首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixed ligand complexes: [Co(L)(bipy)] · 3H2O (1), [Ni(L)(phen)] · H2O (2), [Cu(L)(phen)] · 3H2O (3) and [Zn(L)(bipy)] · 3H2O (4), where L2− = two -COOH deprotonated dianion of N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter, H2L), bipy = 2,2′ bipyridine and phen = 1,10-phenanthroline have been isolated and characterized by elemental analysis, spectral and magnetic measurements and thermal studies. Single crystal X-ray diffraction studies show octahedral geometry for 1, 2 and 4 and square pyramidal geometry for 3. Equilibrium studies in aqueous solution (ionic strength I = 10−1 mol dm−3 (NaNO3), at 25 ± 1 °C) using different molar proportions of M(II):H2L:B, where M = Co, Ni, Cu and Zn and B = phen, bipy and en (ethylene diamine), however, provides evidence of formation of mononuclear and binuclear binary and mixed ligand complexes: M(L), M(H−1L), M(B)2+, M(L)(B), M(H−1L)(B), M2(H−1L)(OH), (B)M(H−1L)M(B)+, where H−1L3− represents two -COOH and the benzimidazole N1-H deprotonated quadridentate (O, N, O, N), or, quinquedentate (O, N, O, N, N) function of the coordinated ligand H2L. Binuclear mixed ligand complex formation equilibria: M(L)(B) + M(B)2+ ? (B)M(H−1L)M(B)+ + H+ is favoured with higher π-acidity of the B ligands. For Co(II), Ni(II) and Cu(II), these equilibria are accompanied by blue shift of the electronic absorption maxima of M(II) ions, as a negatively charged bridging benzimidazolate moiety provides stronger ligand field than a neutral one. Solution stability of the mixed ligand complexes are in the expected order: Co(II) < Ni(II) < Cu(II) > Zn(II). The Δ log KM values are less negetive than their statistical values, indicating favoured formation of the mixed ligand complexes over the binary ones.  相似文献   

2.
Two novel Co(II) coordination polymers {[Co(H2O)2(CH3OH)2(4-bpfp)](NO3)2}n1 (4-bpfp=N,N-bis(4-pyridylformyl)piperazine) and [Co(NCS)2(CH3OH)2(3-bpfp)]n2 (3-bpfp=N,N-bis(3-pyridylformyl)piperazine) have been synthesized and characterized by single crystal X-ray diffraction. Both the polymers consist of one-dimensional chains constructed by bridging bpfp ligands and Co(II) ions. The existence of O?H-O hydrogen bond in 1 and S?H-O hydrogen bond in 2 play important roles in creating interesting supramolecular structures. Their third-order nonlinear optical (NLO) properties in DMF solution have been studied by Z-scan technique. The results reveal that polymers 1 and 2 exhibit strong NLO absorption effects (α2=9.00×10−11 m W−1 for 1; 1.41 × 10−10 m W−1 for 2) and self-focusing performance (n2=3.24×10−16 esu for 1; 3.05 × 10−16 esu for 2) in DMF solutions. The corresponding effective NLO susceptibilities χ(3) values are 3.08 × 10−12 esu (1) and 4.70 × 10−12 esu (2). All of the values are comparable to those of the reported good NLO materials. Additionally, the TG-DTA results of the two polymers are in agreement with the crystal structures.  相似文献   

