首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Abstract Strains related to Hydrogenobacter , a genus of thermophilic, obligatorily chemolithoautotrophic bacteria, were able to utilize elemental sulfur or thiosulfate, as well as molecular hydrogen, as sole electron and energy source. Extracellular elemental sulfur was produced as an intermediate during oxidation of thiosulfate. Growth with thiosulfate alone was strongly microaerophilic, whereas no hydrogenase activity was detected. Mixolithotrophic growth with both hydrogen and thiosulfate was faster than with hydrogen alone, and the cells harbored a hydrogenase activity comparable to that of cells grown under hydrogen without thiosulfate.  相似文献   

2.
豌豆幼苗叶片线粒体中,Gly,Mal和Isocit的氧化速率均受光促进。Gly的氧化抑制Mal和Isocit的氧化,而其本身不受影响。用INH抑制Gly氧化或提高NAD~+浓度均会降低其抑制程度。线粒体氧化Gly,Mal和Isocit的K_m(NAD~+)分别为66.67,119.1μmol/L和152.2μmol/L。Gly抑制Mal和Isocit氧化是由于Gly氧化在竞争NAD~+中占优势。  相似文献   

3.
Abstract

The purpose of the work was to characterize changes in surface textures of minerals during the biological leaching of a complex sulfide ore. The ore contained pyrrhotite (FeI_xS), pyrite (FeS2), sphalerite (ZnS), pentlandite [(Ni,Fe,Co)9S8], and chalcopyrite (CuFeS2). Several mixed cultures were initially screened using the ore material as the sole substrate. Shake flask leaching experiments showed no major differences among test cultures, which were all derived by enrichment techniques using environmental samples collected from a mine site. Leached pyrrhotite surfaces were invariably surrounded by a dark rim of elemental S. A reaction zone was also associated with leached sphalerite grains. Chemical analyses of leach solutions indicated that the relative ranking of biological leaching of the sulfide minerals was Zn > Ni > Co > Cu. Microscopic observations were in keeping with this rankin  相似文献   

4.
Pharmacologic (millimolar) levels of carnitine have been reported to increase myocardial glucose oxidation, but whether physiologically relevant concentrations of carnitine affect cardiac metabolism is not known. We employed the isolated, perfused rat heart to compare the effects of physiologic levels of carnitine (50 M) and insulin (75 mU/l [0.5 nM]) on the following metabolic processes: (1) glycolysis (release of 3H2O from 5-3H-glucose); (2) oxidation of glucose and pyruvate (production of 14CO2 from U-14C-glucose, 1-14C-glucose, 3,4-14C-glucose, 1-14C-pyruvate, and 2-14C-pyruvate); and (3) oxidation of palmitate (release of 3H2O from 9,10-3H-palmitate). We found that addition of carnitine (50 M) to a perfusate containing both glucose (10 mM) and palmitate (0.5 mM) stimulated glycolytic flux by 20%, nearly doubled the rate of glucose oxidation, and inhibited palmitate oxidation by 20%. These actions of carnitine were uniformly similar to those of insulin. When carnitine and insulin were administered together, their effects on the oxidation of glucose and palmitate, but not on glycolysis, were additive. When pyruvate (1 mM) was substituted for glucose, neither carnitine nor insulin influenced the rate of oxidation of pyruvate or palmitate. In combination, however, carnitine and insulin sharply suppressed pyruvate oxidation (75%) and doubled the rate of palmitate oxidation. None of the responses to carnitine or insulin was affected by varying the isotopic labeling of glucose or pyruvate. The results show that carnitine, at normal blood levels, exerts insulin-like effects on myocardial fuel utilization. They also suggest that plasma carnitine in vivo may interact with insulin both additively and permissively on the metabolism of carbohydrates and fatty acids  相似文献   

5.
Photo-Fenton氧化法处理废水的原理及影响因素   总被引:12,自引:0,他引:12  
Photo-Fenton高级氧化技术是处理难降解有毒有机废水的一种有效的方法。本文阐述了该氧化法的原理及其影响因素,photo-Fenton氧化法在反应中会产生大量羟自由基(·OH),它是一种非常活泼及非选择性物种,其氧化电位为2.8V,氧化能力很强,能够引发水溶液中大部分有机物的氧化还原反应。其优点是操作简便及无二次污染等,反应产物Fe3+可与OH反应形成Fe(OH)3沉淀而对环境无害。缺点是反应必须在pH≤3条件下进行,且H2O2消耗量大而导致价格昂贵,处理成本较高等。  相似文献   

