首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of the five-coordinate chlorodimethylsilyl complex, Os(SiMe2Cl)Cl(CO)(PPh3)2 with hydroxide readily produces Os(SiMe2OH)Cl(CO)(PPh3)2 (1). Complex 1 is deprotonated by tBuLi giving the silanolate complex, Os(SiMe2OLi)Cl(CO)(PPh3)2 (2), which reacts further with Me3SiCl or Me3SnCl to give Os(SiMe2OSiMe3)Cl(CO)(PPh3)2 (3) or Os(SiMe2OSnMe3)Cl(CO)(PPh3)2 (4), respectively. The structures of 3 and 4 have been determined by X-ray crystallography. Reaction between OsH(κ2-S2CNMe2)(CO)(PPh3)2 and HSiMe2Cl gives Os(SiMe2Cl)(κ2-S2CNMe2)(CO)(PPh3)2 (5). This six-coordinate chlorodimethylsilyl complex, is unreactive towards hydroxide at room temperature and at 60 °C forms Os[Si(OH)3](κ2-S2CNMe2)(CO)(PPh3)2 (7). Complex 5 is, however, smoothly converted to the hydroxy derivative, Os(SiMe2OH)(κ2-S2CNMe2)(CO)(PPh3)2 (6) upon chromatography on silica gel. Complex 6 is deprotonated by tBuLi giving the intermediate silanolate complex, Os(SiMe2OLi)(κ2-S2CNMe2)(CO)(PPh3)2, which reacts further with Me3SiCl to give Os(SiMe2OSiMe3)(κ2-S2CNMe2) (CO)(PPh3)2 (8). Crystal structure determinations for 5, 6, 7, and 8 have been obtained and structural comparisons of these related compounds are made.  相似文献   

2.
Reaction between the carbonyl, nitrosyl complex, OsCl(CO)(NO)(PPh3)2 (1) and dioxygen results in combination of CO and O2, forming a chelating peroxycarbonyl ligand in the yellow complex, Cl(NO)(PPh3)2 (2). Confirmation of the unique peroxycarbonyl ligand arrangement in 2 is provided by crystal structure determination. When 2 is heated, as a suspension in heptane under reflux, there is a rearrangement to the regular chelating carbonate ligand in the orange complex, Cl(NO)(PPh3)2 (3). The structure of 3 has also been determined by X-ray crystallography. Compound 2 also undergoes the following reactions: with water, releasing CO2 and forming Os(OH)2Cl(NO)(PPh3)2 (4); with HCl releasing CO2 and forming Os(OH)Cl2(NO)(PPh3)2 (5); and with excess triphenylphosphine releasing CO2 and triphenylphosphine oxide forming OsCl(NO)(PPh3)3 (6).  相似文献   

3.
Pt(II) complexes of the types K[Pt(R2SO)X3], NR4[Pt(R2SO)X3] and Pt(R2SO)2Cl2 (where X = Cl or Br) were characterized by multinuclear magnetic resonance spectroscopy (195Pt, 1H and 13C). In 195Pt NMR, the chloro ionic compounds have shown signals between −2979 and −3106 ppm, while the cis disubstituted complexes were observed at higher fields, between −3450 and −3546 ppm. The signal of the compound trans-Pt(DPrSO)2Cl2 was found at higher field (−3666 ppm) than its cis analogue (−3517 ppm), since π-back-donation is considerably less effective in the trans geometry. In 1H NMR, a single signal was observed for the sulfoxide in [Pt(DMSO)Cl3], but for the other more sterically hindered ligands, two series of resonances were observed for the protons in α and β positions. The coupling constant 3J(195Pt-1H) are between 15 and 33 Hz. The 13C NMR results were interpreted in relation to the concept of inversed polarization of the π sulfoxide bond. The 2J(195Pt-13C) values vary between 35 and 66 Hz, while a few 3J(195Pt-13C) couplings were observed (13-26 Hz). The crystal structures of five monosubstituted ionic compounds N(n-Bu)4[Pt(TMSO)Cl3], N(Me)4[Pt(DPrSO)Cl3], K[Pt(EMSO)Cl3], K[Pt(TMSO)Br3] · H2O and N(Et)4[Pt(DPrSO)Br3] and one disubstituted complex cis-Pt(DBuSO)2Cl2 were determined. The trans influence of the different ligands is discussed.  相似文献   

