首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
In contrast to the one-pot, two step syntheses we recently reported for a large number of substituted bidentate alkoxy-carbene ligands derived from epoxides, the reaction of imidazole with 2-adamantyl epoxide readily affords the bis(ethoxyadamantyl) substituted imidazolium salt [1-C{(NR)CHCH(NRH)}] (RH = CH2(2-adamantyl)OH), which has been isolated and structurally characterised as its iodide salt, [HC{(NRH)CH}2]I. Treatment with group 1 bases results in the loss of one ethoxy arm, to afford the structurally characterised monosubstituted alcohol imidazole, [HC{(NR)CHCHN}], or the lithium carbene complex [LiC{(NR)CHCHN}], a carbene complex containing a singly-N-functionalised alkoxy carbene. Alternatively, the monosubstituted alcohol imidazole may ben requaternised at the nitrogen atom with iso-propyl iodide to form [HC{(NRH)CHCH(NPri)}]I, from which a more standard lithium alkoxycarbene complex [LiC{(NR)CHCHNPri}] may be generated.  相似文献   

2.
New linear and tripodal tetradentate ligands, LH2, are reported and their syntheses are described. The new linear ligands L = HSCH2CH2SCH2CH2NRCH2CR2SH, R = H, CH3) and the new tripodal ligands N(CH2CH2SH)2CH2Z, Z = CH2NH2, CH2N(CH3)2, CH2N(C2H5)2, CH2SCH3 and CO2- were synthesized. The known linear ligands HSCH2CH2NCH3(CH2)nNCH3CH2CH2SH (n = 2, 3) and HSCR2CH2NHCH2CH2NHCH2CR2SH (R = H, CH3) were also utilized. These ligands react with MoO2(acac)2 in CH3OH to yield MoO2L complexes in high yield. Infra-red and 1H nmr spectra provide evidence to supplement X-ray crystallographic results reported elsewhere for selected numbers of the series. Octahedral structures with cis MoO22+ groupings are assigned. Solution 1H nmr studies are consistent with a trans placement of the two thiolate donors in agreement with the X-ray studies.  相似文献   

3.
We describe the synthesis, structure and reactivity of novel bis(1-alkenyl)platinum(II) complexes, Pt[CH2(CH2)nCHCH2]2L2 (where L2 = dppp, dppe, dppm and n = 1, 2). The stability of the title complexes with the different ligands is discussed. The steric, chelating and electronic properties of the ligands have a significant impact on the structure as well as on the reactivity of the complexes. Novel reactions with elemental sulfur and carbon dioxide are described and discussed.  相似文献   

4.
Factors have been investigated which govern the electrophilic reactivity of alkyl halides with thiolate anions in aqueous solution. In the series of alkyl halides studied, some are potential metal-directed affinity labels, while others are frequently used in protein modification. Previous data on the kinetics of this type of alkylation are compared with the present results. The influence of electronic, polar, and steric factors on alkyl halide reactivity is seen. The following order of reactivity for alkyl halides bearing different α substituents was observed: RCH2CH(X)COOCH3 > RCH2CH(X)CONH2 > RCH2CH(X)COOH > RCH2CH2X > RCH2CH(X)CH2OH. The metal-directed affinity labels are imidazole derivatives, some of which have substituents in their imidazole ring. The effect of the imidazole ring and of ring substitution on reactivity is seen. The nucleophilic reactivity of thiols is highly pH dependent since the thiolate anion (RS?) is the reactive species, but only minor differences emerged between different free thiolates.  相似文献   

5.
Complexes of cobalt(II) and zinc(II) which involve monodentate coordination of two alkyl carboxylate and two imidazole ligands in a slightly distorted tetrahedral fashion have visible and magnetic circular dichroism spectra remarkably similar to the cobalt(II)-substituted proteolytic enzymes thermolysin and carboxypeptidase A. Single crystal x-ray structure determinations on [Co(C2H5COO)2Im2], Im = imidazole, and its zinc counterpart reveal only minor structural differences between the cobalt and zinc species. Electron paramagnetic resonance spectra of cobalt(II) doped into zinc(II) complexes with known structures demonstrate the extreme sensitivity of the g-values to minor structural differences.  相似文献   