3.
We have prepared and structurally characterized six-coordinate Fe(II), Co(II), and Ni(II) complexes of types [MII(HL1)2(H2O)2][ClO4]2 (M = Fe, 1; Co, 3; and Ni, 5) and [MII(HL2)3][ClO4]2 · MeCN (M = Fe, 2 and Co, 4) of bidentate pyridine amide ligands, N-(phenyl)-2-pyridinecarboxamide (HL1) and N-(4-methylphenyl)-2-pyridinecarboxamide (HL2). The metal centers in bis(ligand)-diaqua complexes 1, 3 and 5 are coordinated by two pyridyl N and two amide O atoms from two HL1 ligands and six-coordination is completed by coordination of two water molecules. The complexes are isomorphous and possess trans-octahedral geometry. The metal centers in isomorphous tris(ligand) complexes 2 and 4 are coordinated by three pyridyl N and three amide O atoms from three HL2 ligands. The relative dispositions of the pyridine N and amide O atoms reveal that the pseudo-octahedral geometry have the meridional stereochemistry. To the best of our knowledge, this work provides the first examples of structurally characterized six-coordinate iron(II) complexes in which the coordination is solely by neutral pyridine amide ligands providing pyridine N and amide O donor atoms, with or without water coordination. Careful analyses of structural parameters of 1-5 along with that reported in the literature [MII(HL1)2(H2O)2][ClO4]2 (M = Cu and Zn) and [CoIII(L2)3] have allowed us to arrive at a number of structural correlations/generalizations. The complexes are uniformly high-spin. Spectroscopic (IR and UV/Vis) and redox properties of the complexes have also been investigated.  相似文献   

4.
To compare the cytotoxicities and the DNA-binding properties in tetranuclear complexes with different bridging ligands, two tetracopper(II) complexes with formulae of [Cu4(oxbe)2Cl2(bpy)2]·4H2O (1) and [Cu4(oxbm)2Cl2(bpy)2]·2H2O (2) were synthesized, where H3oxbe and H3oxbm stand for N-benzoato-N′-(2-aminoethyl)oxamide and N-benzoato-N′-(1,2-propanediamine)oxamide, respectively, and bpy is 2,2′-bipyridine. Complex 1 was characterized by elemental analyses, IR and electronic spectra and single-crystal X-ray diffraction. The crystal structure reveals the presence of the circular tetranuclear copper(II) cations which are assembled by a pair of cis-oxamido-bridged dinuclear copper(II) units through carboxyl bridges. The crystal structure of complex 2 has been reported in our previous paper. However, the bioactivities were not studied. Cytotoxicities experiments reveal that both the two complexes exhibit cytotoxic effects against human hepatocellular carcinoma cell SMMC-7721 and human lung adenocarcinoma cell A549, and complex 1 has the better activities than those of complex 2. The results of the interactions between the two complexes and herring sperm DNA (HS-DNA) suggest that the two complexes interact with HS-DNA in the mode of intercalation with the intrinsic binding constants of 3.93 × 104 M−1 (1) and 2.48 × 104 M−1 (2). These results indicated that the bridging ligands may play an important role in the cytotoxicities and the DNA-binding properties of tetranuclear complexes.  相似文献   

5.
Three new copper(II) complexes of 5,5-diethlybarbiturate (barb), [Cu(barb)2(dmen)]·0.5H2O (dmen = N,N-dimethylethylenediamine) 1, [Cu(barb)2(bapa)] (bapa = bis(3-aminopropyl)amine) 2, and [Cu(barb)(apen)](barb)·2H2O (apen = N,N′-bis(3-aminopropyl)ethylenediamine) 3, have been synthesized and characterized by chemical, spectroscopic and thermal methods. Single crystal X-ray diffraction studies revealed that all complexes are mononuclear. The copper(II) ion exhibits a square-pyramidal coordination geometry in 1 and 3, but a trigonal-bipyramidal geometry in 2. The barb ligand shows different coordination modes. 1 presents the unequal coordination of the barb ligands: one is monodentate (N) and the other one is bidentate (N, O). In 2, both barb ligands are N-coordinated, whereas in 3, one barb ligand is N-coordinated, while the second barb ligand behaves as a counter-ion. The dmen, bapa and apen ligands act as bi-, tri- and tetradentate ligands, respectively. All complexes display a hydrogen-bonded network structure. The IR spectroscopic analysis shows that the ν(CO) stretching frequencies do not correlate predictably with the coordination mode of the barb ligand in 1. Thermal analysis data for 1-3 are in agreement with the crystal structures.  相似文献   

