首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cis-acting replication element (CRE) is a 61-nucleotide stem-loop RNA structure found within the coding sequence of poliovirus protein 2C. Although the CRE is required for viral RNA replication, its precise role(s) in negative- and positive-strand RNA synthesis has not been defined. Adenosine in the loop of the CRE RNA structure functions as the template for the uridylylation of the viral protein VPg. VPgpUpU(OH), the predominant product of CRE-dependent VPg uridylylation, is a putative primer for the poliovirus RNA-dependent RNA polymerase. By examining the sequential synthesis of negative- and positive-strand RNAs within preinitiation RNA replication complexes, we found that mutations that disrupt the structure of the CRE prevent VPg uridylylation and positive-strand RNA synthesis. The CRE mutations that inhibited the synthesis of VPgpUpU(OH), however, did not inhibit negative-strand RNA synthesis. A Y3F mutation in VPg inhibited both VPgpUpU(OH) synthesis and negative-strand RNA synthesis, confirming the critical role of the tyrosine hydroxyl of VPg in VPg uridylylation and negative-strand RNA synthesis. trans-replication experiments demonstrated that the CRE and VPgpUpU(OH) were not required in cis or in trans for poliovirus negative-strand RNA synthesis. Because these results are inconsistent with existing models of poliovirus RNA replication, we propose a new four-step model that explains the roles of VPg, the CRE, and VPgpUpU(OH) in the asymmetric replication of poliovirus RNA.  相似文献   

2.
Poliovirus RNA recombination in cell-free extracts.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

3.
The cre(2C) hairpin is a cis-acting replication element in poliovirus RNA and serves as a template for the synthesis of VPgpUpU. We investigated the role of the cre(2C) hairpin on VPgpUpU synthesis and viral RNA replication in preinitiation RNA replication complexes isolated from HeLa S10 translation-RNA replication reactions. cre(2C) hairpin mutations that block VPgpUpU synthesis in reconstituted assays with purified VPg and poliovirus polymerase were also found to completely inhibit VPgpUpU synthesis in preinitiation replication complexes. Surprisingly, blocking VPgpUpU synthesis by mutating the cre(2C) hairpin had no significant effect on negative-strand synthesis but completely inhibited positive-strand synthesis. Negative-strand RNA synthesized in these reactions immunoprecipitated with anti-VPg antibody and demonstrated that it was covalently linked to VPg. This indicated that VPg was used to initiate negative-strand RNA synthesis, although the cre(2C)-dependent synthesis of VPgpUpU was inhibited. Based on these results, we concluded that the cre(2C)-dependent synthesis of VPgpUpU was required for positive- but not negative-strand RNA synthesis. These findings suggest a replication model in which negative-strand synthesis initiates with VPg uridylylated in the 3' poly(A) tail in virion RNA and positive-strand synthesis initiates with VPgpUpU synthesized on the cre(2C) hairpin. The pool of excess VPgpUpU synthesized on the cre(2C) hairpin should support high levels of positive-strand synthesis and thereby promote the asymmetric replication of poliovirus RNA.  相似文献   

4.
Protein priming of viral RNA synthesis plays an essential role in the replication of picornavirus RNA. Both poliovirus and coxsackievirus encode a small polypeptide, VPg, which serves as a primer for addition of the first nucleotide during synthesis of both positive and negative strands. This study examined the effects on the VPg uridylylation reaction of the RNA template sequence, the origin of VPg (coxsackievirus or poliovirus), the origin of 3D polymerase (coxsackievirus or poliovirus), the presence and origin of interacting protein 3CD, and the introduction of mutations at specific regions in the poliovirus 3D polymerase. Substantial effects associated with VPg origin were traced to differences in VPg-polymerase interactions. The effects of 3CD proteins and mutations at polymerase-polymerase intermolecular Interface I were most consistent with allosteric effects on the catalytic 3D polymerase molecule. In conclusion, the efficiency and specificity of VPg uridylylation by picornavirus polymerases is greatly influenced by allosteric effects of ligand binding that are likely to be relevant during the viral replicative cycle.  相似文献   