4.
The coordination capability of the octaaza 24-membered (L1) and the tetraoxotetraaza 28-membered (L2) macrocycle ligands - with different sizes, nature and number of the donor atoms - has been investigated with nitrate and perchlorate Cd(II) salts. The complexes were prepared in 1:1 and 2:1 Cd:L molar ratio. The characterization by elemental analysis, IR, LSI mass spectrometry, conductivity measurements and 1H NMR spectroscopy, together with the crystal structure of the complexes [CdL1](NO3)2 · 0.5H2O, [CdL1](ClO4)2 and [CdL2(CH3CN)2](ClO4)2 · CH3CN · H2O confirms the formation of mononuclear complexes in all cases. The [CdL1](NO3)2 · 0.5H2O and [CdL1](ClO4)2 present a mononuclear endomacrocyclic structure with the metal ion coordinated by the eight donor nitrogen atoms from the macrocyclic backbone in a square antiprism geometry. The complex [CdL2(CH3CN)2](ClO4)2 · CH3CN · H2O is also mononuclear, but the cadmium ion is in an octahedral environment coordinated by four amine nitrogen atoms from the macrocyclic framework and two nitrogen atoms from two acetonitrile molecules. The ether oxygen atoms from the ligand are not coordinated.  相似文献   

5.
The copper(II) complex of the acyclic EBTA ligand (H4EBTA = 1,2-bis(2-aminoethoxy)benzene-N,N,N′,N′-tetraacetic acid) has been prepared and characterized by X-ray analysis. The two copper ions of the dinuclear unit present the same distorted octahedral coordination polyhedra. The EBTA ligand is shared between two copper coordination centres, with the formation of centrosymmetric dimers, which are linked in a supramolecular tridimensional structure via additional interactions through the coordinated waters molecules with adjacent carboxylic oxygen atoms. The stability and protonation constants of EBTA with Cu(II) and Zn(II) ions indicate a higher stability of these complexes with respect to the corresponding complexes with the more flexible EGTA ligand (H4EGTA = ethyleneglycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid). On the other hand, the lower stability of [Gd(EBTA)] than [Gd(EGTA)] results in a decreased overall selectivity (lower Ksel) of EBTA towards Gd(III) and suggests that this complex may undergoes transmetallation reactions under physiological conditions.  相似文献   

6.
The reaction of 2 equiv. of [Os3(CO)10(MeCN)2] with R-CC-L-CC-R (R = H, L = (C4H2S); R = SiMe3, L = (C4H2S-C4H2S), (C4H2S-C4H2S-C4H2S), (C4H2S)-(C14H8)-(C4H2S)) affords the series of linked clusters [{Os3(CO)10}(HCC(C4H2S)CCH){Os3(CO)10}] (1), [{Os3(CO)10}(Me3SiCC(C4H2S-C4H2S)CCSiMe3){Os3(CO)10}] (2), [{Os3(CO)10}(Me3SiCC(C4H2S-C4H2S-C4H2S)CCSiMe3){Os3(CO)10}] (4) and [{Os3(CO)10}(Me3SiCC(C4H2S)-(C14H8)-(C4H2S)CCSiMe3){Os3(CO)10}] (6) as the major products. The complexes have been characterised by a range of spectroscopic methods and, in the case of 1 and 2 by single crystal X-ray crystallography. The alkyne groups cap the osmium triangles in the expected μ32-||-bonding mode and each triangle is coordinated by nine terminal and one μ2-carbonyl group. Solution UV-Vis spectra of the complexes were similar to those observed for the free ligands consistent with there being little delocalisation between the cluster units and the thiophene groups.  相似文献   

