首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrothermal reaction of copper(II) bromide with either bis(4-pyridylmethyl)piperazine (bpmp) or bis(4-pyridylformyl)piperazine (bpfp) afforded layered coordination polymer solids. The racemic S,S and R,R stereochemistry dped ligands in [Cu2Br2(dped)]n (1, dped = 1,2-di(4-pyridyl)ethanediol) were formed by the in situ transformation of bpmp via putative 4-pyridylmethanol intermediates, along with concomitant reduction to monovalent copper. The structure of 1 contains [Cu2Br2]n chains comprising edge-shared [Cu3Br3] boat-conformation six-membered rings, linked into layer motifs by dped tethers with alternating stereochemistry. Lack of benzylic hydrogen atoms in bpfp causes that ligand to stay intact under the reaction conditions, generating the 2-D layered divalent copper phase [CuBr2(bpfp)]n (2).  相似文献   

2.
Several mixed-ligand complexes have been prepared by treatment of copper(I) chloride with equimolar amounts of trans-1,2-bis(diphenylphosphino)ethene (trans-dppen) in acetonitrile followed by the addition of a methanolic solution of one equivalent of a heterocyclic thione (L). The novel complex compounds have been characterized by single-crystal X-ray diffraction, 1H NMR and IR spectroscopy as well as by elemental analyses and melting points. The X-ray structures of three examples confirm that the compounds are homobimetallic dimers of type [CuCl(μ2-trans-dppen)(L)]2 containing two tetrahedral coordination units joined by two trans-dppen bridges.  相似文献   

3.
The copper(I) complexes {(bis-2,6-dimethylphenyl-penta-2,3-diiminato)Cu}2(μ-toluene), 3 has been prepared and its reactivity against Lewis bases and nitrous oxide investigated. Complex 3 crystallizes as a toluene-bridged dimer and forms mono- and dinuclear benzene adducts in C6D6 solution. It does not coordinate excess THF, but reacts quantitatively with 1 equiv. of acetonitrile. Reaction with 2,6-xylyl isonitrile yields (bis-2,6-dimethylphenyl-penta-2,3-diiminato)Cu(2,6-xylyl isonitrile), 5, (νCN = 2123 cm−1), which was characterized by an X-ray diffraction study. Complex 3 does not react with nitrous oxide in either C6D6 solution (5 days 50 °C) or in diethyl ether (13 days at ambient temperature).  相似文献   

4.
Reaction of the potassium salts of (EtO)2P(O)CH2C6H4-4-(NHC(S)NHP(S)(OiPr)2) (HLI), (CH2NHC(S)NHP(S)(OiPr)2)2 (H2LII) or cyclam(C(S)NHP(S)(OiPr)2)4 (H4LIII) with [Cu(PPh3)3I] or a mixture of CuI and Ph2P(CH2)1-3PPh2 or Ph2P(C5H4FeC5H4)PPh2 in aqueous EtOH/CH2Cl2 leads to [Cu(PPh3)LI] (1), [Cu2(Ph2PCH2PPh2)2LII] (2), [Cu{Ph2P(CH2)2PPh2}LI] (3), [Cu{Ph2P(CH2)3PPh2}LI] (4), [Cu{Ph2P(C5H4FeC5H4)PPh2}LI] (5), [Cu2(PPh3)2LII] (6), [Cu2(Ph2PCH2PPh2)LII] (7), [Cu2{Ph2P(CH2)2PPh2}2LII] (8), [Cu2{Ph2P(CH2)3PPh2}2LII] (9), [Cu2{Ph2P(C5H4FeC5H4)PPh2}2LII] (10), [Cu8(Ph2PCH2PPh2)8LIIII4] (11), [Cu4{Ph2P(CH2)2PPh2}4LIII] (12), [Cu4{Ph2P(CH2)3PPh2}4LIII] (13) or [Cu4{Ph2P(C5H4FeC5H4)PPh2}4LIII] (14) complexes. The structures of these compounds were investigated by IR, 1H, 31P{1H} NMR spectroscopy; their compositions were examined by microanalysis. The luminescent properties of the complexes 1-14 in the solid state are reported.  相似文献   

