共查询到20条相似文献,搜索用时 50 毫秒
1.
Phosphorylation sites in human erythrocyte band 3 protein 总被引:6,自引:0,他引:6
D Yannoukakos C Vasseur J P Piau H Wajcman E Bursaux 《Biochimica et biophysica acta》1991,1061(2):253-266
The human red cell anion-exchanger, band 3 protein, is one of the main phosphorylated proteins of the erythrocyte membrane. Previous studies from this laboratory have shown that ATP-depletion of the red blood cell decreased the anion-exchange rate, suggesting that band 3 protein phosphorylation could be involved in the regulation of anion transport function (Bursaux et al. (1984) Biochim. Biophys. Acta 777, 253-260). Phosphorylation occurs mainly on the cytoplasmic domain of the protein and the major site of phosphorylation was assigned to tyrosine-8 (Dekowski et al. (1983) J. Biol. Chem. 258, 2750-2753). This site being very far from the integral, anion-exchanger domain, the aim of the present study was to determine whether phosphorylation sites exist in the integral domain. The phosphorylation reaction was carried out on isolated membranes in the presence of [gamma-32P]ATP and phosphorylated band 3 protein was then isolated. Both the cytoplasmic and the membrane spanning domains were purified. The predominant phosphorylation sites were found on the cytoplasmic domain. RP-HPLC analyses of the tryptic peptides of whole band 3 protein, and of the isolated cytoplasmic and membrane-spanning domains allowed for the precise localization of the phosphorylated residues. 80% of the label was found in the N-terminal tryptic peptide (T-1), (residues 1-56). In this region, all the residues susceptible to phosphorylation were labeled but in varying proportion. Under our conditions, the most active membrane kinase was a tyrosine kinase, activated preferentially by Mn2+ but also by Mg2+. Tyrosine-8 was the main phosphate acceptor residue (50-70%) of the protein, tyrosine-21 and tyrosine-46 residues were also phosphorylated but to a much lesser extent. The main targets of membrane casein kinase, preferentially activated by Mg2+, were serine-29, serine-50, and threonine(s)-39, -42, -44, -48, -49, -54 residue(s) located in the T-1 peptide. A tyrosine phosphatase activity was copurified with whole band 3 protein which dephosphorylates specifically P-Tyr-8, indicating a highly exchangeable phosphate. The membrane-spanning fragment was only faintly labeled. 相似文献
2.
Alonzo H. Ross Harden M. McConnell 《Biochemical and biophysical research communications》1977,74(4):1318-1325
Band 3, the erythrocyte membrane protein thought to be responsible for anion transport, was purified to near homogeneity using a Concanavalin A affinity column. Band 3 was then combined with egg lecithin, erythrocyte lipid, cholesterol, and glycophorin, the major erythrocyte sialoglycoprotein, to form vesicles capable of rapid sulfate transport. The transport activity was sensitive to prior treatment of the erythrocytes with pyridoxal phosphate-NaBH4, a potent inhibitor of anion transport in these cells. 相似文献
3.
T.M.A.R. Dubbelman A.F.P.M. De Goeij K. Christianse J. Van Steveninck 《生物化学与生物物理学报:生物膜》1981,649(2):310-316
In previous studies it has been shown that protoporphyrin-induced photodynamic effects on red blood cells are caused by photooxidation of amino acid residues in membrane proteins and by the subsequent covalent cross-linking of these proteins. Band 3, the anion transport protein of the red blood cell membrane, has a relatively low sensitivity to photodynamic cross-linking. This cannot be attributed to sterical factors inherent in the specific localization of band 3 in the membrane structure. Solubilized band 3, for instance, showed a similar low sensitivity to cross-linking. By extracellular chymotrypsin cleavage of band 3 into fragments of 60 000 and 35 000 daltons it could be shown that both fragments were about equally sensitive to photodynamic cross-linking. The 17 000 dalton transmembrane segment, on the other hand, was completely insensitive. Inhibition of band 3-mediated sulfate transport proceeded much faster than band 3 interpeptide cross-linking, presumably indicating that the inhibition of transport is caused by photooxidation of essential amino acid residues or intrapeptide cross-linking. A close parallel was observed between photodynamic inhibition of anion transport and decreased binding of 4,4′-diisothiocyanodihydrostilbene-2,2′-disulfonate (H2DIDS), suggesting that a photooxidation in the immediate vicinity of the H2DIDS binding site may be responsible for transport inhibition. 相似文献
4.