6.
Acidithiobacillus ferrooxidans strain D3-2, which has a high copper bioleaching activity, was isolated from a low-grade sulfide ore dump in Chile. The amounts of Cu2+ solubilized from 1% chalcopyrite (CuFeS2) concentrate medium (pH 2.5) by A. ferrooxidans strains D3-2, D3-6, and ATCC 23270 and 33020 were 1360, 1080, 650, and 600 mg·l ?1·30 d?1. The iron oxidase activities of D3-2, D3-6, and ATCC 23270 were 11.7, 13.2, and 27.9 μl O2 uptake·mg protein?1·min?1. In contrast, the sulfite oxidase activities of strains D3-2, D3-6, and ATCC 23270 were 5.8, 2.9, and 1.0 μl O2 uptake·mg protein?1·min?1. Both of cell growth and Cu-bioleaching activity of strains D3-6 and ATCC 23270, but not, of D3-2, in the chalcopyrite concentrate medium were completely inhibited in the presence of 5 mM sodium bisulfite. The sulfite oxidase of strain D3-2 was much more resistant to sulfite ion than that of strain ATCC 23270. Since sulfite ion is a highly toxic intermediate produced during sulfur oxidation that strongly inhibits iron oxidase activity, these results confirm that strain D3-2, with a unique sulfite resistant-sulfite oxidase, was able to solubilize more copper from chalcopyrite than strain ATCC 23270, with a sulfite-sensitive sulfite oxidase.  相似文献   

7.
磷脂是构成生物膜和脂蛋白的重要成分,容易在自由基或非自由基以及酶促条件下发生氧化修饰,形成氧化磷脂(oxidized phospholipids,OxPLs),并进一步产生具有不同生物活性的氧化产物.临床证据表明,OxPLs在动脉粥样硬化(ath-erosclerosis,AS)发展过程中不断生成和转化,并在病变处积累...  相似文献   

8.
Lipid peroxidation (LPO) of polyunsaturated fatty acids (PUFAs) is suspected to be involved in the generation of chronic diseases. A model reaction for LPO is the air oxidation of PUFAs initiated by Fe2+ and ascorbic acid. In the course of such model reactions glycolaldehyde (GLA) was detected as main aldehydic product. Since it is difficult to explain the generation of GLA by oxidation of PUFAs, it was suspected that GLA might be derived by oxidation of ascorbic acid. This assumption was verified by treatment of ascorbic acid with Fe2+.

Produced aldehydic compounds were trapped by addition of pentafluorobenzylhydroxylamine hydrochloride (PFBHA-HCl), trimethylsilylated and finally identified by gas chromatography/mass spectrometry (GC/MS). Oxidation of ascorbic acid with O2 in presence of iron ions produced not only glycolaldehyde (GLA), but also glyceraldehyde (GA), dihydroxyacetone (DA) and formaldehyde. Glyoxal (GO) and malondialdehyde (MDA) were detected as trace compounds.

The yield of the aldehydic compounds was increased by addition of lipid hydroperoxides (LOOH) or H2O2. The buffer influenced the reaction considerably: Iron ions react with Tris buffer by producing dihydroxyace-tone (DA). Since ascorbic acid is present in biological systems and Fe2+ ions are obviously generated by cell damaging processes, the production of GLA and other aldehydic components might add to the damaging effects of LPO.