5.
The tris(pyrazolyl)amine ligands: tris[2-(1-pyrazolyl)methyl]amine (tpma), tris [3,5-dimethyl-1-pyrazolyl)methyl]amine (tdma), tris[2-(1-pyrazolyl)ethyl]amine (tpea), tris[2-(3,5-dimethyl-1-pyrazolyl)ethyl]amine (tdea) and bis(pyrazolyl)amine ligands: bis[2-(1-pyrazolyl)ethyl]amine (bpea) and bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]amine (bdea) react with [RhCl(cod)]2 in presence of NaBF4 (tpma, tdma and bdea) or AgBF4 (tpea, tdea and bpea) to lead to [Rh(cod)L] (BF4) (L=tpma (1), tdma (2), bdea (3), tpea (4), tdea (5) and bpea (6)). These complexes have been characterised by elemental analyses, conductivity, IR, 1H and 13C NMR spectroscopy and liquid mass (with electrospray) spectrometry. The 1H NMR spectra of 1, 2 show the presence of two isomers in solution in a 3:1 ratio (coordination κ2 or κ3 type) in a thermodynamic equilibrium. The steric bulk of cyclo-octa-1,5-diene causes it to prefer the κ2 mode of bonding as majority. Similar to previous published results, complexes 4 and 5 exist in a sole form in solution (probably κ2 isomer). Finally, the complexes 3 and 6 are fluxional. A NMR study shows that this fluxional process is not frozen at 183 K.  相似文献   

6.
Three complexes of the composition {[Cu(μ1,5-dca)2(mppca)2] · H2O}n (1), [Cu(μ1,5-dca)2(nppca)2]n (2) and [Cu(μ-Cl)2(mppca)2]n (3) (dca = dicyanamide, ; mppca = N-(4′-methylphenyl)-4-pyridinecarboxamide; nppca = N-(4′-nitrophenyl)-4-pyridinecarboxamide) have been synthesized and characterized by single crystal X-ray crystallography and magnetic susceptibility studies. Different supramolecular structures of the complexes have been constructed by different non-covalent motifs in the crystalline solids. In complex 1, adjacent copper(II) atoms are connected by double μ1,5-dca(end-to-end) bridges to form a chain-like structure. The chains are linked by π-π interactions and hydrogen bonds between the ligands and water molecules to form a 3D network. In complex 2, copper(II) atom has a coordination environment similar to 1, but water molecules have not been found. Weak C-H?N hydrogen bonding and π-π interaction yield a 3D supramolecular network which is different from that of complex 1. Complex 3 is a 1D polymeric chain in which Cu(II) ions are bridged by Cl, and only CH/π interactions had been found. Magnetic measurements revealed antiferromagnetic properties of 1, 3 and ferromagnetic behavior of 2.  相似文献   

7.
Seven new mono- and dinuclear Cu(II) complexes containing various methyl substituted 4-nitropyridine N-oxides as ligands were isolated and characterized physicochemically and biologically. The characterization included elemental analysis, magnetic and spectroscopic methods (diffuse reflectance and UV-visible absorption, IR, FIR). A single crystal X-ray diffraction analysis was performed for the complex with 2,5-dimethyl-4-nitropyridine N-oxide. Trans- and cis-square planar configuration around Cu ion was established for mono- and dinuclear species, respectively. In methanolic solutions the dinuclear species decompose into mononuclear ones with increasing 4 → 6 coordination number with attachment of two solvent molecules.The IR spectra showed that the strength of the Cu-ligand bond gauged by the degree of N-O elongation changed irregularly with position and number of methyl groups. Cytotoxic studies on the MCF-7 human breast cancer line revealed a structure-activity relationship: double blocking of the NO2 group with two CH3 groups rendered the complex completely inactive.  相似文献   

