首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The luminescent complex [Pt(terpy)OH]BF4 undergoes photoinduced electron transfer reactions with phenyl amine electron donors and nitrophenyl electron acceptors. Stern-Volmer analysis of the quenching of metal-to-ligand charge transfer phosphorescence (3MLCT) was used to calculate bimolecular rate constants for electron transfer. Rate constants vary from 108 to >1010 M−1 s−1, depending on the thermodynamic driving force of the electron transfer reaction, with rate constants indicating that [Pt(terpy)OH]BF4* is a powerful photo-oxidant. Aromatic triplet energy acceptors can also quench the 3MLCT emission.  相似文献   

2.
Ultrafast electron transfer in the dye sensitized solar cell (DSSC) has made it possible to use iron(II) polypyridyl complexes as photosensitizers [J. Am. Chem. Soc. 120 (1998) 843]. Although ruthenium(II) polypyridyl complexes comprise an extensively studied and widely utilized photochemical system, comparatively little is known about the photoproperties of their iron analogues. The syntheses and solution properties of the complexes [FeII(L)2(CN)2] and [FeIIL3] for a series of L, where L is a 2,2′-bipyridine derivative, are presented here. We compare the solvatochromism of [FeII(4,4′-dicarboxylic acid-2,2′-bipyridine)2(CN)2] to [FeII(4,4′-dimethyl-2,2′-bipyridine)2(CN)2] and discuss general trends in the electrochemistry and absorption properties within the series. The solvatochromism of these complexes is discussed in terms of their use in a dye sensitized TiO2 solar cell.  相似文献   

3.
The photochemical behavior of a series of trans-[Ru(NH3)4L(NO)]3+ complexes, where L=nitrogen bound imidazole, L-histidine, 4-picoline, pyridine, nicotinamide, pyrazine, 4-acetylpyridine, or triethylphosphite is reported. In addition to ligand localized absorption bands (<300 nm), the electronic spectra of these complexes are dominated by relatively low intensity bands assigned as ligand field (LF) and metal to ligand (dπ → NO) charge transfer (MLCT) transitions. Irradiation of aqueous solutions of these complexes with near-UV light (300-370 nm) labilizes NO, i.e.,
  相似文献   

4.
The title compound, Ag11.60H0.40[Cr(C2O4)3]4 · 15H2O (1) precipitates from aqueous solution as a dark violet solid in which silver ions are partially replaced by protons, and it crystallizes in an unusual structure with water-filled one-dimensional pseudo-nanotubes.  相似文献   

5.
The kinetics of the reduction of by Co(dmgBF2)2(H2O)2 in 0.041 M HNO3/NaNO3 was found to be first-order in both the oxidizing and reducing agents and the second-order rate constant is given by kobs = k1 + k2K[Cl], with k1=1.59 × 106 M−1 s−1and k2K = 1.83 × 108 M−2 s−1, at 25 °C. The term that is first-order in [Cl] is attributed to the formation of an ion-pair between and Cl. For k1, the activation parameters ΔH* and ΔS* are 2.22 ± 0.02 kcal mol−1 and −22.7 ± 0.8 cal mol−1 K−1, respectively. The self-exchange rate constant of k22 ≈ 8.7 × 10−3 M−1 s−1 for was estimated using Marcus theory and the known self-exchange rate constant for .  相似文献   

6.
A new dinuclear manganese(II)-azido complex: [Mn(2,2′-dpa)(N3)2]21 (2,2′-dpa = 2,2′-dipicolylamine) has been synthesized solvothermally. X-ray crystallography analysis reveals that it consists of two crystallographically independent dimeric manganese moieties; each manganese(II) atom is coordinated by one 2,2′-dipicolylamine, one terminal azido ligand, and double end-on bridging azido ligands, exhibiting a slightly distorted octahedral sphere. There are extensive short contacts among dimeric manganese moieties, which extend the structure into an interesting three-dimensional supramolecular array. Magnetic determination of 1 indicates that dominant ferromagnetic interaction and weak antiferromagnetic interaction, which are ascribed to the end-on azido bridges and the short contacts, respectively, co-exist in this complex.  相似文献   