6.
Reaction of Mo2(O2CCH3)2(DMepyF)2 (HDMepyF=N,N-di(6-methyl-2-pyridyl)formamidine) with HBF4 in CH2Cl2/CH3CN afforded the complex trans-[Mo2(H2DMepyF)2(CH3CN)4](BF4)6 (1), which crystallized in two forms, trans-[Mo2(H2DMepyF)2(CH3CN)4](ax-CH3CN)2(BF 4)6 · 2CH3CN (1a), and trans- [Mo2(H2DMepyF)2(CH3CN)4](ax-BF4) 2(BF4)4 · 2CH3CN (1b). The molecular structures of complexes (1) consist of two quadruply bonded molybdenum atoms, which are spanned by two trans-bridging formamidinate ligands and coordinated by four trans-CH3CN. Each H2DMepyF+ ligand adopts an s-cis,s-cis- conformation. The difference between 1a and 1b is that complex 1a contains two CH3CN molecules as axial ligands, while 1b contains two BF4 anions as axial ligands. Complex 1 is the first dimolybdenum complex containing a pair of trans bridging ligands and two pairs of trans-CH3CN ligands.  相似文献   

7.
A series of new binuclear copper (II) and nickel (II) complexes of the macrocyclic ligands bis(1,4,7-triazacyclononan-1-yl)butane (Lbut) and bis(1,4,7-triazacyclononan-1-yl)-m-xylene (Lmx) have been synthesized: [Cu2LbutBr4] (1), [Cu2Lbut(imidazole)2Br2](ClO4)2 (2), [Cu2Lmx(μ-OH)(imidazole)2](ClO4)3 (3), [Cu2Lbut(imidazole)4](ClO4)4 · H2O (4), [Cu2Lmx(imidazole)4](ClO4)4 (5), [Ni2 Lbut(H2O)6](ClO4)4 · 2H2O (6), [Ni2Lbut(imidazole)6](ClO4)4 · 2H2O (7) and [Ni2Lmx (imidazole)4(H2O)2](ClO4)4 · 3H2O (8). Complexes 1, 2, 7 and 8 have been characterized by single crystal X-ray studies. In each of the complexes, the two tridentate 1,4,7-triazacyclononane rings of the ligand facially coordinate to separate metal centres. The distorted square-pyramidal coordination sphere of the copper (II) centres is completed by bromide anions in the case of 1 and/or monodentate imidazole ligands in complexes 2, 4 and 5. Complex 3 has been formulated as a monohydroxo-bridged complex featuring two terminal imidazole ligands. Complexes 6-8 feature distorted octahedral nickel (II) centres with water and/or monodentate imidazole ligands occupying the remaining coordination sites. Within the crystal structures, the ligands adopt trans conformations, with the two metal binding compartments widely separated, perhaps as a consequence of electrostatic repulsion between the cationic metal centres. The imidazole-bearing complexes may be viewed as simple models for the coordinative interaction of the binuclear complexes of bis (tacn) ligands with protein molecules bearing multiple surface-exposed histidine residues.  相似文献   

8.
Two new nickel(II) complexes with the composition [Ni(L+H)(CH3CN)2](ClO4)3 (1) and [Ni(L)(tp)]·6H2O (2), (L = 3,10-bis{3-(1-imidazolyl)propyl}-1,3,5,8,10,12-hexaazacyclotetradecane, tp = terephthalate) have been synthesized and structurally characterized by a combination of analytical, spectroscopic and X-ray diffraction methods. The structure of 1 consists of monomeric cations of the formula [Ni(L+H)(CH3CN)2]3+ and perchlorate ions. The nickel(II) ion is six-coordinate with bonds to the four nitrogen atoms of the macrocycle and two nitrogen atoms of the axial acetonitrile ligands. One of the protonated imidazole pendants of the macrocycle is hydrogen bonded to the imidazole group of the neighboring nickel(II) macrocycle, forming an undulated 1D supramolecule. Then, the two 1D supramolecular chains are further interconnected by C-H···π interactions between the methyl group of the acetonitrile ligand and one of the imidazole groups to form a 2D double stranded supramolecular polymer. In the structure of 2, the 1D coordination polymer is formed with nickel(II) macrocycles and bridging terephthalate ions, where each 1D chain is interconnected with π-π interactions of pendant imidazole moieties of the macrocycles, resulting in the formation of a 2D supramolecule.  相似文献   