8.
Heteroligand copper(I) complexes of bi- or bis-bidentate acylamidophosphates PhC(S)NHP(S)(OPr-i)2, PhC(S)NHP(O)(OPr-i)2, Et2NC(S)NHP(S)(OPr-i)2, PhNHC(S)NHP(S)(OPr-i)2, N-(4-aminobenzo-15-crown-5)-C(S)NHP(S)(OPr-i)2, N,N-(1,10-diaza-18-crown-6)-[C(S)NHP(S)(OPr-i)2]2, and triphenylphosphine were prepared and characterised. Copper is bound by two PPh3 and one SCNPX (X = O, S) fragment of chelating ligand in all cases. Triphenylphosphine molecules reversibly dissociate in solution. Details of the X-ray structures of (Ph3P)2Cu[PhC(S)NP(S)(OPr-i)2] and (Ph3P)2Cu[Et2NC(S)NP(S)(OPr-i)2] are reported.  相似文献   

9.
We have synthesized copper salts MN3RR′ derived from the biphenyl- or m-terphenyl-substituted triazenes Tph2N3H (1a) and Dmp(Tph)N3H (1b) (Dmp = 2,6-Mes2C6H3 with Mes = 2,4,6-Me3C6H2; Tph = 2-TripC6H4 with Trip = 2,4,6-i-Pr3C6H2). The homoleptic copper triazenide [CuN3Tph2] (2a) was obtained in high yield from the metallation of 1a with mesityl copper in n-heptane, while the complex [CuN3(Dmp)Tph] (2b) was generated by the same method in situ only. Reaction of 2a with triphenylphosphane gave the 2:1 adduct [CuN3Tph2(PPh3)2] (3a), regardless of the used complex/donor ratio, while reaction of 2a or 2b with a stochiometric amount of t-butylisonitrile afforded the 1:1 adducts [Tph2N3CuCNtBu] (4a) and [Dmp(Tph)N3CuCNtBu] (4b). All new compounds (except 2b) have been characterized by 1H NMR, 13C NMR and IR spectroscopy, elemental analysis, melting point (not 2a), and X-ray crystallography. The IR spectroscopic examination of the ν(CN) stretch in the isonitrile adducts 4a and 4b revealed the weaker donor character of the supporting triazenido ligands compared to related β-diketiminato ligands.  相似文献   

10.
A new lycopsid family Kladnostrobaceae is proposed, based on the type of sporangia, their attachment by a pedicel and the type of reticulate spores enclosed. All these characteristics distinguish the Kladnostrobaceae from all other lycopsid families. A new lycopsid genus Kladnostrobus nov. gen., consisting of two new species Kladnostrobus clealii nov. sp. and Kladnostrobus psendae nov. sp., is described from the Kladno-Rakovník Basin (Lower Bolsovian) of the central and western Carboniferous continental basins of the Czech Republic. Helically arranged distal laminae and pedicels are relatively primitive, suggesting that Kladnostrobus may represent a new, primitive type of lycopsid cone produced by some unknown, probably arborescent lycopsid parent plant. Spores of Kladnostrobus are about 90-100 μm in diameter, and possess reticulate sculpture. The proximal contact area of spores is laevigate. In situ spores can resemble some dispersed species of the genera Convolutispora Hoffmeister, Staplin and Malloy, Camptotriletes (Naumova) Potonié and Kremp, Reticulatisporites (Ibrahim) Neves and mainly Dictyotriletes (Naumova) Smith and Buttterworth.  相似文献   

11.
Since glucocorticoids have a role in maintaining the homeostatic status in fish, in the present paper mRNA expression (in situ hybridization) and tissue immunohistochemical localization of a glucocorticoid receptor (DlGR1) in several Dicentrarchus labrax organs are reported. Riboprobe and specific antibodies were prepared by using the DlGR1 that has been previously cloned and sequenced from peritoneal cavity leukocytes. Both mRNA and receptor were identified in head kidney, spleen, gills, intestine, heart and liver tissues. The functional roles of DlGR1 localization are discussed.  相似文献   