5.
The experiments described in this paper were part of an attempt to determine the mechanisms involved in the isomerization of the pseudorabies virus genome. To this end, [(14)C]thymidine-labeled parental virus DNA that was transferred to progeny virions produced by cells incubated in medium containing bromodeoxy-uridine was analyzed in neutral and alkaline CsCl density gradients. The buoyant density of the (14)C-labeled DNA indicated that the parental DNA strands had retained their integrity and had not undergone breakage and reunion with progeny DNA strands; neither massive intermolecular nor intramolecular recombination had occurred after replication of the DNA. Whereas breakage and reunion between parental and progeny virus DNA strands were not detectable, these processes were observed between differentially density-labeled parental DNAs. Furthermore, the frequency of recombination between progeny DNAs accumulating in the cells was low. These results indicate that in pseudorabies virus-infected rabbit kidney cells recombination occurs mainly between parental genomes and precedes DNA replication. An analysis of the kinetics of appearance of recombinants between pairwise combinations of temperature-sensitive mutants also indicated that recombination is an early event. The ratio between the number of recombinant virions and the number of temperature-sensitive mutant virions produced by the cells remained the same throughout infection. Since the relative amounts of viral DNAs synthesized early and late during the infective process that were integrated into virions were approximately the same, it appears that late viral DNA did not experience an increased number of recombinational events compared with early viral DNA. These results, which reinforce the conclusion reached from the results of the analysis of the behavior of the parental DNA molecules in density shift experiments, indicate that recombination is an early event.  相似文献   

6.
Positive-strand RNA viruses within the Picornaviridae family express an RNA-dependent RNA polymerase, 3D(pol), that is required for viral RNA replication. Structures of 3D(pol) from poliovirus, coxsackievirus, human rhinoviruses, and other picornaviruses reveal a putative template RNA entry channel on the surface of the enzyme fingers domain. Basic amino acids and tyrosine residues along this entry channel are predicted to form ionic and base stacking interactions with the viral RNA template as it enters the polymerase active site. We generated a series of alanine substitution mutations at these residues in the poliovirus polymerase and assayed their effects on template RNA binding, RNA synthesis initiation, rates of RNA elongation, elongation complex (EC) stability, and virus growth. The results show that basic residues K125, R128, and R188 are important for template RNA binding, while tyrosines Y118 and Y148 are required for efficient initiation of RNA synthesis and for EC stability. Alanine substitutions of tyrosines 118 and 148 at the tip of the 3D(pol) pinky finger drastically decreased the rate of initiation as well as EC stability, but without affecting template RNA binding or RNA elongation rates. Viable poliovirus was recovered from HeLa cells transfected with mutant RNAs; however, mutations that dramatically inhibited template RNA binding (K125A-K126A and R188A), RNA synthesis initiation (Y118A, Y148A), or EC stability (Y118A, Y148A) were not stably maintained in progeny virus. These data identify key residues within the template RNA entry channel and begin to define their distinct mechanistic roles within RNA ECs.  相似文献   

7.
Poliovirus has a single-stranded RNA genome of positive polarity that serves two essential functions at the start of the viral replication cycle in infected cells. First, it is translated to synthesize viral proteins and, second, it is copied by the viral polymerase to synthesize negative-strand RNA. We investigated these two reactions by using HeLa S10 in vitro translation-RNA replication reactions. Preinitiation RNA replication complexes were isolated from these reactions and then used to measure the sequential synthesis of negative- and positive-strand RNAs in the presence of different protein synthesis inhibitors. Puromycin was found to stimulate RNA replication overall. In contrast, RNA replication was inhibited by diphtheria toxin, cycloheximide, anisomycin, and ricin A chain. Dose-response experiments showed that precisely the same concentration of a specific drug was required to inhibit protein synthesis and to either stimulate or inhibit RNA replication. This suggested that the ability of these drugs to affect RNA replication was linked to their ability to alter the normal clearance of translating ribosomes from the input viral RNA. Consistent with this idea was the finding that the protein synthesis inhibitors had no measurable effect on positive-strand synthesis in normal RNA replication complexes. In marked contrast, negative-strand synthesis was stimulated by puromycin and was inhibited by cycloheximide. Puromycin causes polypeptide chain termination and induces the dissociation of polyribosomes from mRNA. Cycloheximide and other inhibitors of polypeptide chain elongation "freeze" ribosomes on mRNA and prevent the normal clearance of ribosomes from viral RNA templates. Therefore, it appears that the poliovirus polymerase was not able to dislodge translating ribosomes from viral RNA templates and mediate the switch from translation to negative-strand synthesis. Instead, the initiation of negative-strand synthesis appears to be coordinately regulated with the natural clearance of translating ribosomes to avoid the dilemma of ribosome-polymerase collisions.  相似文献   