Glucose suffers also oxidation to short-chain aldehydic compounds in aqueous solution, but this reaction requires addition of equimolar amounts of Fe2+ together with equimolar amounts of H2O2 or 13-hydroperoxy-9-cis-11-trans-octadecadienoic acid (13-HPODE). Therefore this reaction, also influenced by the buffer system, seems to be not of biological relevance.  相似文献   

9.
The stoichiometry and kinetics of the spontaneous, chemical reaction between pyrite and ferric iron was studied at 30, 45, and 70 degrees C in shake flasks at pH 1.5 by monitoring the ferrous iron, total iron, elemental sulfur, and sulfate concentration profiles in time. It was found that the sulfur moiety of pyrite was oxidized completely to sulfate. Elemental sulfur was not produced in detectable amounts. The iron moiety of pyrite was released as ferrous iron. All observed initial reaction rates could be fitted into an empirical equation. This equation includes the concentrations of ferric iron and pyrite, and a constant which is dependent on the temperature and the nature of the main anion present. It was observed that ferrous iron formed during the reaction slowed down the oxidation of pyrite by ferric iron. The extent of this effect decreased with increasing temperature. With the aid of the empirical equation, the contribution of the chemical oxidation of pyrite by ferric iron to the overall oxidation in a hypothetical plug-flow reactor, in which biologically mediated oxdidation of pyrite and ferrous iron by oxygen also takes place, can be assessed. At 30, 45, and 70 degrees C, respectively, 2, 8-17, and 43% of the pyrite was oxidized chemically by ferric iron. Therefore, it is expected that only in reactors operating at high temperatures with extremely thermophilic bacteria, will chemical oxidation cause a significant deviation from the apparent first order overall kinetics of biological pyrite oxidation.  相似文献   

10.
Abstract

Reductive immobilization of Cr(VI) has been widely explored as a cost-effective approach for Cr-contaminated site remediation. In soils containing manganese oxides, however, the immobilized form of chromium, i.e., Cr(III), could potentially be reoxidized. In this study, batch experiments were conducted to assess whether there were any microbial processes that could accelerate Cr(III) oxidation in aerobic, manganese-containing systems. The results showed that in the presence of at least one species of manganese oxidizers, Pseudomonas putida, Cr(III) oxidation took place at low concentrations of Cr(III). About 30–50% of added Cr(III) (10–200 μ M) was oxidized to Cr(VI) within five days in the systems with P. putida and biogenic Mn oxides. The rate of Cr(III) oxidation was approximately proportional to the initial concentration of Cr(III) up to 100 μ M, but the growth of P. putida was partially inhibited by Cr(III) at 200 μ M and totally stopped when it reached 500 μ M. Cr(III) oxidation was dependent upon the biogenic formation of Mn oxides, though the oxidation rate was not directly proportional to the amount of Mn oxides formed. Chromium(III) oxidation took place through a catalytic pathway, in which the microbes mediated Mn(II) oxidation to form Mn-oxides, and Cr(III) was subsequently oxidized by the biogenic Mn-oxides.  相似文献   

11.
生物质炭生物与非生物氧化特性研究进展   总被引:4,自引:0,他引:4  
伍孟雄  杨敏  孙雪  吴伟祥 《生态学报》2015,35(9):2810-2818
生物质炭是由植物生物质热解炭化产生的一类高度芳香化难熔性固态物质。生物质热解炭化还田能否成为人类应对全球气候变化的重要途径直接取决于其在土壤生态系统中的稳定性。生物质炭稳定性的研究对科学计算和评估土壤生态系统生物质炭输入的碳固持与减排作用具有重要现实意义。重点概述了土壤生态系统生物质炭生物与非生物氧化特性、影响因素及其机理研究进展,并对生物质炭在土壤环境中的稳定性预测模型研究进行了分析。在此基础上,今后需针对不同类型旱地土壤生态系统和不同类型稻田土壤生态系统生物质炭稳定性及其机理开展研究,并进一步开展土壤生态系统生物质炭稳定性预测模型研究。  相似文献   

12.
The goal of this study was to investigate the effect of 1 mM exogenous lactate on cardiac function, and some metabolic parameters, such as glycolysis, glucose oxidation, lactate oxidation, and fatty acid oxidation, in isolated working rat hearts. Hearts from male Sprague-Dawley rats were isolated and perfused with 5 mM glucose, 1.2 mM palmitate, and 100 μU/ml insulin with or without 1 mM lactate. The rates of glycolysis, glucose, lactate, and fatty acid oxidation were determined by supplementing the buffer with radiolabeled substrates. Cardiac function was similar between lactate+ and lactate− hearts. Glycolysis was not affected by 1 mM lactate. The addition of lactate did not alter glucose oxidation rates. Interestingly, palmitate oxidation rates almost doubled when 1 mM lactate was present in the perfusate. This study suggests that subst rate supply to the heart is crucially important when evaluating the data from metabolic studies.  相似文献   