7.
Cyclometalation of benzo[h]quinoline (bzqH) by [RuCl(μ-Cl)(η6-C6H6)]2 in acetonitrile occurs in a similar way to that of 2-phenylpyridine (phpyH) to afford [Ru(bzq)(MeCN)4]PF6 (3) in 52% yield. The properties of 3 containing ‘non-flexible’ benzo[h]quinoline were compared with the corresponding [Ru(phpy)(MeCN)4]PF6 (1) complex with ‘flexible’ 2-phenylpyridine. The [Ru(phpy)(MeCN)4]PF6 complex is known to react in MeCN solvent with ‘non-flexible’ diimine 1,10-phenanthroline to form [Ru(phpy)(phen)(MeCN)2]PF6, being unreactive toward ‘flexible’ 2,2′-bipyridine under the same conditions. In contrast, complex 3 reacts both with phen and bpy in MeCN to form [Ru(bzq)(LL)(MeCN)2]PF6 {LL = bpy (4) and phen (5)}. Similar reaction of 3 in methanol results in the substitution of all four MeCN ligands to form [Ru(bzq)(LL)2]PF6 {LL = bpy (6) and phen (7)}. Photosolvolysis of 4 and 5 in MeOH occurs similarly to afford [Ru(bzq)(LL)(MeCN)(MeOH)]PF6 as a major product. This contrasts with the behavior of [Ru(phpy)(LL)(MeCN)2]PF6, which lose one and two MeCN ligands for LL = bpy and phen, respectively. The results reported demonstrate a profound sensitivity of properties of octahedral compounds to the flexibility of cyclometalated ligand. Analogous to the 2-phenylpyridine counterparts, compounds 4-7 are involved in the electron exchange with reduced active site of glucose oxidase from Aspergillus niger. Structure of complexes 4 and 6 was confirmed by X-ray crystallography.  相似文献   

8.
Crystallisation of simple cyanoruthenate complex anions [Ru(NN)(CN)4]2− (NN = 2,2′-bipyridine or 1,10-phenanthroline) in the presence of Lewis-acidic cations such as Ln(III) or guanidinium cations results, in addition to the expected [Ru(NN)(CN)4]2− salts, in the formation of small amounts of salts of the dinuclear species [Ru2(NN)2(CN)7]3−. These cyanide-bridged anions have arisen from the combination of two monomer units [Ru(NN)(CN)4]2− following the loss of one cyanide, presumably as HCN. The crystal structures of [Nd(H2O)5.5][Ru2(bipy)2(CN)7] · 11H2O and [Pr(H2O)6][Ru2(phen)2(CN)7] · 9H2O show that the cyanoruthenate anions form Ru-CN-Ln bridges to the Ln(III) cations, resulting in infinite coordination polymers consisting of fused Ru2Ln2(μ-CN)4 squares and Ru4Ln2(μ-CN)6 hexagons, which alternate to form a one-dimensional chain. In [CH6N3]3[Ru2(bipy)2(CN)7] · 2H2O in contrast the discrete complex anions are involved in an extensive network of hydrogen-bonding involving terminal cyanide ligands, water molecules, and guanidinium cations. In the [Ru2(NN)2(CN)7]3− anions themselves the two NN ligands are approximately eclipsed, lying on the same side of the central Ru-CN-Ru axis, such that their peripheries are in close contact. Consequently, when NN = 4,4′-tBu2-2,2′-bipyridine the steric bulk of the t-butyl groups prevents the formation of the dinuclear anions, and the only product is the simple salt of the monomer, [CH6N3]2[Ru(tBu2bipy)(CN)4] · 2H2O. We demonstrated by electrospray mass spectrometry that the dinuclear by-product [Ru2(phen)2(CN)7]3− could be formed in significant amounts during the synthesis of monomeric [Ru(phen)(CN)4]2− if the reaction time was too long or the medium too acidic. In the solid state the luminescence properties of [Ru2(bipy)2(CN)7]3− (as its guanidinium salt) are comparable to those of monomeric [Ru(bipy)(CN)4]2−, with a 3MLCT emission at 581 nm.  相似文献   