7.
Reaction of cis-[Ru(acac)22-C8H14)2] (1) (acac = acetylacetonato) with two equivalents of PiPr3 in THF at −25 °C gives trans-[Ru(acac)2(PiPr3)2], trans-3, which rapidly isomerizes to cis-3 at room temperature. The poorly soluble complex [Ru(acac)2(PCy3)2] (4), which is isolated similarly from cis-[Ru(acac)22-C2H4)2] (2) and PCy3, appears to exist in the cis-configuration in solution according to NMR data, although an X-ray diffraction study of a single crystal shows the presence of trans-4. In benzene or toluene 2 reacts with PiPr3 or PCy3 to give exclusively cis-[Ru(acac)22-C2H4)(L)] [L = PiPr3 (5), PCy3 (6)], whereas in THF species believed to be either square pyramidal [Ru(acac)2L], with apical L, or the corresponding THF adducts, can be detected by 31P NMR spectroscopy. Complexes 3-6 react with CO (1 bar) giving trans-[Ru(acac)2(CO)(L)] [L = PiPr3 (trans-8), PCy3 (trans-9)], which are converted irreversibly into the cis-isomers in refluxing benzene. Complex 5 scavenges traces of dinitrogen from industrial grade dihydrogen giving a bridging dinitrogen complex, cis-[{Ru(acac)2(PiPr3)} 2(μ-N2)] (10). The structures of cis-3, trans-4, 5, 6 and 10 · C6H14 have been determined by single-crystal X-ray diffraction. Complexes trans- and cis-3, 5, 6, cis-8, and trans- and cis-9 each show fully reversible one-electron oxidation by cyclic voltammetry in CH2Cl2 at −50 °C with E1/2(Ru3+/2+) values spanning −0.14 to +0.92 V (versus Ag/AgCl), whereas for the vinylidene complexes [Ru(acac)2 (CCHR)(PiPr3)] [R = SiMe3 (11), Ph (12)] the process is irreversible at potentials of +0.75 and +0.62 V, respectively. The trend in potentials reflects the order of expected π-acceptor ability of the ligands: PiPr3, PCy3 <C 2H4 < CCHR < CO. The UV-Vis spectrum of the thermally unstable, electrogenerated RuIII-ethene cation 6+ has been observed at −50 °C. Cyclic voltammetry of the μ-dinitrogen complex 10 shows two, fully reversible processes in CH2Cl2 at −50 °C at +0.30 and +0.90 V (versus Ag/AgCl) corresponding to the formation of 10+ (RuII,III) and 102+ (RuIII,III). The former, generated electrochemically at −50 °C, shows a band in the near IR at ca. 8900 cm−1 (w1/2 ca. 3700 cm−1) consistent with the presence of a valence delocalized system. The comproportionation constant for the equilibrium 10 + 102+ ? 2 10+ at 223 K is estimated as 1013.6.  相似文献   

8.
As part of a long-term study of the substitution reactions of piano-stool type cyclopentadienylmetal carbonyl complexes, several new methylcyclopentadienylmolybdenum compounds have been prepared and characterized by methods including IR spectroscopy, electrospray ionization mass spectrometry and X-ray crystallography. The complexes reported here include [{Cp′Mo(CO)3}2I]BPh4, cis-Cp′Mo(CO)2(PPh3)I and [Cp′Mo(CO)3(CH3CN)]BF4 (Cp′ = η5-C5H4CH3). In addition to their syntheses, comparisons are made between their IR spectroscopic and X-ray crystal structure data and those of similar complexes.  相似文献   

9.
Refluxing WCl4(PMe3)3 under a nitrogen atmosphere in the presence of two equivalents of sodium amalgam leads to a reduction to the W(II) complex [cis,mer-WCl2(PMe3)3]2N2 (1), which can be converted to [mer,trans-WCl3(PMe3)2]2N2 (2) via appropriate oxidation/chlorination. Structural data have been obtained for both complexes, and demonstrate significantly increased steric crowding in 1 due to PMe3/PMe3 interactions. The N-N bond distances in the two compounds are similar, at 1.279(4) and 1.243(18) Å, respectively.  相似文献   