Catabolism of human erythrocyte membrane band 3 protein in the presence of Ca2+ was studied. An increase in the amount of a 30 kDa amino terminal fragment of band 3 was observed when erythrocyte membranes were incubated for 30 min with 1 mM Ca2+ in the presence of whole erythrosol. Incubation of the membranes with Ca2+ alone did not result in band 3 breakdown. Generation of the 30 kDa fragment from band 3 was related to the action of a leupeptin-sensitive Ca2+-dependent proteinase in the cytosol. This proteinase was also responsible for the increased production of a 52 kDa and a 70 kDa transmembrane carboxyl terminal fragment of band 3. From the size of the generated fragments, it is deduced that in the presence of Ca2+ and Ca2+-dependent proteinase, band 3 protein is cleaved at the cytoplasm/membrane interface and along its cytoplasmic domain. 相似文献
5.
D G Jay 《Biochemistry》1986,25(3):554-556
The band 3 protein has a single glycosylation site on the carboxy-terminal 55 000-dalton tryptic fragment that defines a sequence of the polypeptide on the extracytoplasmic surface of the cell. To locate this site, a novel procedure involving end labeling of the 55 000-dalton tryptic fragment was used. Peptides resulting from partial proteolysis of the end radiolabeled glycoprotein were separated by lectin-Sepharose chromatography and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The smallest fragment observed defined the distance between the glycosylation site and the amino terminus. The procedure was first tested on a protein for which the location of the glycosylation site is known, HLA-B7 antigen. It was then used to show that the glycosylation site of human band 3 is 28 000 +/- 3000 daltons from the carboxy terminus of the protein. 相似文献
6.
Characterization of oxalate transport by the human erythrocyte band 3 protein 总被引:1,自引:0,他引:1 下载免费PDF全文
《The Journal of general physiology》1996,107(1):145-159
This paper describes characteristics of the transport of oxalate across the human erythrocyte membrane. Treatment of cells with low concentrations of H2DIDS (4,4'-diisothiocyanatostilbene-2,2'- disulfonate) inhibits Cl(-)-Cl- and oxalate-oxalate exchange to the same extent, suggesting that band 3 is the major transport pathway for oxalate. The kinetics of oxalate and Cl- self-exchange fluxes indicate that the two ions compete for a common transport site; the apparent Cl- affinity is two to three times higher than that of oxalate. The net exchange of oxalate for Cl-, in either direction, is accompanied by a flux of H+ with oxalate, as is also true of net Cl(-)-SO4(2-) exchange. The transport of oxalate, however, is much faster than that of SO4(2-) or other divalent anions. Oxalate influx into Cl(-)-containing cells has an extracellular pH optimum of approximately 5.5 at 0 degrees C. At extracellular pH below 5.5 (neutral intracellular pH), net Cl(-)- oxalate exchange is nearly as fast as Cl(-)-Cl- exchange. The rapid Cl(- )-oxalate exchange at acid extracellular pH is not likely to be a consequence of Cl- exchange for monovalent oxalate (HOOC-COO-; pKa = 4.2) because monocarboxylates of similar structure exchange for Cl- much more slowly than does oxalate. The activation energy of Cl(-)- oxalate exchange is about 35 kCal/mol at temperatures between 0 and 15 degrees C; the rapid oxalate influx is therefore not a consequence of a low activation energy. The protein phosphatase inhibitor okadaic acid has no detectable effect on oxalate self-exchange, in contrast to a recent finding in another laboratory (Baggio, B., L. Bordin, G. Clari, G. Gambaro, and V. Moret. 1993. Biochim. Biophys. Acta. 1148:157-160.); our data provide no evidence for physiological regulation of anion exchange in red cells. 相似文献
7.
Reversible binding of DIDS [4,4'-diisothiocyanato-2,2'-stilbenedisulphonate] to Band 3 protein, the anion exchanger located in erythrocyte plasma membrane, was studied in human erythrocytes. For this purpose, the tritiated form of DIDS ([3H]DIDS) has been synthesized and the filtering technique has been used to follow the kinetics of DIDS binding to the sites on Band 3 protein. The obtained results showed monophasic kinetics both for dissociation and association of the 'DIDS--Band 3' complex at 0 degree C in the presence of 165 mM KCl outside the cell (pH 7.3). A pseudo-first order association rate constant k+1 was determined to be (3.72 +/- 0.42) x 10(5) M-1 s-1, while the dissociation rate constant K-1 was determined to be (9.40 +/- 0.68) x 10(-3) s-1. The dissociation constant KD, calculated from the measured values of k-1 and k+1, was found to be 2.53 x 10(-8) M. The standard thermodynamics parameters characterizing reversible DIDS binding to Band 3 protein at 0 degree C were calculated. The mean values of the activation energies for the association and dissociation steps in the DIDS binding mechanism were determined to be (34 +/- 9) kJ mole-1 and (152 +/- 21) kJ mole-1, respectively. The results provide, for the first time, evidence for the reversibility of DIDS binding to Band 3 protein at 0 degree C. The existence of a stimulatory site is suggested, nearby the transport site on the Band 3 protein. The binding of an anion to this site can facilitate (through electrostatic repulsion interaction between two anions) the transmembrane movement of another anion from the transport site. 相似文献
8.