9.
The tandem use of simple mono- or disaccharides and vitamin C as organic reducers allows the synthesis of the widely used starting material cis-Ru(bpy)2Cl2 (where bpy = 2,2′-bipyridine) from commercial ruthenium (III) chloride in less than half an hour. Notably, the reaction can be run in organic aqueous solvent or in only water, hence it can be adapted to substituted 2,2′-bipyridines.  相似文献   

10.
Spectroscopic and electrochemical study of the [Fe(4)(mu(3)-S)(3)(NO)(7)](-) photochemical reaction and thermodynamic calculations of relevant systems demonstrate the redox character of this process. The photoinduced electron transfer between substrate clusters in excited and ground state (probably via exciplex formation) results in dismutation yielding unstable [Fe(4)(mu(3)-S)(3)(NO)(7)](2-) and [Fe(4)(mu(3)-S)(3)(NO)(7)](0). Back electron transfer between the primary products is responsible for fast reversibility of the photochemical reaction in deoxygenated solutions. In the presence of an electron acceptor (such as O(2), MV(2+) or NO) an oxidative quenching of the (*)[Fe(4)(mu(3)-S)(3)(NO)(7)](-) is anticipated, although NO seems to participate as well in the reductive quenching. The electron acceptors can also regenerate the substrate from its reduced form ([Fe(4)(mu(3)-S)(3)(NO)(7)](2-)), whereas the other primary product ([Fe(4)(mu(3)-S)(3)(NO)(7)](0)) decomposes to the final products. The suggested mechanism fits well to all experimental observations and shows the thermodynamically favored pathways and explains formation of all major (Fe(2+), S(2-), NO) and minor products (N(2)O, Fe(3+)). The photodissociation of nitrosyl ligands suggested earlier as the primary photochemical step cannot be, however, definitely excluded and may constitute a parallel pathway of [Fe(4)(mu(3)-S)(3)(NO)(7)](-) photolysis.  相似文献   

11.
Reaction of [Ru2(O2CMe)4]Cl and K2[Ni(CN)4] forms [Ru2(O2CMe)4]2[Ni(CN)4] with the targeted layered structure possessing Ru-NCNi linkages, albeit strained, with Ru-NC and Ni-CN angles in the range of 147-167°. The magnetic properties of [Ru2(O2CMe)4]2[Ni(CN)4] can be fit to a zero-field splitting model with D/kB = 95 K (66 cm−1).  相似文献   

12.
A series of ruthenium (II) complexes of formulae trans-[Ru(PPh3)2(L′H)2](ClO4)2 (1), [Ru(bpy)(L′H)2](ClO4)2 (2), [Ru(bpy)2(L′H)](ClO4)2 (3), cis-[Ru(DMSO)2(L′H)2]Cl2 (4), and [Ru(L′H)3](PF6)2 (5) (where L′H = 2-(2′-benzimidazolyl)pyridine) have been synthesized by reaction of the appropriate ruthenium precursor with 1,2-bis(2′-pyridylmethyleneimino)benzene (L). The complexes were characterized by elemental analyses, spectroscopic and electrochemical data. All the complexes were found to be diamagnetic and hence metal is in +2 oxidation state. The molecular structure of trans-[Ru(PPh3)2(L′H)2](ClO4)2 has been determined by the single crystal X-ray diffraction studies. The molecular structure shows that Ru(II) is at the center of inversion of an octahedron with N4P2 coordination sphere. The ligand acts as a bidentate N,N′donor. The electronic spectra of the complexes display intense MLCT bands in the visible region.Cyclic voltammetric studies show quasi-reversible oxidative response at 0.99-1.32 V (vs Ag/AgCl reference electrode) due to Ru(III)/Ru(II) couple.  相似文献   