10.
Three new Fe(II) complexes [Fe(HIM2py)2(SCN)2] (1), [Fe(HIM2py)2(H2O)2](ClO4)2 · 2H2O (2), and [Fe(HIM2py)2(4,4-bipy)](ClO4)2 · 3CH3CH2OH (3) (4,4-bipy = 4,4′-bipyridine, HIM2py = 1-hydroxyl-2(2′-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole) have been synthesized and characterized structurally as well as magnetically. The X-ray analysis reveals that HIM2py ligands are coordinated to the metal ions as an unusual six-membered didentate chelate with the κ2N(py), O(HIM) mode. Fe(II) ions in complex 3 are bridged by 4,4-bipy, leading to a 1D chain structure. The magnetic behavior of complex 3 is investigated, showing weak antiferromagnetic interactions.  相似文献   

11.
Addition of excess trimethylphosphine and a halide source to a solution of W(CO)(acac)2(η2-L) (L = NCPh and OCMe2) leads to displacement of L and one acetylacetonate chelate to produce electron-rich, seven-coordinate complexes of the formula W(CO)(acac)(X)(PMe3)3 (X = Cl, Br, and I). Use of NaN3 instead of a halide source leads primarily to loss of carbon monoxide and dinitrogen, and protonation from adventitious water yields the cationic imido complex [W(NH)(acac)(PMe3)3]+. Heating [W(NH)(acac)(PMe3)3]+ in aromatic isocyanates at high temperature results in isocyanate insertion into the NH imido bond to form new C-N bonds. An alternate route to related imido complexes involves heating [W(O)(acac)(PMe3)3]+ with phenyl isocyanate at high temperatures to yield the substituted imido complex [W(NPh)(acac)(PMe3)3]+.  相似文献   

12.
Structural changes between [OsIIL3]2+ and [OsIIIL3]3+ (L: 2,2′-bipyridine; 1,10-phenanthroline) and molecular and electronic structures of the OsIII complexes [OsIII(bpy)3]3+ and [OsIII(phen)3]3+ are discussed in this paper. Mid-infrared spectra in the ν(bpy) and ν(phen) ring stretching region for [OsII(bpy)3](PF6)2, [OsIII(bpy)3](PF6)3, [OsII(phen)3](PF6)2, and [OsIII(phen)3](PF6)3 are compared, as are X-ray crystal structures. Absorption spectra in the UV region for [OsIII(bpy)3](PF6)3 and [OsIII(phen)3](PF6)3 are dominated by very intense absorptions (ε = 40 000-50 000 M−1 cm−1) due to bpy and phen intra-ligand π → π transitions. In the visible region, relatively narrow bands with vibronic progressions of ∼1500 cm−1 appear, and have been assigned to bpy or phen-based, spin-orbit coupling enhanced, 1π → 3π electronic transitions. Also present in the visible region are ligand-to-metal charge transfer bands (LMCT) arising from π(bpy) → t2g(OsIII) or π(phen) → t2g(OsIII) transitions. In the near infrared, two broad absorption features appear for oxidized forms [OsIII(bpy)3](PF6)3 and [OsIII(phen)3](PF6)3 arising from dπ-dπ interconfigurational bands characteristic of dπ5OsIII. They are observed at 4580 and 5090 cm−1 for [OsIII(bpy)3](PF6)3 and at 4400 and 4990 cm−1 for [OsIII(phen)3](PF6)3. The bpy and phen infrared vibrational bands shift to higher energy upon oxidation of Os(II) to Os(III). In the cation structure in [OsIII(bpy)3](PF6)3, the OsIII atom resides at a distorted octahedral site, as judged by ∠N-Os-N, which varies from 78.78(22)° to 96.61(22)°. Os-N bond lengths are also in general longer for [OsIII(bpy)3](PF6)3 compared to [OsII(bpy)3](PF6)2 (0.010 Å), and for [OsIII(phen)3](PF6)3 compared to [OsII(phen)3](PF6)2 (0.014 Å). Structural changes in the ligands between oxidation states are discussed as originating from a combination of dπ(OsII) → π (bpy or phen) backbonding and charge redistribution on the ligands as calculated by natural population analysis.  相似文献   