12.
Complex pbt2Cu8Br12 [pbt=pyridine-2,6-diylbis(methyleneamino-TEMPO)] was synthesized from CuBr2 and a new ligand pbt, and characterized by means of X-ray crystal structure analysis and magnetic measurements. The centrosymmetric molecule consists of a Cu6Br10 cluster sandwiched with two pbt·CuBr complexes. Detailed geometrical analysis and magnetic analysis reveal the presence of four copper(I) and four copper(II) ions in a molecule. Antiferromagnetic couplings observed can be attributed to the intermolecular radical?radical and intramolecular copper(II)?copper(II) interactions.  相似文献   

13.
A putative CLC voltage-gated anion channel gene from Aspergillus nidulans (AnCLCA) is characterised. The expression of the AnCLCA cDNA restored the iron-limited growth of the Saccharomyces cerevisiae CLC null mutant strain (gef1) suggesting that AnCLCA functions as a chloride channel. An AnCLCA conditional mutant was created and exhibited a strong and specific growth inhibition in the presence of extracellular copper concentrations > 18 μM. This sensitivity was shown to be the result of a hyper-accumulation of copper by the conditional mutant, which generates superoxide to toxic levels inhibiting the growth. Further analysis revealed that copper dependent enzymes were disrupted in the AnCLCA conditional null mutant, specifically, a reduced activity of the copper-zinc superoxide dismutase (CuZn-SOD) and enhanced activity of the cytochrome oxidase (COX). These results suggest that AnCLCA plays a key role in copper homeostasis in A. nidulans and that a malfunction of this chloride channel results in disrupted intracellular copper trafficking.  相似文献   

14.
An in vitro and in vivo study of some copper chelating anti-inflammatory agents for alleviation of inflammation associated with rheumatoid arthritis (RA) has been conducted. Two copper chelating agents, N(1)-(2-aminoethyl)-N(2)-(pyridin-2-ylmethyl)ethane-1,2-diamine ([555-N]) and N-(2-(2-aminoethylamino)ethyl)picolinamide ([H(555)-N]) have been synthesized as their hydrochloride salt; their protonation constants and formation constants with Cu(II), Zn(II) and Ca(II) determined by glass electrode potentiometry at 298K and an ionic strength of 0.15M. Cu(II) formed stable complexes at physiological pH while the in vivo competitors, Zn(II) and Ca(II) formed weak complexes with both chelating agents. Both [555-N] and [H(555)-N] showed better selectivity for Cu(II) than for Zn(II) and Ca(II). Electronic spectra for species formed at physiological pH suggest a square planar geometry. Speciation calculations using a blood plasma model predicted that these copper chelating agents are able to mobilize Cu(II) in vivo, while bio-distribution studies of their (64)Cu(II)-labelled complexes at physiological pH showed tissue accumulation and retention indicating an encouraging biological half life.  相似文献   