9.
Arylpiperazines, XC6H4N(CH2CH2)2NH, are readily alkylated to give the N-alkylpiperazines of the type XC6H4N(CH2CH2)2N(CH2)nNH2. The amine functions of these derivatives are in turn easily subjected to mono- or dialkylation to provide potentially tridentate ligands of the types XC6H4N(CH2CH2)2N(CH2)nN(H)(CH2Y) and XC6H4N(CH2CH2)2N(CH2)nN(CH2Y)(CH2Z), respectively. The latter class of dialkylated derivatives may be symmetrically (Y=Z) or unsymmetrically (Y ≠ Z) substituted. The donor groups Y and Z of this study include pyridine, imidazole, methyl-imidazole, thiazole, carboxylate and thiolate.The reactions of these ligands with [NEt4]2[Re(CO)3Br3] yield complexes of the type [Re(CO)3{(YCH2)N(H)(CH2)n(H)xN(CH2CH2)2N(H)yC6H4X}]n and [Re(CO)3{(ZCH2)(YCH2)N(CH2)n(H)xN(CH2CH2)2N(H)yC6H4X}]n where the molecular charge n (0, +1, or +2) depends on the nature of the donor groups Y and Z (whether neutral or anionic or a combination of neutral and anionic) and on the degree of protonation of the piperazine unit (x=0 or 1; y=0 or 1). This variety of tridentate chelators provides complexes with fac-{Re(CO)3N3}, {Re(CO)3N2O}, {Re(CO)3NO2}, {Re(CO)3N2S} and {Re(CO)3NS2} coordination geometries. The structures of the model compound [Re(CO)3{(CH3N2C3H2CH2)N(H)CH2CH2-piperidine}]Br · H2O, [Re(CO)3{(CH3N2C3H2CH2)N(H)CH2CH2-Fphenpip}]Br, [Re(CO)3{(NC5H4CH2)N(H)CH2CH2-Fphenpip}]Br, [Re(CO)3{(O2CCH2)2NCH2CH2CH2-CH3OphenpipH}] · xCH3OH (x≈0.875), [Re(CO)3{(NC5H4CH2)2NCH2CH2CH2-CH3OphenpipH}]Br2 · 2CH2Cl2 · H2O and [Re(CO)3{(CH3N2C3H2CH2)(O2CCH2)NCH2CH2CH2-CH3OphenpipH2}]BrCl · 1.5CH3OH · H2O are discussed (phenpip: phenylpiperazine, -C6H4N(CH2CH2)2N-).  相似文献   

10.
The oxygen-evolving complex (OEC) of Mn-depleted photosystem II (PSII) can be reconstituted in the presence of exogenous Mn or a Mn complex under weak illumination, a process called photoactivation. Synthetic Mn complexes could provide a powerful system to analyze the assembly of the OEC. In this work, four mononuclear Mn complexes, [(terpy)2MnII(OOCH3)]·2H2O (where terpy is 2,2′:6′,2″-terpyridine), MnII(bzimpy)2, MnII(bp)2(CH3CH2OH)2 [where bzimpy is 2,6-bis(2-benzimidazol-2-yl)pyridine] and [MnIII(HL)(L)(py)(CH3OH)]CH3OH (where py is pyridine) were used in photoactivation experiments. Measurements of the photoreduction of 2,6-dichorophenolindophenol and oxygen evolution demonstrate that photoactivation is more efficient when Mn complexes are used instead of MnCl2 in reconstructed PSII preparations. The most efficient recoveries of oxygen evolution and electron transport activities are obtained from a complex, [MnIII(HL)(L)(py)(CH3OH)]CH3OH, that contains both imidazole and phenol groups. Its recovery of the rate of oxygen evolution is as high as 79% even in the absence of the 33-kDa peptide. The imidazole ligands of the Mn complex probably accelerate P 680 •+ reduction and consequently facilitate the process of photoactivation. Also, the strong intermolecular hydrogen bond probably facilitates interaction with the Mn-depleted PSII via reorganization of the hydrogen-bonding network, and therefore promotes the recovery of oxygen evolution and electron transport activities.  相似文献   