6.
The complexes [Cu2(o-NO2-C6H4COO)4(PNO)2] (1), [Cu2(C6H5COO)4(2,2′-BPNO)]n (2), [Cu2(C6H5COO)4(4,4′-BPNO)]n (3), [Cu(p-OH-C6H4COO)2(4,4′-BPNO)2·H2O]n (4), (where PNO = pyridine N-oxide, 2,2′-BPNO = 2,2′-bipyridyl-N,N′-dioxide, 4,4′-BPNO = 4,4′-bipyridyl-N,N′-dioxide) are prepared and characterized and their magnetic properties are studied as a function of temperature. Complex 1 is a discrete dinuclear complex while complexes 2-4 are polymeric of which 2 and 3 have paddle wheel repeating units. Magnetic susceptibility measurements from polycrystalline samples of 1-4 revealed strong antiferromagnetic interactions within the {Cu2}4+ paddle wheel units and no discernible interactions between the units. The complex 5, [Cu(NicoNO)2·2H2O]n·4nH2O, in which the bridging ligand to the adjacent copper(II) ions is nicotinate N-oxide (NicoNO) the transmitted interaction is very weakly antiferromagnetic.  相似文献   

7.
The P,P′diphenylmethylenediphosphinic acid (H2pcp) reacts with Co(ClO4)2 · 6H2O and 4,4′-bipyridine to give a mixture of two polymeric isomers of formula [Co(pcp)(bipy)0.5(H2O)2], {red (1) and pink (2)} and the new violet hybrid [Co(Hpcp)2] (3). The pure red and violet species have been obtained by the reaction of H2pcp with Co(CH3COO)2 · 4H2O and bipy or with Co(ClO4)2 · 6H2O, respectively. The analogous reaction of Ni(CH3COO)2 · 4H2O or Ni(ClO4)2 · 6H2O with H2pcp and bipy affords only the [Ni(pcp)(bipy)0.5(H2O)2] species (4). The two cobalt isomers present different structural arrangements. Whereas the red isomer (1) shows an undulated 2D layered structure, the pink one (2) forms an infinite monodimensional strand. Both the architectures extend to higher dimensions through hydrogen bonding interactions. The nickel derivative is isomorphous with the red cobalt isomer. The violet [Co(Hpcp)2] (3), which is isomorphous with the complexes of the reported series [M(Hpcp)2], M = Ca(II), Mg(II), presents a monodimensional polymeric structure. Compounds 1 and 4 show a very similar thermal behaviour, the two water molecules being lost in the temperature range 25-150 and 160-320 °C, respectively. Temperature dependent X-ray powder diffractometry (TDXD) has been performed on compound 1 in order to follow the structural transformations that occur during the heating process.  相似文献   

8.
Combined pH-metric, UV-Vis, 1H NMR and EPR spectral investigations on the complex formation of M(II) ions (M=Co, Ni, Cu and Zn) with N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter H2L) in aqueous solution at a fixed ionic strength, I=10−1 mol dm−3, at 25 ± 1 °C indicate the formation of M(L), M(H−1L) and M2(H−1L)+ complexes. Proton-ligand and metal-ligand constants and the complex formation equilibria have been elucidated. Solid complexes, [M(L)(H2O)2] · nH2O (n=1 for M = Co and Zn, n=2 for M = Ni) and {Cu (μ-L) · 4H2O}n, have been isolated and characterized by elemental analysis, spectral, conductance and magnetic measurements and thermal studies. Structures of [Ni(L)(H2O)2] · 2H2O and {Cu(μ-L) · 4H2O}n have been determined by single crystal X-ray diffraction. The nickel(II) complex exists in a distorted octahedral environment in which the metal ion is coordinated by the two carboxylate O atoms, the amino-N atom of the iminodiacetate moiety and the pyridine type N-atom of the benzimidazole moiety. Two aqua O atoms function as fifth and sixth donor atoms. The copper(II) complex is made up of interpenetrating polymeric chains of antiferromagnetically coupled Cu(II) ions linked by carboxylato bridges in syn-anti (apical-equatorial) bonding mode and stabilized via interchain hydrogen bonds and π-π stacking interactions.  相似文献   