15.
New copper(II) complexes of general empirical formula, [Cu(NNS)X] (NNS = anionic forms of the 2-acetylpyrazine Schiff bases of S-methyl- and S-benzyldithiocarbazate, Hapsme and Hapsbz) and X = Cl, Br, NCS and NO3 have been synthesized and characterized. X-ray crystal structures of the free ligand, Hapsbz and the complexes, [Cu(apsbz)(NO3)], [Cu(apsme)(NCS)]2 and [Cu(apsme)Cl]2 have been determined. In the solid state, the Schiff base, Hapsbz remains in its thione tautomeric form with the thione sulfur atom trans to the azomethine nitrogen atom. X-ray diffraction shows that the [Cu(apsbz)(NO3)] complex is a novel coordination polymer in which one of the nitrogen atoms of the pyrazine ring bridges two adjacent copper(II) ions. The Schiff base is coordinated to the copper(II) ion in its iminothiolate form via the thiolate sulfur atom, the azomethine nitrogen atom and one of the pyrazine nitrogen atoms, the overall geometry of each copper atom in the polymer being close to a square-pyramid. The complexes, [Cu(apsme)X]2 (X = NCS, Cl) are dimers in which each copper atom adopts a five-coordinate near square-pyramidal geometry with an N3S2 coordination environment. The Schiff base coordinates as a uninegatively charged tridentate ligand chelating via the pyridine and azomethine nitrogen atoms and the thiolate sulfur atoms. A nitrogen atom of a unidentate thiocayanate or chloride ligand and a bridging sulfur atom from a second ligand completes the coordination sphere. Room temperature μeff values for the complexes in the solid state are in the range 1.70-2.0 μB typical of uncoupled or weakly coupled Cu(II) centres. Variable temperature susceptibility studies show that the chain complex displays weak ferromagnetic coupling across the pyrazine bridges, while the S-bridged dinuclear compounds display either weak ferromagnetic or weak antiferromagnetic coupling that relates to subtle bridging geometry differences. EPR studies of frozen DMF solutions give rather similar g and ACu values for all compounds indicative of Cu(dx2-y2) ground state orbitals on the Cu centers.  相似文献   

16.
Reaction of 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) with Cu(ClO4)2·6H2O in methanol in 3:1 M ratio at room temperature yields light green [CuL3](ClO4)2·H2O (1). The X-ray crystal structure of the hemi acetonitrile solvate [CuL3](ClO4)2·0.5CH3CN has been determined which shows Jahn-Teller distortion in the CuN6 core present in the cation [CuL3]2+. Complex 1 gives an axial EPR spectrum in acetonitrile-toluene glass with g|| = 2.262 (A|| = 169 × 10−4 cm−1) and g = 2.069. The Cu(II/I) potential in 1 in CH2Cl2 at a glassy carbon electrode is 0.32 V versus NHE. This potential does not change with the addition of extra L in the medium implicating generation of a six-coordinate copper(I) species [CuL3]+ in solution. B3LYP/LanL2DZ calculations show that the six Cu-N bond distances in [CuL3]+ are 2.33, 2.25, 2.32, 2.25, 2.28 and 2.25 Å while the ideal Cu(I)-N bond length in a symmetric Cu(I)N6 moiety is estimated as 2.25 Å. Reaction of L with Cu(CH3CN)4ClO4 in dehydrated methanol at room temperature even in 4:1 M proportion yields [CuL2]ClO4 (2). Its 1H NMR spectrum indicates that the metal in [CuL2]+ is tetrahedral. The Cu(II/I) potential in 2 is found to be 0.68 V versus NHE in CH2Cl2 at a glassy carbon electrode. In presence of excess L, 2 yields the cyclic voltammogram of 1. From 1H NMR titration, the free energy of binding of L to [CuL2]+ to produce [CuL3]+ in CD2Cl2 at 298 K is estimated as −11.7 (±0.2) kJ mol−1.  相似文献   

17.
A novel dinuclear copper(I) complex, [Cu22-SH)2(PPh3)3] (1) (PPh3 = triphenylphosphine) has been prepared by the reaction of CuCl with triphenylphosphine and mercaptopropanoic acid (MPA) mixed in the ratio of 1:1:1. In the molecular structure of 1, two copper atoms are bridged by S atoms of two monohydrogensulfido anions forming a four-membered ring. The planar Cu2S2 core is characterized by significant cuprophilic interactions (Cu-Cu distance = 2.897 ?). One copper atom in 1 is coordinated with two sulfur atoms and one phosphorus atom of PPh3 adopting a trigonal planar geometry, while the coordination environment around the other copper center is distorted tetrahedral that is completed by two sulfur atoms of SH groups and two phosphorus atoms of PPh3 molecules.  相似文献   

