-chloro-2-nitrophenyl)furan-2-yl)-1H-imidazo[4,5f][1,10]phenanthroline) and its mononuclear Ru(II) polypyridyl complexes of [Ru(phen)2CNPFIP]2+(1) (phen = 1,10-phenanthroline), [Ru(bpy)2CNPFIP]2+(2) (bpy = 2,2′-bipyridine), and [Ru(dmb)2CNPFIP]2+(3) (dmb = 4,4′-dimethyl-2,2′-bipyridine) have been synthesized successfully and characterized thoroughly by elemental analysis, UV/Vis, IR, NMR, and ESI-MS. The interaction of the Ru(II) complexes with calf thymus DNA (CT-DNA) was investigated by absorption titration, fluorescence, viscosity measurements. The experimental results suggest that three complexes bind to CT-DNA through an intercalative mode and the DNA-binding affinity of complex 1 is greater than that of complexes 2 and 3. The photocleavage of plasmid pBR322 DNA by ruthenium complexes 1, 2, and 3 was investigated. We have also tested three complexes for their antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. The in vitro cytotoxicity of these complexes was evaluated by MTT assay, and complex 1 shows higher cytotoxicity than 2 and 3 on HeLa cells. The induced apoptosis and cell cycle arrest of HeLa cells were investigated by flow cytometry for 24 h. The molecular docking of ruthenium complexes 1, 2, and 3 with the active site pocket residues of human DNA TOP1 was performed using LibDock.  相似文献   

16.
We have used the elimination of AuX(PR3) (X = halide, R = Ph, tol) that occurs in reactions of alkynylgold(I)-phosphine complexes with M3(μ-H)33-CBr) (CO)9 (M = Ru, Os) to prepare the complexes M3(μ-H)33-CCCR)(CO)9 [M = Ru, R = Ph 2, CCSiMe33, Fc 4, CCFc 6-Ru, CC[Ru(PPh3)2Cp] 8; M = Os, R = CCFc 6-Os, CCCCFc 7], Fc′{(μ3-CCC)Ru3(μ-H)3(CO)9}25, and bis-cluster-capped carbon chain complexes {M3(μ-H)3(CO)9}233-C(CC)nC} (M = Ru, n = 2 9, 3 10-Ru; M = Os, n = 3 10-Os) and {(L)(OC)8(μ-H)3M3}C(CC)nC{Co3(μ-dppm)(CO)7} (n = 1, M = Ru, L = CO 11, PPh312-Ru/P; n = 2, L = CO 12-Ru, PPh313; M = Os, L = CO 12-Os) in good to excellent yields. X-ray structural determinations of 2-5, 6-Ru, 6-Os, 7, 9, 11, 12-Ru, 12-Os and 12-Ru/P are reported.  相似文献   

17.
Reaction of [(p-cymene)RuCl2(PPh3)] (1) or [CpMCl2(PPh3)] (Cp = C5Me5) (3a: M = Rh; 4a: M = Ir) with 1-alkynes and PPh3 were carried out in the presence of KPF6, generating the corresponding alkenyl-phosphonio complexes, [(p-cymene)RuCl(PPh3){CHCR(PPh3)}](PF6) (2a: R = Ph; 2b: R = p-tolyl) or [CpMCl(PPh3){CHCPh(PPh3)}](PF6) (5: M = Rh; 6: M = Ir). Similar reactions of complexes [CpRhCl2(L1)] (3a: L1 = PPh3; 3c: L1 = P(OMe)3) with L2 (L2 = PPh3, PMePh2, P(OMe)3) gave [CpRhCl(L1)(L2)](PF6) (7bb: L1 = L2 = PMePh2; 7ca: L1 = P(OMe)3, L2 = PPh3; 7cc: L1 = L2 = P(OMe)3). Alkenyl-phosphonio complex 5 was treated with P(OMe)3 or 2,6-xylyl isocyanide, affording [CpRhCl(L){CHCPh(PPh3)}](PF6) (8a: L = P(OMe)3; 8b: L = 2,6-xylNC). X-ray structural analyses of 2a, 6 and 8a revealed that the phosphonium moiety bonded to the Cβ atom of the alkenyl group are E configuration.  相似文献   