9.
A series of four mononuclear manganese (II) complexes with the N-tridentate neutral ligands 2,2:6,2′′-terpyridine (terpy) and N,N-bis(2-pyridylmethyl)ethylamine (bpea) have been synthesized and crystallographically characterized. The complexes have five- to seven-coordinate manganese(II) ions depending on the additional ligands used. The [Mn(bpea)(Br)2] complex (1) has a five-coordinated manganese atom with a bipyramidal trigonal geometry, while [Mn(terpy)2](I)2 (2) is hexa-coordinated with a distorted octahedral geometry. Otherwise, the reactions of Mn(NO3)2 · 4H2O with terpy or bpea afforded novel seven-coordinate complexes [Mn(terpy)(NO3)2(H2O)] (3) and [Mn(bpea)(NO3)2] (4), respectively. 3 has a coordination polyhedron best described as a distorted pentagonal bipyramid geometry with one nitrate acting as a bidentate chelating ligand and the other nitrate as a monodentate one. 4 possesses a highly distorted polyhedron geometry with two bidentate chelating nitrate ligands. These complexes represent unusual examples of structurally characterized complexes with a coordination number seven for the Mn(II) ion and join a small family of nitrate complexes.  相似文献   

10.
The ligand 1,3-bis[3-(2-pyridyl)pyrazol-1-yl]propane (L8) has afforded six-coordinate monomeric and dimeric complexes [(L8)CoII(H2O)2][ClO4]2 (1), [(L8)NiII(MeCN)2][BPh4]2 (2), [(L8)NiII(O2CMe)][BPh4] (3), and . The crystal structures of 1, 2 · MeCN, 3, and 4 revealed that the ligand L8 is flexible enough to expand its coordinating ability by fine-tuning the angle between the chelating fragments and hence folds around cobalt(II)/nickel(II) centers to act as a tetradentate chelate, allowing additional coordination by two trans-H2O, cis-MeCN, and a bidentate acetate affording examples of distorted octahedral , , and coordination. The angles between the two CoN2/NiN2 planes span a wide range 23.539(1)° (1), 76.934(8)° (2), and 69.874(14)° (3). In contrast, complex 4 is a bis-μ-1,3-acetato-bridged (syn-anti coordination mode) dicobalt(II) complex [Co?Co separation: 4.797(8) Å] in which L8 provides terminal bidentate pyridylpyrazole coordination to each cobalt(II) center. To our knowledge, this report provides first examples of such a coordination versatility of L8. Absorption spectral studies (MeCN solution) have been done for all the complexes. Complexes 1-3 are uniformly high-spin. Temperature-dependent (2-300 K) magnetic studies on 4 reveal weak ferromagnetic exchange coupling between two cobalt(II) (S = 3/2) ions. The best-fit parameters obtained are: Δ (axial splitting parameter) = −765(5) cm−1, λ (spin-orbit coupling) = −120(3) cm−1, k (orbital reduction factor) = 0.93, and J (magnetic exchange coupling constant) = +1.60(2) m−1.  相似文献   

11.
Two new coordination polymers [Cd(dps)2Cl2] (1) and [Co(dps)2(H2O)2]·(abs)2(H2O)2 (2) (dps = 4, 4′-dipyridylsulfide, Habs = 4-amino benzenesulfonic acid) have been synthesized under similar conditions and characterized by elemental analysis, fluorescence spectra and single crystal X-ray diffraction. Compound 1 displays a dps-bridged 2D puckered, grid-like layer, which is further linked by C-H?Cl hydrogen bonds to form a 3D supramolecular architecture. Compound 2 shows a dps-bridged double-stranded chain structure, which is extended by N-H?O and O-H?O hydrogen bonds generating a 3D network. Solid-state fluorescence results reveal that both complexes can emit strong emission bands, at 467 nm and 518 nm for 1 and 344 nm for 2, respectively. Magnetic measurements show that there are weak antiferromagnetic interactions between the adjacent Co(II) ions in 2.  相似文献   