18.
Dinuclear copper(I) complexes with bridging bis(dicyclohexylphosphino)methane (dcpm) or bis(diphenylphosphino)methane (dppm) and 2,2′-bipyridine or 2-[N-(2-pyridyl)methyl]amino-5,7-dimethyl-1,8-naphthyridine (L), [Cu2(bpy)2(dppm)2](BF4)2 (1), [Cu2(bpy)2(dcpm)](BF4)2 (2), [Cu2(L)(dppm)](BF4)2 (3) and [Cu2(L)(dcpm)](BF4)2 (4) were prepared, and their structures were determined by X-ray crystal analysis. Two-, three-, and four-coordinate copper(I) centers are found in these complexes. Compounds 3 and 4 show close CuI?CuI separations of 2.664(3) and 2.674(1) Å, respectively, whereas an intramolecular copper-copper distance of 3.038 Å is found in 2 having only dcpm as an additional bridge. Powdered samples of 1, 3, and 4 display intense and long-lived phosphorescence with λmax at 533, 575, and 585 nm at room temperature, respectively. In the solid state, 2 exhibits only a weak emission at 555 nm. The time-resolved absorption and emission spectra of these complexes were investigated. The difference in the emission properties among complexes 1-4 suggests that both CuI?CuI distances and coordination environment of the copper(I) centers affect the excited-state properties.  相似文献   

19.
Six copper(I) complexes {[Cu2(L1)(PPh3)2I2] · 2CH2Cl2}n (1), {[Cu2(L2)(PPh3)2]BF4}n (2), [Cu2(L3)(PPh3)4I2] · 2CH2Cl2 (3), [Cu2(L4)(PPh3)4I2] (4), [Cu2(L5)(PPh3)2I2] (5) and [Cu2(L6)(PPh3)2I2] (6) have been prepared by reactions of bis(schiff base) ligands: pyridine-4-carbaldehyde azine (L1), 1,2-bis(4′-pyridylmethyleneamino)ethane (L2), pyridine-3-carbaldehyde azine (L3), 1,2-bis(3′-pyridylmethyleneamino)ethane (L4), pyridine-2-carbaldehyde azine (L5), 1,2-bis(2′-pyridylmethyleneamino)ethane (L6) with PPh3 and copper(I) salt, respectively. Ligand L1 or L2 links (PPh3)2Cu2(μ-I)2 units to form an infinite coordination polymer chain. Ligand 3 or 4 acts as a monodentate ligand to coordinate two copper(I) atoms yielding a dimer. Ligand 5 or 6 chelates two copper(I) atoms using pyridyl nitrogen and imine nitrogen to form a dimer. Complexes 1-4 exhibit photoluminescence in the solid state at room temperature. The emission has been attributed to be intraligand π-π* transition mixed with MLCT characters.  相似文献   

20.
The derivatives of Cu(HCOO)2 · 4H2O with 2-(phenylamino)pyridine and 2-(methylamino)pyridine, [Cu2(μ-HCOO)4(PhNHpy)2] (1), [Cu2(μ-HCOO)4(MeNHpy)2] (2) and Cu(HCOO)2(MeNHpy)2 (3), have been synthesized and characterized. Compounds 1 and 2 show the paddle-wheel structure of [Cu2(μ-HCOO)4L2], with four syn-syn bridging formato groups and two molecules of PhNHpy or MeNHpy coordinated to the axial positions, respectively. Intramolecular hydrogen bonds are formed in both cases: two in each dimer of 1 and four in the dimer of compound 2. The dimer units are oriented in two different directions. Dimers with the same orientation form rows along the “c” and the “a” axis in compounds 1 and 2, respectively, with a π-π stacking of the pyridine rings. In compound 1, an intercalation of the phenyl rings of contiguous rows of dimers gives rise to a succession of phenyl rings at a distance of 4.38 Å and an angle of 30.44° between alternate rings. They are antiferromagnetic. Signals of the triplet state are observed in their EPR spectra and the zero-field splitting parameter has been determined. Compound 3 obeys the Curie-Weiss law and the magnetic results indicate the absence of magnetic interaction between Cu(II) atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号