11.
《Inorganica chimica acta》1988,149(2):253-258
The chiroptical properties of five-coordinate diastereomeric complexes of general formula [PtCl2(R,R)-{C6H5CH(CH3)N(CH3)CH2}2{olefin}], with olefin ligands having electron-withdrawing substituents, have been investigated. The sign of CD bands in the 28 000–30 000 cm−1 region appears to be correlated to the absolute configuration of the prochiral coordinated alkene. Single-crystal X-ray diffraction structure determination has been performed on the single diastereomer [PtCl2(E-but-2-enedinitrile)(R,R)-{C6H5CH(CH3)N(CH3)CH2}2]· C6H6. The compound crystallizes in the monoclinic space group C2 with a = 17.842(2), b = 8.466(1), c = 10.464(1) Å, β = 109.34(1)°, Z = 2. The number of observed reflections was 1943 and the final R and Rw values were 0.020 and 0.028 respectively. Trigonal-bipyramidal geometry is observed around the Pt atom, with the two Cl atoms in axial positions. The unsaturated ligand lies in the equatorial plane disclosing S,S absolute configuration.  相似文献   

12.
The proton signals for the coordinated axial imidazoles in a series of low-spin ferric bis-imidazole complexes with natural porphyrin derivatives have been located and assigned. The methyl signals of several methyl-substituted imidazoles have also been resolved for the mixed ligand complexes of imidazole and cyanide ion. The imidazole spectra for the bis complexes are essentially the same as those reported earlier for synthetic porphyrins, with the hyperfine shifts exhibiting comparable contributions from the dipolar and contract interactions. The contact contribution reflects spin transfer into a vacant imidazole π orbital. The spectra of both the mono- and bis-imidazole complex concur in predicting that only the 2-H and 5CH2 signals of an axial histidine are likely to resonate clearly outside the diamagnetic 0 to ?10 ppm from TMS region in hemoproteins. However, both the 2-H and 4-H imidazole peaks are found to be too broad to detect in a hemoprotein. Hence, it is suggested that the pair of non-heme, single proton resonances in low-spin met-myoglobin cyanides arise from the non-equivalent methylene protons at the 5-position of the histidyl imidazole. Both the resonance positions and relative linewidths in the model compounds are consistent with the data for this pair of protons in myoglobins. The possible interpretations of the average downfield bias of these signals as well as the magnitude of their spacing, are discussed in terms of the conformation of the proximal histidine relative to the heme group.  相似文献   

13.
《Inorganica chimica acta》1986,114(2):111-117
Some uranyl(VI) complexes with new acyclic and cyclic Schiff base compartmental ligands have been prepared and characterized. The ligands have been obtained by reaction of 4-chloro-2,6-diformylphenol and polyamines of the type NH2(CH2)2X (CH2)2NH2 (X= NH, S). The structure of the uranyl(VI) complex with the ligand 1,7,15,21-tetra- aza-4,18-dithia-11,25-dichloro 8,22-bis-metadiphenyl cyclophane-gb-7,14,21,28 has been determined by X-ray crystallography. The compound crystallizes in the orthorhombic space group Pbca with eight formula units in a cell of dimensions a = 26.654(3), b = 22.871(3), c = 8.875(5) Å. The structure was solved by standard methods and refined by full- matrix least squares to the conventional R index of 4.6% for 2678 independent observed reflexions. Five donor atoms (including sulphur) of the ligand are equatorially bonded to the uranyl group to form discrete monomeric molecules with the seven-coordinated metal in the usual distorted pentagonal bipyramidal coordination geometry. Selected bond distances are: UO (equatorial), 2.22(1) and 2.25(1) Å; UN, 2.60(1) and 2.59(1) Å; US, 3.018(4) Å.  相似文献   