13.
We report the synthesis of phosphorescent divalent osmium complexes of the form [Os(N-N)2(L-L) or Os(L-L)2(N-N)]2+ (PF6)2 where N-N is a derivative of 1,10-phenanthroline, and L-L is a diarsine or diphosphine ligand: 1,2-bis(dimethylphosphino)ethane, 1,2-bis(dicyclohexylphosphino)ethane, or 1,2-bis(dimethylarseno)benzene. X-ray structures have been determined, luminescent and electrochemical properties have been measured and DFT calculations have been performed on the complexes. The emission lifetime of complexes of structure Os(II)(L-L)2(N-N) are longer than the those of Os(II)(N-N)2(L-L). The DFT calculations show that there is significant mixing of the π−π into the dπ−π charge-transfer state for the complexes of the form Os(II)(L-L)2(N-N) resulting in a longer lived excited state. Through DFT calculations we were able to conclude that the HOMO of the complexes is a d orbital on the osmium while the LUMO is the b1(ψ) π system of the phenanthroline. However, we found that the HOMO did not have the correct symmetry to enable strong charge transfer to the phenanthroline to be observed, and the strong MLCT transition observed in the spectra is the metal d HOMO(−1) to the b1 π LUMO of the phenanthroline.  相似文献   

14.
The molecular structure of copper(II) chloride complex with acrylamide (AAmCH2CHCONH2), [Cu(AAm)4Cl2], was determined using X-ray diffraction analysis. The complex crystallizes in the cubic space group I-43d with a = 17. 8310(2) Å, β = 90°, and V = 5669.27(11) Å3 for Z = 12. The acrylamide molecules bind to the metal center via the carbonyl oxygen atom (Cu-O 1.996 Å). The coordination geometry of the metal center in the complex involves a tetragonally distorted octahedral structure with four O-donor atoms of acrylamide bonded in the equatorial positions and two chlorides in the apical positions. Comparison of crystal structure data of acrylamide and metal acrylamide complexes of those formed with divalent transition metal chlorides has been summarized.  相似文献   

15.
The reaction of the Tc(I) complex [Tc(NO)Cl2(HOMe)(PPh3)2] with stoichiometric amounts of 2-mercatopyridine and a proton scavenger yields [Tc(NO)Cl(Spy)(PPh3)2] or [Tc(NO)(Spy)2(PPh3)], depending upon quantities of ligands employed. These two complexes have been structurally characterized. The small bite angles of the bidentate mercaptopyridine ligands cause significant deviation from octahedral coordination geometry.  相似文献   

16.
Lewis acid catalysts [Eu(NTf2)3] and [Yb(NTf2)3] can be easily crystallized from a p-xylene solution in the presence of carboxylic acids and a small amount of water to give a trihydrate and a pentahydrate, respectively. In the crystallization of [Eu(NTf2)3(H2O)3], linear molecules such as n-alkanes and n-alkanoic acids act as templates to form crystals belonging to the trigonal space group with a hexagonal cylindrical structure, which is constructed by 3D hydrogen bonding network. On the other hand, [Eu(NTf2)3(H2O)3] crystallized in the cubic space group P213 in the presence of a bulkier carboxylic acid, cyclohexanecarboxylic acid. In both [Eu(NTf2)3(H2O)3] crystals, ligands act as bidentate ligands coordinating to the Eu atom through two oxygen atoms. [Yb(NTf2)3] crystallized as a pentahydrate in the monoclinic space group P21/n, in which ligands coordinated to the Yb atom with only one oxygen atom.  相似文献   

17.
An aza-oxa-thia macrocycle, 5,14-dioxa-2,17-dithia[6](1,2)benzeno[6](2,6)pyridinophane, L1, the related smaller macrocycle 2,14-dithia-11-oxa-[3](1,2)benzeno[6](2,6)pyridinophane, L2, and the complexes with Pd(II) and Cu(II) of the macrocycle, L1, have been synthesized. The crystal structure of L2 and those of the two metal complexes have been determined. In the complexes, the metal ions adopt exclusively square planar geometry in which the pyridine nitrogen, two sulfurs and one chlorine atom are coordinated and there is no appreciable interaction with the oxygen donors. Thus, the `hard-soft acid-base' principle is illustrated by the behaviour of L1. The structures of both complexes are compared with the previously reported mixed aza-thia macrocycle, 2,5,14,17-tetrathia[6](1,2)benzeno[6](2,6)pyridinophane. The crystal structure of the smaller macrocycle, L2, is also discussed and due to the nature of its smaller cavity, attempts to make complexes with it have not been successful.  相似文献   