8.
A model system of a single-stranded trisegment Brome mosaic bromovirus (BMV) was used to analyze the mechanism of homologous RNA recombination. Elements capable of forming strand-specific stem-loop structures were inserted at the modified 3' noncoding regions of BMV RNA3 and RNA2 in either positive or negative orientations, and various combinations of parental RNAs were tested for patterns of the accumulating recombinant RNA3 components. The structured negative-strand stem-loops that were inserted in both RNA3 and RNA2 reduced the accumulation of RNA3-RNA2 recombinants to a much higher extent than those in positive strands or the unstructured stem-loop inserts in either positive or negative strands. The use of only one parental RNA carrying the stem-loop insert reduced the accumulation of RNA3-RNA2 recombinants even further, but only when the stem-loops were in negative strands of RNA2. We assume that the presence of a stable stem-loop downstream of the landing site on the acceptor strand (negative RNA2) hampers the reattachment and reinitiation processes. Besides RNA3-RNA2 recombinants, the accumulation of nontargeted RNA3-RNA1 and RNA3-RNA3 recombinants were observed. Our results provide experimental evidence that homologous recombination between BMV RNAs more likely occurs during positive- rather than negative-strand synthesis.  相似文献   

9.
10.
A cloverleaf structure at the 5' terminus of poliovirus RNA binds viral and cellular proteins. To examine the role of the cloverleaf in poliovirus replication, we determined how cloverleaf mutations affected the stability, translation and replication of poliovirus RNA in HeLa S10 translation-replication reactions. Mutations within the cloverleaf destabilized viral RNA in these reactions. Adding a 5' 7-methyl guanosine cap fully restored the stability of the mutant RNAs and had no effect on their translation. These results indicate that the 5' cloverleaf normally protects uncapped poliovirus RNA from rapid degradation by cellular nucleases. Preinitiation RNA replication complexes formed with the capped mutant RNAs were used to measure negative-strand synthesis. Although the mutant RNAs were stable and functional mRNAs, they were not active templates for negative-strand RNA synthesis. Therefore, the 5' cloverleaf is a multifunctional cis-acting replication element required for the initiation of negative-strand RNA synthesis. We propose a replication model in which the 5' and 3' ends of viral RNA interact to form a circular ribonucleoprotein complex that regulates the stability, translation and replication of poliovirus RNA.  相似文献   

11.
The replication of tobacco mosaic virus (TMV) RNA involves synthesis of a negative-strand RNA using the genomic positive-strand RNA as a template, followed by the synthesis of positive-strand RNA on the negative-strand RNA templates. Intermediates of replication isolated from infected cells include completely double-stranded RNA (replicative form) and partly double-stranded and partly single-stranded RNA (replicative intermediate), but it is not known whether these structures are double-stranded or largely single-stranded in vivo. The synthesis of negative strands ceases before that of positive strands, and positive and negative strands may be synthesized by two different polymerases. The genomic-length negative strand also serves as a template for the synthesis of subgenomic mRNAs for the virus movement and coat proteins. Both the virus-encoded 126-kDa protein, which has amino-acid sequence motifs typical of methyltransferases and helicases, and the 183-kDa protein, which has additional motifs characteristic of RNA-dependent RNA polymerases, are required for efficient TMV RNA replication. Purified TMV RNA polymerase also contains a host protein serologically related to the RNA-binding subunit of the yeast translational initiation factor, eIF3. Study of Arabidopsis mutants defective in RNA replication indicates that at least two host proteins are needed for TMV RNA replication. The tomato resistance gene Tm-1 may also encode a mutant form of a host protein component of the TMV replicase. TMV replicase complexes are located on the endoplasmic reticulum in close association with the cytoskeleton in cytoplasmic bodies called viroplasms, which mature to produce 'X bodies'. Viroplasms are sites of both RNA replication and protein synthesis, and may provide compartments in which the various stages of the virus mutiplication cycle (protein synthesis, RNA replication, virus movement, encapsidation) are localized and coordinated. Membranes may also be important for the configuration of the replicase with respect to initiation of RNA synthesis, and synthesis and release of progeny single-stranded RNA.  相似文献   

12.
Antibody to the poliovirus genome-linked protein, VPg, specifically immunoprecipitated the product RNA synthesized in vitro by the poliovirus RNA polymerase and HeLa cell host factor when VPg-linked poliovirion RNA was used as a template. The largest product RNA that was immunoprecipitated was twice the size of the template RNA. The complete denaturation of the product RNA with CH3HgOH had no effect on the immunoprecipitation reaction. In contrast, CH3HgOH denaturation prevented the immunoprecipitation of the oligo(U)-primed product RNA. Immunoprecipitation of the product RNA synthesized in the host-factor-dependent reaction was prevented if VPg was removed from the template RNA by pretreatment with proteinase K or if an RNA template without VPg was used in the reaction. The results support our previous evidence that a covalent linkage exists between the labeled negative-strand product RNA and the VPg-linked template RNA and suggest that the purified polymerase and host factor initiated RNA synthesis in vitro in the absence of VPg or a VPg-precursor protein.  相似文献   