13.
The reaction of RuCl3(H2O), with C5Me4CF3J in refluxing EtOH gives [Ru25-C5Me1CF2)2 (μ-Cl2] (20 in 44% yield. Dimer 2 antiferromagnetic (−2J=200 cm1). The crystal structures of 2 (rhombohedral system, R3 space group, Z=9, R=0.0589) and [Rh25-C5Me4CF3(2Cl2(μ-Cl)2] (3) (rhombohedral system. space group, Z = 9, R = 0.0641) were solved; both complexes have dimeric structures with a trans arrangement of the η5-C5Me4CF4 rings. Comparison of the geometry of 2 and 3 with those of the corresponding η5-C5Me5 complexes shows that lowering the ring symmetry causes significant distortion of the M2(μ-Cl)2 moiety. The analysis of the MCl3 fragment conformations in 2 and 3 and in the η5-C5ME5 analogues shows that they are correlated with the M---M distances. The Cl atoms are displaced by Br on reaction of 2 with KBr in MeOH to give the diamagnetic dimer [Ru25-C5Me4CF3)2Br2 (μ-Br2] (4). Complex 2 reacts with O2 in CH2Cl2 solution at ambient temperature to form a mixture of isomeric η6-fulvene dimers [Ru26-C5Me3CF3 = CH2)2Cl2(μ-Cl)2] (5). Reactions of 5 with CO and allyl chloride give Ru(η5-C5Me3CF3CH2Cl)(CO)2Cl (6) and Ru(η5-C5Me3CF3CF3CH2Cl)(η3-C3H5)Cl2 (7) respectively.  相似文献   

14.
A new aluminoborate, [C5H6N][AlB12O14(OH)12], has been hydrothermally synthesized at 200 °C. The single-crystal diffraction study reveals that it crystallizes in space group C2/c. It consists of aluminoborate clusters [AlB12O14(OH)12] and counterions [C5H6N]+. The aluminoborate cluster contains an Al(OH)6 octahedron as a core that is capped by two raft-like polyborate units [B6O7(OH)6]. These clusters are further interlinked by extensive hydrogen bonding to form a three-dimensional (3D) network, containing large channels along the b-axis, in which the [C5H6N]+ cations are located.  相似文献   

15.
Two ruthenium(II) complexes with polypyridyl, Ru(bipy)2(phen)](ClO4)2·H2O (1) and [Ru(bipy)2(Me-phen)](ClO4)2 (2), (phen = 1,10-phenanthroline, bipy = 2,2′-bipyridine, Me-phen = 5-methyl-1,10-phenanthroline), were synthesized and characterized by IR, MS and NMR spectra. Their structures were determined by single crystal X-ray diffraction techniques. The strong steric interaction between the polypyridyl ligands was relieved neither by the elongation of the Ru---N bonds nor increase of the N---Ru---N bite angles. The coordination sphere was distorted to relieve the ligand interaction by forming specific angles (δ) between the polypyridyl ligand planes and coordination planes (N---Ru---N), and forming larger twisted angles between the two pyridine rings for each bipy. The bond distances of Ru---N(bipy) and Ru---N(phen) were virtually identical with experimental error, as expected of π back-bonding interactions which statistically involve each of the ligands present in the coordination sphere.  相似文献   

16.
The new organometallic cluster (η24-CO)2(CO)136-C6Me6) has been prepared by the thermolysis of Ru3(CO)12 with hexamethylbenzene in octane and characterised by a single crystal X-ray diffraction study. It is isostructural with the known cluster Ru624-CO)2(CO)136-C6H3Me3) and the metal core constitutnts the same tetrahedral Ru4 unit with two edge-bridging Ru atoms. The mesitylene derivative has been shown to undergo rearrangement to afford the octahedral carbido cluster Ru6C(CO)146-C6H3Me3), but this conversion is not observed for the new hexamethylbenzene derivative.  相似文献   