13.
Lipid oxidation in LDL may play a role in atherogenesis. It has been shown that sulfite - a compound in the aqueous fraction of wine - could inhibit free radical (AAPH) mediated oxidation of plasma. Thus, sulfite has been proposed as an antioxidant. In contrast, the aqueous phase of wine has recently been shown to contain not fully identified compounds promoting transition metal ion (Cu(2+)) initiated LDL oxidation. As transition metal ions can catalyse the auto-oxidation of sulfite, we studied the influence of sulfite on Cu(2+) initiated LDL oxidation. The results show that sulfite at concentrations found in vivo strongly facilitated LDL oxidation by Cu(2+). The LDL-oxidase activity of ceruloplasmin was also stimulated by sulfite. ROS formation by Cu(2+)/SO(3)(2-) was not inhibited by SOD but by catalase. We propose that formation of Cu(+), sulfite radicals (SO(3)*(-)) and hydroxyl radicals (OH(*)) is a mechanism by which sulfite could act as a pro-atherogenic agent in presence of transition metal ions.  相似文献   

14.
A number of unexpected reactions were observed during attempts to invert configuration at C16 in 16α,17α,22-triol 3a. The PDC oxidation of 3a produced the D-seco-aldehyde 4a. Analogous compound 4b was obtained by Swern oxidation of the 16α,17α-dihydroxy-22-O-TES-ether 3b in addition to the desired 16-ketone 7. The unprotected triol 3a yielded pentacyclic products 5 and 6 under similar conditions. The Mitsunobu reaction of the triol 3a afforded 16-ketone 8 with inverted configuration of the side chain. During heating of a solution of 3a in THF with NaH at reflux autoxidation to the 16-ketone cyclic hemiketal 5, identical to one of the Swern oxidation products, took place.  相似文献   

15.
This mini-review summarizes results of studies on the oxidation of proteins and low-density lipoprotein (LDL) by various mixed-function oxidation (MFO) systems. Oxidation of LDL by the O2/FeCl3/H2O2/ascorbate MFO system is dependent on all four components and is much greater when reactions are carried out in the presence of a physiological bicarbonate/CO2 buffer system as compared to phosphate buffer. However, FeCl3 in this system could be replaced by hemin or the heme-containing protein, hemoglobin, or cytochrome c. Oxidation of LDL by the O2/cytochrome P450 cytochrome c reductase/NADPH/FeCl3 MFO system is only slightly higher (25%) in the bicarbonate/CO2 buffer as compared to phosphate buffer, but is dependent on all components except FeCl3. Omission of FeCl3 led to a 60% loss of activity. These results suggest that peroxymonobicarbonate and/or free radical derivatives of bicarbonate ion and/or CO2 might contribute to LDL oxidation by these MFO systems.  相似文献   

16.
Prolonged exposure to excessive aluminium (Al) concentrations is involved in the ethiopathology of certain dementias and neurological disorders. Melatonin is a well-known antioxidant that efficiently reduces lipid peroxidation due to oxidative stress. Herein, we investigated in synaptosomal membranes the effect of melatonin in preventing Al promotion of lipid and protein oxidation when the metal was combined with FeCl3 and ascorbic acid. Lipid peroxidation was estimated by quantifying malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations in the membrane suspension and protein carbonyls were measured in the synaptosomes as an index of oxidative damage. Under our experimental conditions, the addition of Al (0.0001–1 mmol/L) enhanced MDA+4-HDA formation in the synaptosomes. In addition, Al (1 mmol/L) raised protein carbonyl contents. Melatonin reduced, in a concentration-dependent manner, lipid and protein oxidation due to Al, FeCl3 and ascorbic acid in the synaptosomal membranes. These results show that melatonin confers protection against Al-induced oxidative damage in synaptosomes and suggest that this indoleamine may be considered as a neuroprotective agent in Al toxicity because of its antioxidant activity.  相似文献   