13.
The poliovirus RNA-dependent RNA polymerase required an oligouridylate primer or a HeLa cell protein (host factor) to initiate RNA synthesis on poliovirion RNA in vitro. The polymerase synthesized template-sized product RNA in the oligouridylate-primed reaction. In the host factor-dependent reaction, the largest product RNA synthesized by the polymerase was twice the size of the template RNA. About half of the product RNA recovered from this reaction was shown to exist in the form of a snapback sequence. Time-course reactions and pulse-chase experiments showed that the product RNA was only slightly larger than the template RNA at early reaction times and that with time it increased in size to form the dimer-sized product RNA. Inhibition of the elongation reaction by adding only [alpha-32P]UTP and ATP resulted in the formation of template-sized product RNA. The dimer-sized product RNA was unaffected by phenol extraction or proteinase K treatment but was converted to template-sized molecules by S1 nuclease. Dimer-sized poliovirus RNA that was sensitive to S1 nuclease was also isolated from poliovirus-infected cells. The results from this study indicate that the labeled negative-strand product RNA synthesized in vitro was covalently linked to the positive-strand template RNA. Thus, in vitro, the primer-dependent poliovirus RNA polymerase may initiate RNA synthesis in the presence of the host factor by using the 3' end of the template RNA as a primer.  相似文献   

14.
An earlier developed purified cell-free system was used to explore the potential of two RNA-directed RNA polymerases (RdRps), Qbeta phage replicase and the poliovirus 3Dpol protein, to promote RNA recombination through a primer extension mechanism. The substrates of recombination were fragments of complementary strands of a Qbeta phage-derived RNA, such that if aligned at complementary 3'-termini and extended using one another as a template, they would produce replicable molecules detectable as RNA colonies grown in a Qbeta replicase-containing agarose. The results show that while 3Dpol efficiently extends the aligned fragments to produce the expected homologous recombinant sequences, only nonhomologous recombinants are generated by Qbeta replicase at a much lower yield and through a mechanism not involving the extension of RNA primers. It follows that the mechanisms of RNA recombination by poliovirus and Qbeta RdRps are quite different. The data favor an RNA transesterification reaction catalyzed by a conformation acquired by Qbeta replicase during RNA synthesis and provide a likely explanation for the very low frequency of homologous recombination in Qbeta phage.  相似文献   

15.
Poliovirus interactions with host cells were investigated by studying the formation of ribonucleoprotein complexes at the 3' end of poliovirus negative-strand RNA which are presumed to be involved in viral RNA synthesis. It was previously shown that two host cell proteins with molecular masses of 36 and 38 kDa bind to the 3' end of viral negative-strand RNA at approximately 3 to 4 h after infection. We tested the hypothesis that preexisting cellular proteins are modified during the course of infection and are subsequently recruited to play a role in viral replication. It was demonstrated that the 38-kDa protein, either directly or indirectly, is the product of processing by poliovirus 3CD/3C proteinase. Only the modified 38-kDa protein, not its precursor protein, has a high affinity for binding to the 3' end of viral negative-strand RNA. This modification depends on proteolytically active proteinase, and a direct correlation between the levels of 3CD proteinase and the 38-kDa protein was demonstrated in infected tissue culture cells. The nucleotide (nt) 5-10 region (positive-strand numbers) of poliovirus negative-strand RNA is important for binding of the 38-kDa protein. Deletion of the nt 5-10 region in full-length, positive-strand RNA renders the RNA noninfectious in transfection experiments. These results suggest that poliovirus 3CD/3C proteinase processes a cellular protein which then plays an essential role during the viral life cycle.  相似文献   

16.
Chimeric poliovirus RNAs, possessing the 5' nontranslated region (NTR) of hepatitis C virus in place of the 5' NTR of poliovirus, were used to examine the role of the poliovirus 5' NTR in viral replication. The chimeric viral RNAs were incubated in cell-free reaction mixtures capable of supporting the sequential translation and replication of poliovirus RNA. Using preinitiation RNA replication complexes formed in these reactions, we demonstrated that the 3' NTR of poliovirus RNA was insufficient, by itself, to recruit the viral replication proteins required for negative-strand RNA synthesis. The 5'-terminal cloverleaf of poliovirus RNA was required in cis to form functional preinitiation RNA replication complexes capable of uridylylating VPg and initiating the synthesis of negative-strand RNA. These results are consistent with a model in which the 5'-terminal cloverleaf and 3' NTRs of poliovirus RNA interact via temporally dynamic ribonucleoprotein complexes to coordinately mediate and regulate the sequential translation and replication of poliovirus RNA.  相似文献   