12.
Three novel ternary copper(II) complexes, [Cu2(phen)2(l-PDIAla)(H2O)2](ClO4)2·2.5H2O (1), [Cu4(phen)6(d,l-PDIAla)(H2O)2](ClO4)6·3H2O (2) and [Cu2(phen)2(d,l-PDIAla)(H2O)](ClO4)2·0.5H2O (3) (phen = 1,10-phenanthroline, H2PDIAla = N,N’-(p-xylylene)di-alanine acid) have been synthesized and structurally characterized by single-crystal X-ray crystallography and other structural analysis. Spectrometric titrations, ethidium bromide displacement experiments, CD (circular dichroism) spectral analysis and viscosity measurements indicate that the three compounds, especially the complex 3, strongly bind to calf-thymus DNA (CT-DNA). The intrinsic binding constants of the ternary copper(II) complexes with CT-DNA are 0.89 × 105, 1.14 × 105 and 1.72 × 105 M−1, for 1, 2 and 3, respectively. Comparative cytotoxic activities of the copper(II) complexes are also determined by acid phosphatase assay. The results show that the ternary copper(II) complexes have significant cytotoxic activity against the HeLa (Cervical cancer), HepG2 (hepatocarcinoma), HL-60 cells (myeloid leukemia), A-549 cells (pulmonary carcinoma) and L02 (liver cells). Investigations of antioxidation properties show that all the copper(II) complexes have strong scavenging effects for hydroxyl radicals and superoxide radicals.  相似文献   

13.
The variations in the coordination environment of Co(II), Cu(II) and Zn(II) complexes with the neutral, tridentate ligand bis[1-(cyclohexylimino)ethyl]pyridine (BCIP) are reported. Analogous syntheses were carried out utilizing either the M(BF4)2 · xH2O or MCl2 · xH2O metal salts (where M = Co(II), Cu(II) or Zn(II)) with one equivalent of BCIP. When the hydrated metal starting material was used, cationic, octahedral complexes of the type [M(BCIP)2]2+ were isolated as the tetrafluoroborate salt (4, 5). Conversely, when the hydrated chloride metal salt was used as the starting material, only neutral, pentacoordinate [M(BCIP)Cl2] complexes (1-3) formed. All complexes were characterized by X-ray diffraction studies. The three complexes that are five coordinate have distortions due mainly to the pyridine di-imine bite angle. The [Cu(BCIP)Cl2] (2) also exhibits deviations in the Cu(II)-Cl bond distances with values of 2.4242(9) and 2.2505(9) Å, which are not seen in the analogous Zn(II) and Co(II) structures. Similarly, the two six coordinate complexes (5, 6) are also altered by the ligand frame bite angle giving rise to distorted octahedral geometries in each complex. The [Cu(BCIP)2](BF4)2 (6) also exhibits Cu(II)-Nimine bond lengths that are on average 0.14 Å longer than those found in the analogous 5 coordinate complex, [Cu(BCIP)Cl2]. In addition to X-ray analysis, all complexes were also characterized by UV/Vis and IR spectroscopy with 1H NMR spectroscopy being used for the analysis of the Zn(II) analogue (3).  相似文献   

14.
The first [Pd(Ln)2(ox)] xH2O oxalato(ox) complexes involving 2-chloro-N6-(benzyl)-9-isopropyladenine (L1; complex 1), 2-chloro-N6-(4-methoxybenzyl)-9-isopropyladenine (L2; 2), 2-chloro-N6-(2,3-dimethoxybenzyl)-9-isopropyladenine (L3; 3), 2-chloro-N6-(2,4-dimethoxybenzyl)-9-isopropyladenine (L4; 4), and 2-chloro-N6-(4-methylbenzyl)-9-isopropyladenine (L5; 5) have been synthesized by the reactions of potassium bis(oxalato)palladate(II) dihydrate, [K2Pd(ox)2]·2H2O, with the mentioned organic compounds (H2ox = oxalic acid; x = 0 for 1-3 and 5 or 2 for 4). Elemental analyses (C, H, N), FTIR, Raman and NMR (1H, 13C, 15N) spectroscopies, conductivity measurements and thermal studies (thermogravimetric and differential thermal analyses, TG/DTA) have been used to characterize the prepared complexes. The molecular structures of [Pd(L2)2(ox)] (2) and [Pd(L5)2(ox)]·L5·Me2CO (5·L5·Me2CO) have been determined by a single crystal X-ray analysis. The geometry of these complexes is slightly distorted square-planar with two appropriate Ln (n = 2 or 5) molecules mutually arranged in the head-to-head (2) or head-to-tail (5) orientation. The Ln ligands are coordinated to the central Pd(II) ion via the N7 atoms. The same conclusions regarding the binding properties of L1-L5 ligands can be made based on multinuclear NMR spectra. In vitro cytotoxicity of the complexes 1-5 has been evaluated against human chronic myelogenous leukaemia (K562) and human breast adenocarcinoma (MCF7) cancer cell lines. Significant cytotoxicity has been determined for the complexes 3 (IC50 = 6.2 μM) and 5 (IC50 = 6.8 μM) on the MCF7 cell line, which is even better than that found for the well-known and widely-used platinum-bearing antineoplastic drugs, i.e. oxaliplatin and cisplatin.  相似文献   