Esther L. Sabban David D. Sabatini Vincent T. Marchesi Milton Adesnik 《Journal of cellular physiology》1980,104(2):261-268
The major integral membrane protein of red blood cells, the mouse equivalent of human band 3, was purified and used to raise a specific antiserum. The murine protein resembles its human counterpart in several of its properties, including susceptibility to digestion by chymotrypsin added to intact cells and an ability to bind to concanavalin A. The synthesis of 35S-labeled band 3 was detected in Friend erythroleukemia cells treated with DMSO by immuneprecipitation followed by SDS gel electrophoresis and fluorography. Induction with DMSO led to a greater than tenfold increase in the synthesis of band 3 and maximal synthesis was reached 3 to 4 days after the beginning of induction. 相似文献
9.
We have examined the band 3 protein(s) of rabbit erythrocyte membranes by a combination of differential extraction and surface labeling methods. Only one major peptide was labeled when intact red cells were exposed to 125I? and lactoperoxidase; this coincided with band 3. When intact cells were exposed to galactose oxidase followed by [3H]borohydride, numerous surface glycoproteins were labeled, one of which clearly coincided with band 3. Differential extraction with lithium diiodosalicylate revealed one major band 3 glycoprotein which contained both the 125I? and 3H surface labels and three peptides which were unlabeled; these three peptides are apparently not exposed at the cell surface. 相似文献
10.
11.
B M Willardson B J Thevenin M L Harrison W M Kuster M D Benson P S Low 《The Journal of biological chemistry》1989,264(27):15893-15899
The predominant attachment site of the spectrin-based cytoskeleton to the erythrocyte membrane occurs via the interaction of ankyrin with the cytoplasmic domain of band 3 (cdb3). In order to further characterize this interaction, we have conducted experiments to localize the ankyrin-binding site on cdb3. Four monoclonal and three antipeptide polyclonal antibodies were raised against cdb3 and used in competition studies to identify regions of close association of cdb3 with ankyrin. Antibodies to regions of cdb3 near the cytoplasmic domain-membrane spanning domain junction had no effect on 125I-ankyrin binding. Likewise, an antibody to a highly conserved region between residues 142 and 154 did not inhibit ankyrin binding. However, antibodies at or near the cysteine 201-317 cluster and the proposed proline-rich hinge in the center of cdb3 were potent inhibitors of ankyrin association, as were antibodies to the acidic NH2 terminus. Additional evidence for interaction of ankyrin with the NH2-terminal region of cdb3 was obtained by demonstrating the ability of ankyrin to inhibit tyrosine phosphorylation of cdb3 at its NH2 terminus by a purified calf thymus tyrosine kinase. These studies reveal two regions of cdb3, distant in primary sequence, which interact with ankyrin. A specific conformation of cdb3 may be required to permit these regions to simultaneously associate with ankyrin and allow binding to occur. 相似文献
12.
Harish C. Pant Mridulika Virmani Paul E. Gallant 《Biochemical and biophysical research communications》1983,117(2):372-377
Calcium-dependent protease activity capable of degrading a number of endogenous proteins was found in rat red blood cell membranes. This protease activity, like that found in human red blood cells, was activated by low concentrations of calcium, but in the rat red blood cells, unlike the human red blood cells, calcium-activated protease activity was membrane-bound. A number of endogenous membrane-bound proteins were degraded after the addition of calcium to the membranes. These included spectrin bands 1 and 2 as well as bands 3, 2.1, and 2.2. No calcium-induced aggregation (transglutaminase activity) was noted in the rat red blood cell membranes. 相似文献
13.
14.
Oligomeric structure and the anion transport function of human erythrocyte band 3 protein 总被引:1,自引:0,他引:1
Michael L. Jennings 《The Journal of membrane biology》1984,80(2):105-117
Conclusions Evidence from many laboratories using several different techniques strongly suggests that, in the intact red cell, band 3 exists as dimers which can associate with other dimers to form tetramers. The kinetics of anion transport inhibition by stilbenedisulfonates indicate that irreversible inhibition of one subunit does not detectably affect anion transport by the other subunit. This does not imply that monomeric band 3 could necessarily transport anions; the native conformation of each subunit may require stabilizing interactions with another subunit, as indicated by the recent work of Boodhoo and Reithmeier [10]. A more detailed understanding of the structure of the band 3 dimer/tetramer will require information on which specific segments of the primary structure are involved in subunit-subunit contact. The combination of chemical cross-linking with proteolysis [136] is a promising approach to this problem. 相似文献
15.