18.
Synthesis and single crystal X-ray structures of H2L1 and VO(L1)(HL) [H2L1 = N,N-bis(2-hydroxy-3,5-ditertiarybutyl)-N′,N′-dimethylethylendiamine) or simply aminebis(phenol) and H2L = salicylic acid) are reported here. The complex [VO(L1)(HL)] is in distorted octahedral geometry under O4N2 donor environment where the basal core is defined by O(1), O(3), O(2) and N(5) atoms and two axial coordinates are occupied by O(4), an alkoxo-group and N(1), an imino-nitrogen atom. The electron spray mass spectrometric study on [VO(L1)(HL)] in MeCN clearly points out the existence of single species in solution. Again, the 51V NMR of the bulk polycrystalline sample reveals that the complex [VO(L1)(HL)] mainly exists in three out of four possible isomers. The formation of [VO(L1)(HL)] from both [VO(L1)(OMe)] and [VO(L1)(OEt)] was followed kinetically by reacting with salicylic acid in MeCN. The presence of isosbestic point indicates a clean conversion of the reactants to product.  相似文献   

19.
The organotin complex [Ph3SnS(CH2)3SSnPh3] (1) was synthesized by PdCl2 catalyzed reaction between Ph3SnCl and disodium-1,3-propanedithiolate which in turn was prepared from 1,2-propanedithiol and sodium in refluxing THF. Reaction of 1 with Ru3(CO)12 in refluxing THF affords the mononuclear complex trans-[Ru(CO)4(SnPh3)2] (2) and the dinuclear complex [Ru2(CO)6(μ-κ2-SCH2CH2CH2S)] (3) in 20 and 11% yields, respectively, formed by cleavage of Sn-S bond of the ligand and Ru-Ru bonds of the cluster. Treatment of pymSSnPPh3 (pymS = pyrimidine-2-thiolate) with Ru3(CO)12 at 55-60 °C also gives 2 in 38% yield. Both 1 and 2 have been characterized by a combination of spectroscopic data and single crystal X-ray diffraction analysis.  相似文献   

20.
Ruthenium complexes [Ru(mpy)2(DMSO)2] (1) and [Ru(mbtz)2(DMSO)2] (2) containing 2-mercaptopyridine (mpy) and 2-mercaptobenzothiazole (mbtz) have been synthesized. Reactivity of 1 have been examined with 2,2′-bipyridine (bipy), 1,10-phenanthroline (phen), EPh3 (E = P, As) and 1,2-bis(diphenylphosphino)-methane (dppm). It reacted with bipy or phen in DMF to afford [Ru(mpy)2(bipy)] (3) and [Ru(mpy)2(phen)] (4) while, its reaction with EPh3 or dppm in common organic solvents failed to afford products containing EPh3 or dppm. Complexes under investigation have been characterized by elemental analyses, spectral, electrochemical studies and structures of 1-4 have been determined crystallographically. Density functional theory calculations have been performed on 1-4 and the model complex [Ru(mpy)(PMe3)2] (5) using exchange correlation functionals BP86. Optimized bond length and angles are in good agreement with the structural data. The Ru-N and Ru-S bond distances in [Ru(mpy)2]-moiety of 1 are relatively shorter than 5, indicating higher stability of 1 in comparison to 5. The WBI values of Ru-N1, Ru-N2, Ru-S1 and Ru-S2 bonds indicate Ru-mpy bonding trend as 3 > 4 > 1 > 5. There is an overall charge flow in the direction L → [Ru(mpy)2] (L = DMSO, bipy, phen and PMe3). Due to greater ionic character and Pauli repulsive interactions for Ru-PMe3 bond in comparison to Ru-DMSO, the DMSO ligands in 1 may not be substituted by phosphine ligands experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号