14.
Six-coordinate cobalt(III) complex trans-[Co{o-C6H4(PPh2)2}2X2]ClO4, fac-[Co{PhP(CH2CH2PPh2)2}X3],cis-[Co{P(CH2CH2PPh2)3}X2]ClO4 and cis-β-[Co{-CH2P(Ph)CH2CH2PPh2}2X2]PF6 (X = Cl, Br) have been prepared by halogen oxidation of the Co(II) analogues, and characterised by IR, electronic and 31P NMR spectroscopy. The failure to obtain complexes with X = I, and with some related ligands is discussed, and the rather low stability of the above complexes is rationalised in terms of steric crowding at the metal centre.  相似文献   

15.
Altered dynamics of microtubules (MT) are implicated in the pathophysiology of a number of brain diseases. Therefore, radiolabeled MT targeted ligands that can penetrate the blood brain barrier (BBB) may offer a direct and sensitive approach for diagnosis, and assessing the clinical potential of MT targeted therapeutics using PET imaging. We recently reported two BBB penetrating radioligands, [11C]MPC-6827 and [11C]HD-800 as specific PET ligands for imaging MTs in brain. The major metabolic pathway of the above molecules is anticipated to be via the initial labeling site, O-methyl, compared to the N-methyl group. Herein, we report the radiosynthesis of N-11CH3-MPC-6827 and N-11CH3-HD-800 and a comparison of their in vivo binding with the corresponding O-11CH3 analogues using microPET imaging and biodistribution methods. Both O-11CH3 and N-11CH3 labeled MT tracers exhibit high specific binding and brain. The N-11CH3 labeled PET ligands demonstrated similar in vivo binding characteristics compared with the corresponding O-11CH3 labeled tracers, [11C]MPC-6827 and [11C]HD-800 respectively.  相似文献   

16.
《Inorganica chimica acta》2001,312(1-2):111-116
The first structurally characterized, quadruply bonded complexes containing chiral diamine ligands, [Mo2(O2CCF3)2(S,S-dach)2(CH3CN)2][BF4]2 (1), and [Mo2(O2CCF3)2(R,R-dach)2(CH3CN)2][BF4]2 (2); (dach=1,2-diaminocyclohexane) were prepared by reactions of [Mo2(O2CCF3)2(CH3CN)6][BF4]2 with S,S-dach and R,R-dach, respectively, in CH3CN. Their UV–Vis and circular dichroism (CD) spectra have been recorded and their structures determined by X-ray crystallography. Crystals of complexes 1 and 2 conform to the space groups P2 with two independent half molecules in the asymmetric unit. The two molecules have a similar structure consisting of a Mo2 unit bridged by two cis-trifluoroacetate ligands and chelated by two dach ligands. Two acetonitrile molecules are coordinated to the Mo centers along the MoMo bond. The absorption wavelength at 507 nm for both 1 and 2 can be assigned to δxy→δxy* transitions. The solution CD spectra of these two complexes show two prominent bands at 525 and 385 nm and form mirror images of each other. The solid CD spectra of complexes 1 and 2 show marked red-shift in the absorption energies as compared with those measured in solution. The one-electron static coupling mechanism was invoked to explain the CD spectra for these complexes and the second lowest energy bands were assigned to be δxy→δx2y2 transitions.  相似文献   