Human erythrocyte protein band 3 was purified from a Triton X-100 extract of white ghosts. This purification, including an ion-exchange chromatography and a group-affinity chromatography, was automated. The apparatus was assembled from commercially available elements and allowed for the recovery of 2 to 3 mg pure band 3 in 2 hr. The purification could be repeated several times a day. The advantages of automation are discussed. 相似文献
16.
We describe an altered membrane band 3 protein-mediated anion transport in erythrocytes exposed to peroxynitrite, and relate the loss of anion transport to cell damage and to band 3 oxidative modifications. We found that peroxynitrite down-regulate anion transport in a dose dependent relation (100–300 μmoles/l). Hemoglobin oxidation was found at all peroxynitrite concentrations studied. A dose-dependent band 3 protein crosslinking and tyrosine nitration were also observed. Band 3 protein modifications were concomitant with a decrease in transport activity. ( ? )-Epicatechin avoids band 3 protein nitration but barely affects its transport capacity, suggesting that both processes are unrelated. N-acetyl cysteine partially reverted the loss of band 3 transport capacity. It is concluded that peroxynitrite promotes a decrease in anion transport that is partially due to the reversible oxidation of band 3 cysteine residues. Additionally, band 3 tyrosine nitration seems not to be relevant for the loss of its anion transport capacity. 相似文献
17.
We describe an altered membrane band 3 protein-mediated anion transport in erythrocytes exposed to peroxynitrite, and relate the loss of anion transport to cell damage and to band 3 oxidative modifications. We found that peroxynitrite down-regulate anion transport in a dose dependent relation (100-300 μmoles/l). Hemoglobin oxidation was found at all peroxynitrite concentrations studied. A dose-dependent band 3 protein crosslinking and tyrosine nitration were also observed. Band 3 protein modifications were concomitant with a decrease in transport activity. ( - )-Epicatechin avoids band 3 protein nitration but barely affects its transport capacity, suggesting that both processes are unrelated. N-acetyl cysteine partially reverted the loss of band 3 transport capacity. It is concluded that peroxynitrite promotes a decrease in anion transport that is partially due to the reversible oxidation of band 3 cysteine residues. Additionally, band 3 tyrosine nitration seems not to be relevant for the loss of its anion transport capacity. 相似文献
18.
Hemoglobin, aldolase and glyceraldehyde 3-phosphate dehydrogenase are known to bind to the cytoplasmic domain of band 3 protein. Binding of glycolytic enzymes to band 3 protein is inhibited by its amino-terminal fragments. To precisely localize the sequence portion of band 3 protein to which hemoglobin binds and to see whether the same region of amino-acid sequence binds both hemoglobin and glycolytic enzymes, a simple, direct solid-phase binding assay was developed. Peptides generated from the 23-kDa fragment by trypsin, cyanogen bromide and mild acid hydrolysis were used as inhibitors to determine the minimal sequence structure involved in the binding of the 23-kDa fragment to hemoglobin. The shortest peptide which inhibits the binding of the 23-kDa fragment is an acid cleavage peptide containing the sequence positions 1 to 23. This sequence is unusual as 14 of its residues are negatively charged, it contains no basic residues and has its amino terminus blocked. Using aldolase, glyceraldehyde-3-phosphate dehydrogenase and hemoglobin as competitive inhibitors in the binding of 23-kDa fragment, the affinity of hemoglobin to this fragment appears several-fold weaker than that of both the enzymes. These findings demonstrate that glycolytic enzymes and hemoglobin bind competitively to the same polyanionic sequence region of band 3 protein. 相似文献
19.
20.
A Kimura T Uda S Nakashima H Ikeda S Yasuda M Osawa T Tsuji 《Journal of biochemistry》1992,112(2):220-223
Monoclonal antibodies (P3-9H, P3-1F, P3-2H, P3-4A, and P3-4C) to human erythrocyte band 3 were produced using human erythrocyte membranes as the immunogen. All epitopes defined by these antibodies were found on the amino-terminal cytoplasmic domain of erythrocyte band 3. The antibodies crossreacted variously with erythrocyte band 3 of primates (chimpanzee, orangutan, Rhesus monkey, Japanese monkey, spider monkey, and capuchin monkey) in enzyme-linked immunosorbent assay. P3-9H did not crossreact with erythrocyte band 3 of any primate examined; P3-1F crossreacted only with that of chimpanzee; P3-2H crossreacted with erythrocyte band 3 of chimpanzee, spider monkey, and capuchin monkey; and P3-4A and P3-4C crossreacted with erythrocyte band 3 of all primates examined. These results suggest that evolutional changes in primates are accumulated in the amino-terminal cytoplasmic domain of band 3 and that species-specific epitopes exist on this domain. 相似文献