17.
The positive ion electrospray mass spectrometry (ESI-MS) of trans-[Ru(NO)Cl)(dpaH)2]Cl2 (dpaH=2,2′-dipyridylamine), obtained from the carrier solvent of H2O–CH3OH (50:50), revealed 1+ ions of the formulas [RuII(NO+)Cl(dpaH)(dpa)]+ (m/z=508), [RuIIICl(dpaH)(dpa)]+ (m/z=478), [RuII(NO+)(dpa)2]+ (m/z=472), [RuIII(dpa)2]+ (m/z=442), originating from proton dissociation from the parent [RuII(NO+)Cl(dpaH)2]2+ ion with subsequent loss of NO (17.4% of dissociative events) or loss of HCl (82.6% of dissociative events). Further loss of NO from the m/z=472 fragment yields the m/z=442 fragment. Thus, ionization of the NH moiety of dpaH is a significant factor in controlling the net ionic charge in the gas phase, and allowing preferential dissociation of HCl in the fragmentation processes. With NaCl added, an ion pair, {Na[RuII(NO)Cl(dpa)2]}+ (m/z=530; 532), is detectable. All these positive mass peaks that contain Ru carry a signature ‘handprint’ of adjacent m/z peaks due to the isotopic distribution of 104Ru, 102Ru, 101Ru, 99Ru, 98Ru and 96Ru mass centered around 101Ru for each fragment, and have been matched to the theoretical isotopic distribution for each set of peaks centered on the main isotope peak. When the starting complex is allowed to undergo aquation for two weeks in H2O, loss of the axial Cl is shown by the approximately 77% attenuation of the [RuII(NO+)Cl(dpaH)(dpa)]+ ion, being replaced by the [RuII(NO+)(H2O)(dpa)2]+ (m/z=490) as the most abundant high-mass species. Loss of H2O is observed to form [RuII(NO+)(dpa)2]+ (m/z=472). No positive ion mass spectral peaks were observed for RuCl3(NO)(H2O)2, ‘caged NO’. Negative ions were observed by proton dissociation forming [RuII(NO)Cl3(H2O)(OH)] in the ionization chamber, detecting the parent 1− ion at m/z=274, followed by the loss of NO as the main dissociative pathway that produces [RuIIICl3(H2O)(OH)] (m/z=244). This species undergoes reductive elimination of a chlorine atom, forming [RuIICl2(H2O)(OH)] (m/z=208). The ease of the NO dissociation is increased for the negative ions, which should be more able to stabilize a RuIII product upon NO loss.  相似文献   

18.
Cation effects are studied on the excitation energy transfer reaction between anionic complexes, i.e., [Tb(dpa)3]3− (dpa=2,6-pyridinedicarboxylate) quenched by [Cr(ox)3]3− (ox=oxalate ion), [Cr(mal)3]3− (mal=malonate ion) and [Nd(dpa)3]3− in aqueous solutions in the presence of alkali metal ions added for adjustments of ionic strengths. In the quenching reaction of [Cr(ox)3]3−, magnitudes of quenching rate constants (kq) and energy transfer rate constant in encounter complex (k1) are changed by the cations in the order of Li+ < Na+ < K+ ≈ Rb+ ≈ Cs+, that is quite contrary of the cation effect on energy transfer reaction between [Ru(N-N)3]2+ and [Cr(ox)3]3−, reported in the previous paper. On the other hand, the rate constants in quenching reactions by [Cr(mal)3]3− and [Nd(dpa)3]3− remain almost constant. This result indicates that more separated donor-acceptor pair is not sensitive to coexisting cations.  相似文献   

19.
Hydrothermal chemistry was used to prepare the bimetallic organic-inorganic hybrid oxide [Cu(I)Cu(II)2(trz)2Mo4O13(OH)] · 6H2O (1 · 6H2O). The structure consists of chains linked through into a three-dimensional framework. The structures of the simple metal-triazole phases [MoO3(Htrz)0.5] (2) and [Cu(trz)] (3) are also reported. Compound 2 is two-dimensional, constructed from corner-sharing {MoO5N} octahedra. Compound 3 consists of {Cu(trz)}n chains linked through weak Cu?Cu contacts into a virtual layer.  相似文献   

20.
The reaction of cis- or trans-[Ru(CNtBu)4(CN)2] with Fe(III) compounds leads to the formation of molecular squares of the general formula cyc-[Ru(CN-tBu)4(CN)2FeX3]2 or one-dimensional coordination polymers [Ru(CN-tBu)4(CN)2FeX3]n, respectively. Temperature dependent susceptibility measurements indicate that the magnetic properties of the coordination compounds are determined by their molecular structure. Of particular importance is the local symmetry at the iron(III) center which is related to the coordinating anion. The magnetic properties are best described in terms of weak antiferromagnetic interactions between the iron centers for the molecular squares as well as the coordination polymer with X = NO3 and as weak ferromagnetic interactions in case of the linear coordination polymer with X = Cl. For all compounds zero field splitting at low temperatures has to be taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号