15.
Complexes [Cu(HSas)(H2O)] · 2H2O (H3Sas = N-(2-hydroxybenzyl)-l-aspartic acid) (1), [Cu(HMeSglu)(H2O)] · 2H2O (H3MeSglu = (N-(2-hydroxy-5-methylbenzyl)-l-glutamic acid) (2), [Cu2(Smet)2] (H2Smet = (N-(2-hydroxybenzyl)-l-methionine) (3), [Ni(HSas)(H2O)] (4), [Ni2(Smet)2(H2O)2] (5), and [Ni(HSapg)2] (H2Sapg = (N-(2-hydroxybenzyl)-l-aspargine) (6) have been synthesized and characterized by chemical and spectroscopic methods. Structural determination by single crystal X-ray diffraction studies revealed 1D coordination polymeric structures in 2 and 4, and hydrogen-bonded network structure in 5 and 6. In contrast to previously reported coordination compounds with similar ligands, the phenol remains protonated and bonded to the metal ions in 2 and 4, and also probably in 1. However, the phenolic group is non-bonded in 6.  相似文献   

16.
Four copper(II) complexes containing the reduced Schiff base ligands, namely, N-(2-hydroxybenzyl)-glycinamide (Hsglym) and N-(2-hydroxybenzyl)-l-alaninamide (Hsalam) have been synthesized and characterized. The crystal structures of [Cu2(sglym)2Cl2] (1), [Cu2(salam)2(NO3)2] · H2O (3), [Cu2(salam)2(NO3)(H2O)](NO3) · 1.5H2O (4), [Cu2(salam)2](ClO4)2 · 2H2O (5) show that the Cu(II) atoms are bridged by two phenolato oxygen atoms in the dimers. The sglym ligand bonded to Cu(II) in facial manner while salam ligand prefers to bind to Cu(II) in meridonal geometry. Variable temperature magnetic studies of 3 showed it is antiferromagnetic. These Cu(II) complexes and [Cu2(sglym)2(NO3)2] (2), exhibit very small catecholase activity as compared to the corresponding complexes containing acid functional groups.  相似文献   

17.
Four new zinc(II) cyclams of the composition {Zn(L)(tp2−) · H2O}n (1), {Zn(L)(H2bta2−) · 2H2O}n (2), [Zn2(L)2(ox2−)] 2ClO4 · 2DMF (3), and Zn(L)(H2btc)2 · 2DMF (4), where L = cyclam, tp2− = 1,4-benzenedicarboxylate ion, H2bta2− = 1,2,4,5-benzenetetracarboxylate ion, ox2− = oxalate ion, DMF = N,N-dimethylformamide, and H2btc = 1,3,5-benzenetricarboxylate ion, have been synthesized and structurally characterized by a combination of analytical, spectroscopic and crystallographic methods. The carboxylato ligands in the complexes 1-4 show strong coordination tendencies toward zinc(II) cyclams with hydrogen bonding interactions between the pre-organized N-H groups of the macrocycle and oxygen atoms of the carboxylato ligands. The macrocycles in 1, 2, and 4 adopt trans-III configurations with the appropriate R,R,S,S arrangement of the four chiral nitrogen centers, respectively. However, the complex 3 shows an unusual cis V conformation with the R,R,R,R nitrogen configuration. The finding of strong interactions between the carboxylato ligands and the zinc(II) ions may provide additional knowledge for the improved design of receptor-targeted zinc(II) cyclams in anti-HIV agents.  相似文献   