17.
Three series of azole piperazine derivatives that mimic dicyclotyrosine (cYY), the natural substrate of the essential Mycobacterium tuberculosis cytochrome P450 CYP121A1, were prepared and evaluated for binding affinity and inhibitory activity (MIC) against M. tuberculosis. Series A replaces one phenol group of cYY with a C3-imidazole moiety, series B includes a keto group on the hydrocarbon chain preceding the series A imidazole, whilst series C explores replacing the keto group of the piperidone ring of cYY with a CH2-imidazole or CH2-triazole moiety to enhance binding interaction with the heme of CYP121A1. The series displayed moderate to weak type II binding affinity for CYP121A1, with the exception of series B 10a, which displayed mixed type I binding. Of the three series, series C imidazole derivatives showed the best, although modest, inhibitory activity against M. tuberculosis (17d MIC?=?12.5?μg/mL, 17a 50?μg/mL). Crystal structures were determined for CYP121A1 bound to series A compounds 6a and 6b that show the imidazole groups positioned directly above the haem iron with binding between the haem iron and imidazole nitrogen of both compounds at a distance of 2.2?Å. A model generated from a 1.5?Å crystal structure of CYP121A1 in complex with compound 10a showed different binding modes in agreement with the heterogeneous binding observed. Although the crystal structures of 6a and 6b would indicate binding with CYP121A1, the binding assays themselves did not allow confirmation of CYP121A1 as the target.  相似文献   

18.
The synthesis of bidentate aminophosphine ligands (PNquin) based on 8-hydroxyquinoline is described. These ligands react with cis-Fe(CO)4Br2 to give selectively octahedral complexes of the type cis,cis-Fe(PNquin)(CO)2Br2. There is only one isomer formed where the two CO and the two bromide ligands adopt a cis configuration. The reaction of [RuCp(CH3CN)3]PF6 with PNquin ligands affords the halfsandwich complexes [RuCp(PNquin)(CH3CN)]PF6 in high isolated yields. Likewise, treatment of [Ru(η6-p-cymene)(μ-Cl)Cl]2 with PNquin in the presence of AgCF3SO3 affords halfsandwich complexes of the type [Ru(η6-p-cymene)(PNquin)Cl]CF3SO3. All ligands and complexes are characterized by NMR and IR spectroscopy. The X-ray structure of representative compounds is reported. In addition, the relative stability of isomeric structures and conformers of Fe(PNquin-Ph)(CO)2Br2 is studied by means of DFT calculations.  相似文献   

19.
A series of zinc complexes with salicylidene-aniline and its derivatives as ligands have been designed and synthesized for electron transport in organic light-emitting diodes (OLEDs). A systematic study on their thermal, photophysical, electrochemical and electron transport properties has been carried out and demonstrated that the substitution of −CH3, −OCH3, −CN and −N(CH3)2 on aniline ring of ligands can finely tune the properties of the corresponding zinc complexes. The density functional theory calculations of location and distribution of the frontier molecular orbital states unveiled the relationships between the substituents and the photophysical and electrochemical properties of these complexes. OLEDs with bis(salicylidene-p-methylaniline)zinc(II) (Zn(sama)2) as the electron transport layer exhibited high current efficiency, indicating its great potential as a useful electron transport material for OLEDs.  相似文献   

20.
The reaction between phenyltrichlorosilane and the tetradentate ligands o-HO-C6H4-C(CH3)N-(CH2)n-NC(CH3)-o-C6H4-OH (n = 2, 3, 4), supported by an amine base, yields pentacoordinate silicon complexes (C6H5)Si-[o-O-C6H4-C(CH3)N-(CH2)n-N-C(CH2)-o-C6H4-O] with enamine functionalized ligands. This reaction pattern can be transferred onto various ligands of 2-iminomethylphenolate-type. The resulting pentacoordinate silicon complexes react with a variety of Brønsted acids HY to yield hexacoordinate salen silicon complexes (C6H5)(Y)Si-[o-O-C6H4-C(CH3)N-(CH2)n-NC(CH3)-o-C6H4-O] (Y = benzoate, picrate, 8-oxyquinolinate, 2-oxy-1,4-naphthoquinonate, p-tert-butylphenolate, (5-phenyltetrazol)-2-ide, fluoride, tetrafluoroborate). Hexacoordination of their Si-atoms was confirmed by 29Si NMR spectroscopy and, in some cases, by X-ray crystal structure analysis. Examples for similarities and differences in the coordination behavior of the silicon atom and its heavier congeners (Ge, Sn) in the salen-type coordination sphere as well as data regarding the nucleophilicity of some of these novel enamine complexes are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号