18.
Gradient-corrected density functional theory applied to 1,2-diphosphino-1,2-dicarba-closo-dodecaborane, 1,2-(PH2)2-1,2-C2B10H10, and its respective PdCl2 complex presents a clear picture of the effect of complexation on the P-Cc-Cc-P fragments (Cc = cage carbon C1 or C2) in the structures. The complexation results in clear closing in the P-Cc-Cc angles and shortening of Cc-Cc bond, but only minor changes take place in the P-Cc-Cc-P torsion angle. Furthermore, complexation brings along shortening of the P-Cc bonds with concomitant increase of covalency, as revealed by atoms-in-molecules calculations. Although there is also change in the Cc-Cc distance in the cage, no significant change is involved in the bonding. These findings are compared with the results obtained by single-crystal X-ray study for [PdCl2(1,2-(PiPr2)2-1,2-C2B10H10)] and additional calculations carried out for [PdCl2(1,2-(PH2)2-C2H4)].  相似文献   

19.
A series of hexadentate ligands, H2Lm (m = 1−4), [1H-pyrrol-2-ylmethylene]{2-[2-(2-{[1H-pyrrol-2-ylmethylene]amino}phenoxy)ethoxy]phenyl}amine (H2L1), [1H-pyrrol-2-ylmethylene]{2-[4-(2-{[1H-pyrrol-2-ylmethylene]amino}phenoxy)butoxy]phenyl}amine (H2L2), [1H-pyrrol-2-ylmethylene][2-({2-[(2-{[1H-pyrrol-2-ylmethylene]amino}phenyl)thio]ethyl}thio)phenyl]amine (H2L3) and [1H-pyrrol-2-ylmethylene][2-({4-[(2-{[1H-pyrrol-2-lmethylene]amino}phenyl)thio]butyl}thio) phenyl]amine (H2L4) were prepared by condensation reaction of pyrrol-2-carboxaldehyde with {2-[2-(2-aminophenoxy)ethoxy]phenyl}amine, {2-[4-(2-aminophenoxy)butoxy]phenyl}amine, [2-({2-[(2-aminophenyl)thio]ethyl}thio)phenyl]amine and [2-({4-[(2-aminophenyl)thio]butyl}thio)phenyl]amine respectively. Reaction of these ligands with nickel(II) and copper(II) acetate gave complexes of the form MLm (m = 1−4), and the synthesized ligands and their complexes have been characterized by a variety of physico-chemical techniques. The solid and solution states investigations show that the complexes are neutral. The molecular structures of NiL3 and CuL2, which have been determined by single crystal X-ray diffraction, indicate that the NiL3 complex has a distorted octahedral coordination environment around the metal while the CuL2 complex has a seesaw coordination geometry. DFT calculations were used to analyse the electronic structure and simulation of the electronic absorption spectrum of the CuL2 complex using TDDFT gives results that are consistent with the measured spectroscopic behavior of the complex. Cyclic voltammetry indicates that all copper complexes are electrochemically inactive but the nickel complexes with softer thioethers are more easily oxidized than their oxygen analogs.  相似文献   

20.
Carbamoyl methyl pyrazole compound of palladium(II) chloride of the type [PdCl2L2] (where L =  C5H7N2CH2CON(C4H9)2, C5H7N2CH2CON(iC4H9)2, C3H3N2CH2CON(C4H9)2, or C3H3N2CH2CON(iC4H9)2) has been synthesized and characterized by IR and 1H NMR spectroscopy. The structure of the compound [PdCl2{C3H3N2CH2CONiBu2}2] has been determined by single crystal X-ray diffraction and shows that the ligands are bonded through the soft pyrazolyl nitrogen atom to the palladium(II) chloride in a trans disposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号