18.
Bidentate ligands 2,2′-biquinoline (biq) and 6,6′-dimethyl-2,2′-bipyridine (dmbpy) with steric hindrance substituents cis to the nitrogen atoms have been used in the synthesis of transition metal complexes. Six new doubly end-on azido-bridged binuclear complexes [M2(biq)21,1-N3)2(N3)2] (M = Ni (1), M = Co (2)), [M2(biq)21,1-N3)2Cl2] (M = Ni (3), M = Co (4)), [M2(dmbpy)21,1-N3)2(N3)2] (M = Ni (5), M = Co (6)) and one end-to-end thiocyanato-bridged polymeric [Ni(dmbpy)(μ1,3-SCN)(NCS)]n (7) have been synthesized and characterized by single crystal X-ray diffraction analysis and magnetic studies. Complexes 1-6 comprise five-coordinate M(II) ions bridged by two end-on azide ligands. The bridging M-N-M bond angles are in the small range 104.1-105.2°. Complex 7 consists of a singly thiocyanate-bridged Ni(II) chain in which Ni(II) ions are five-coordinate. This research suggests that the bulky ligands play a key role in the formation of five-coordinate coordination structure. All complexes display intramolecular intermetallic ferromagnetic coupling with JNiNi and JCoCo of ca. 23 or 13 cm−1 based on the Hamiltonian (S1 = S2 = 1 for Ni2, or 3/2 for Co2). The singly SCN-bridged chainlike complex 7 shows intrachain ferromagnetic interaction with J = 3.96(2) cm−1 and D = −4.55(8) cm−1 (. Magneto-structural correlationship has been investigated.  相似文献   

19.
Six lanthanide two-dimensional network coordination polymers with the general formula of [Ln(pmida)(NO3)(H2O)]n, where Ln = La (1), Nd (2), Sm (3), Gd (4), Dy (5), Er (6) and pmida2− = N-(2-pyridylmethyl)iminodiacetate, have been synthesized by hydrothermal process and characterized by elemental analysis, Infrared spectroscopy, thermogravimetric analysis and single-crystal X-ray diffraction. All crystals are isostructural and crystallize in the monoclinic space group P21/a. The lanthanide(III) ion is nine-coordinated in a geometry of distorted tricapped trigonal prism by two N atoms and two O atoms from one pmida2− ligand, two bridging carboxylate O atoms from other two pmida2− ligands, two O atoms of a bidentate chelating nitrate and a O atom of a coordinated water molecule. The luminescent properties of [Sm(pmida)(NO3)(H2O)]n (3) and [Dy(pmida)(NO3)(H2O)]n (5) were investigated.  相似文献   

20.
Two complexes of the formula [MH3L](ClO4)2 [M = Cu(II) (1), Ni(II) (2)] have been prepared by the reaction of M(ClO4)2 · 6H2O with the ligand (H3L) formed by the Schiff base condensation of tris(2-aminoethyl)amine (tren) with three molar equivalents of 4-methyl-5-imidazolecarboxaldehyde and structurally and magnetically characterized. The structures of 1 and 2 are isomorphous with each other and with the iron(II) complex of H3L which has been reported previously. The ligand, while potentially heptadentate, forms six coordinate complexes with both metal centers forming three M-Nimine and three M-Nimidazole bonds. The tren central N atom is at a nonbonded distance from M of 3.261 Å for 1 and 3.329 Å for 2. The neutral complex CuHL 3 was prepared by reaction of H3L with Cu(OCH3)2 and the ionic complex Na[NiL] 4 was prepared by deprotonation of 2 with aqueous sodium hydroxide. Magnetic measurements of 1-3 are consistent with the spin-only values expected for S = 1/2 (d9, Cu(II)) and S = 1 (d8, Ni (II)) systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号