17.
Paracoccus pantotrophus strain GBsoxFDelta carries a deletion in the soxF gene that inactivates flavoprotein SoxF-sulfide dehydrogenase. This strain grew with thiosulfate slower than the wild type. GBsoxFDelta cells oxidized thiosulfate at a rate of 40% and hydrogen sulfide at a rate of 45% of the wild type. Complementation of GBsoxFDelta with plasmid pRIsoxF carrying the soxF gene increased these rates to 83% and 70%, respectively. However, GBsoxFDelta and GBsoxFDelta (pRIsoxF) oxidized thiosulfate and hydrogen sulfide to sulfate as evident from the yield of electrons. The thiosulfate oxidation rate of cell-free extracts of strain GBsoxFDelta was increased when supplemented with SoxF isolated from the wild type. However, SoxF did not affect the thiosulfate-oxidizing activity of the Sox enzyme system as reconstituted from the 'as-isolated' four Sox proteins. These data demonstrated that SoxF enhanced chemotrophic thiosulfate oxidation in vivo and acted on some component or condition present in whole cells and cell-free extracts but not present in the reconstituted system.  相似文献   

18.
In U937 and mouse myeloma cells, protein hydroperoxides are the predominant hydroperoxide formed during exposure to AAPH or gamma irradiation. In lipid-rich human monocyte-derived macrophages (HMDMs), we have found the opposite situation. Hydroperoxide measurements by the FOX assay showed the majority of hydroperoxides formed during AAPH incubation were lipid hydroperoxides. Lipid hydroperoxide formation began after a four hour lag period and was closely correlated with loss of cell viability. The macrophage pterin 7,8-dihydroneopterin has previously been shown to be a potent scavenger of peroxyl radicals, preventing oxidative damage in U937 cells, protein and lipoprotein. However, when given to HMDM cells, 7,8-dihydroneopterin failed to inhibit the AAPH-mediated cellular damage. The lack of interaction between 7,8-dihydroneopterin and AAPH peroxyl radicals suggests that they localize to separate cellular sites in HMDM cells. Our data shows that lipid peroxidation is the predominant reaction occurring in HMDMs, possibly due to the high lipid content of the cells.  相似文献   

19.
L-bifunctional enzyme (Ehhadh) is part of the classical peroxisomal fatty acid β-oxidation pathway. This pathway is highly inducible via peroxisome proliferator-activated receptor α (PPARα) activation. However, no specific substrates or functions for Ehhadh are known, and Ehhadh knockout (KO) mice display no appreciable changes in lipid metabolism. To investigate Ehhadh functions, we used a bioinformatics approach and found that Ehhadh expression covaries with genes involved in the tricarboxylic acid cycle and in mitochondrial and peroxisomal fatty acid oxidation. Based on these findings and the regulation of Ehhadh's expression by PPARα, we hypothesized that the phenotype of Ehhadh KO mice would become apparent after fasting. Ehhadh mice tolerated fasting well but displayed a marked deficiency in the fasting-induced production of the medium-chain dicarboxylic acids adipic and suberic acid and of the carnitine esters thereof. The decreased levels of adipic and suberic acid were not due to a deficient induction of ω-oxidation upon fasting, as Cyp4a10 protein levels increased in wild-type and Ehhadh KO mice.We conclude that Ehhadh is indispensable for the production of medium-chain dicarboxylic acids, providing an explanation for the coordinated induction of mitochondrial and peroxisomal oxidative pathways during fasting.  相似文献   

20.
In U937 and mouse myeloma cells, protein hydroperoxides are the predominant hydroperoxide formed during exposure to AAPH or gamma irradiation. In lipid-rich human monocyte-derived macrophages (HMDMs), we have found the opposite situation. Hydroperoxide measurements by the FOX assay showed the majority of hydroperoxides formed during AAPH incubation were lipid hydroperoxides. Lipid hydroperoxide formation began after a four hour lag period and was closely correlated with loss of cell viability. The macrophage pterin 7,8-dihydroneopterin has previously been shown to be a potent scavenger of peroxyl radicals, preventing oxidative damage in U937 cells, protein and lipoprotein. However, when given to HMDM cells, 7,8-dihydroneopterin failed to inhibit the AAPH-mediated cellular damage. The lack of interaction between 7,8-dihydroneopterin and AAPH peroxyl radicals suggests that they localize to separate cellular sites in HMDM cells. Our data shows that lipid peroxidation is the predominant reaction occurring in HMDMs, possibly due to the high lipid content of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号