17.
The mechanism of RNA recombination in poliovirus   总被引:61,自引:0,他引:61  
K Kirkegaard  D Baltimore 《Cell》1986,47(3):433-443
We have investigated RNA recombination among poliovirus genomes by analyzing both intratypic and intertypic recombinant crosses involving the same defined genetic markers. Sequence analysis of the recombinant junctions of 13 nonsibling intertypic recombinants showed that intertypic RNA recombination is not site-specific, nor does it require extensive homology between the recombining parents at the crossover site. To discriminate between breaking-rejoining and copy choice mechanisms of RNA recombination, we have inhibited the replication of the recombining parents independently and found opposite effects on the frequency of genetic recombination in intratypic crosses. The results strongly support a copy choice mechanism for RNA recombination, in which the viral RNA polymerase switches templates during negative strand synthesis.  相似文献   

18.
Kwon SJ  Rao AL 《Journal of virology》2012,86(9):5204-5220
Despite overwhelming interest in the impact exerted by recombination during evolution of RNA viruses, the relative contribution of the polarity of inoculum templates remains poorly understood. Here, by agroinfiltrating Nicotiana benthamiana leaves, we show that brome mosaic virus (BMV) replicase is competent to initiate positive-strand [(+)-strand] synthesis on an ectopically expressed RNA3 negative strand [(-) strand] and faithfully complete the replication cycle. Consequently, we sought to examine the role of RNA polarity in BMV recombination by expressing a series of replication-defective mutants of BMV RNA3 in (+) or (-) polarity. Temporal analysis of progeny sequences revealed that the genetic makeup of the primary recombinant pool is determined by the polarity of the inoculum template. When the polarity of the inoculum template was (+), the recombinant pool that accumulated during early phases of replication was a mixture of nonhomologous recombinants. These are longer than the inoculum template length, and a nascent 3' untranslated region (UTR) of wild-type (WT) RNA1 or RNA2 was added to the input mutant RNA3 3' UTR due to end-to-end template switching by BMV replicase during (-)-strand synthesis. In contrast, when the polarity of the inoculum was (-), the progeny contained a pool of native-length homologous recombinants generated by template switching of BMV replicase with a nascent UTR from WT RNA1 or RNA2 during (+)-strand synthesis. Repair of a point mutation caused by polymerase error occurred only when the polarity of the inoculum template was (+). These results contribute to the explanation of the functional role of RNA polarity in recombination mediated by copy choice mechanisms.  相似文献   

19.
Replication of bacteriophage M13 replicative forms is inhibited by rifampicin, an antibiotic that specifically inhibits the Escherichia coli RNA polymerase, and by nalidixic acid, an inhibitor of phage and bacterial DNA replication. Synthesis of the M13 complementary strand during RF3 replication was at least tenfold more sensitive to inhibition by rifampicin and by nalidixic acid than was that of the viral strand. Since M13 complementary strand synthesis is relatively insensitive to chloramphenicol, an inhibitor of protein synthesis, its inhibition by rifampicin suggests that complementary strands are initiated during RF replication by an RNA priming mechanism similar to that involved in parental RF formation. The nalidixic acid-sensitivity of complementary strand synthesis during RF replication clearly distinguishes this process from the nalidixic acid-resistant formation of the parental complementary strand in the conversion of the infecting single strand to RF.Production of progeny viral strands is indirectly affected by rifampiein in two ways. It prevents the conversion of supercoiled RF (RFI) to the open form (RFII), an essential step both in RF replication and in single-strand synthesis. In addition, rifampiein interferes with the expression of gene 5, an M13 gene function required for the accumulation of progeny viral strands.  相似文献   

20.
Substitution of a methionine residue at position 79 in poliovirus protein 3A with valine or threonine caused defective viral RNA synthesis, manifested as delayed onset and reduced yield of viral RNA, in HeLa cells transfected with a luciferase-containing replicon. Viruses containing these same mutations produced small or minute plaques that generated revertants upon further passage, with either wild-type 3A sequences or additional nearby compensating mutations. Translation and polyprotein processing were not affected by the mutations, and 3AB proteins containing the altered amino acids at position 79 showed no detectable loss of membrane-binding activity. Analysis of individual steps of viral RNA synthesis in HeLa cell extracts that support translation and replication of viral RNA showed that VPg uridylylation and negative-strand RNA synthesis occurred normally from mutant viral RNA; however, positive-strand RNA synthesis was specifically reduced. The data suggest that a function of viral protein 3A is required for positive-strand RNA synthesis but not for production of negative strands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号