首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostaglandin-H-synthase-1 (PGHS-1), while constitutively expressed in most tissues, increases in abundance in human gestational membranes at term. This suggests that PGHS-1 may be up-regulated in preparation for labor, and thus might be a key determinant in timing labor onset. We conducted transient transfection experiments in amnion-derived AV3 cells utilizing pPGHS1CAT to identify substances that might regulate PGHS-1 expression in amnion. Transforming growth factor-beta (1 ng/ml) and 15-deoxy-delta(12,14) prostaglandin J2 (1 microM) significantly (P < 0.05) (33% and 44% respectively) increased PGHS-1 promoter activity. The activity decreased significantly (P < 0.05) in response to interleukin-1 (IL-1)beta (1 ng/ml) (45%), tumor necrosis factor (TNF)-alpha (50 ng/ml) (34%), epidermal growth factor (10 ng/ml) (54%), phorbol myristate acetate (10 nM) (70%), IL-4 (10 ng/ml) (50%), IL-8 (100 ng/ml) (72%) and Activin A (25 ng/ml) (32%). Whether this degree of change in promoter activity leads to physiologically relevant alterations in the amounts of PGHS-1 present in cells remains to be determined.  相似文献   

2.
A human PGHS-2 promoter fragment (300 BP) linked to the luciferase reporter was used to study the regulation of PGHS-2 gene expression in human amnion-derived WISH cells. A cyclic AMP (cAMP) response element (CRE) was found to be important in the induction of PGHS-2 gene expression. This was demonstrated by showing that coexpression of CREB stimulated native but not CRE mutant promoter and that IL-1beta and PMA induced less activity with the mutant promoter as compared to the native promoter. The effect of dexamethasone on IL-1beta and PMA induced promoter activities was further examined. IL-1beta or PMA induced activity was blocked by dexamethasone, whereas IL-1beta or PMA induced mutant activity was not responsive to dexamethasone. Direct activation of CRE by a cAMP elevating agent, isoproterenol, was found to be inhibited significantly dexamethasone. These results suggest that CRE may mediate the induction of PGHS-2 by IL-1beta and PMA as well as the suppression of expression by dexamethasone in amnion-derived cells.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Increased production of prostaglandins and cytokines by amnion, particularly prostaglandin (PG) E2, interleukin (IL)-6 and IL-8, is thought to be an important event in infection-associated preterm labour. We characterized the amnion-derived AV3 cell line to determine its appropriateness as a model for investigation of the regulation of amnion cytokine and PG production. Amnion-derived AV3 cells were treated with tumour necrosis factor-alpha (TNF-alpha, interleukin-1beta (IL-1beta), epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA) and IL-6, IL-8 and prostaglandin production was determined by immunoassay. Production of IL-6 and IL-8 rose dramatically with all treatments. PGE2, but not PGF2alpha or 6-keto-PGF1alpha, biosynthesis was also increased in a concentration-dependent manner with all treatments. A rapid increase in PGHS-2 (but not PGHS-1) mRNA expression was observed in response to TNF-alpha and IL-1beta. We conclude that the AV3 cell line inflammatory response profile is similar to those observed in primary amnion and other amnion-derived cell lines, and is an appropriate model for human amnion.  相似文献   

19.
人SCF基因5′旁侧-1190~- 853 AT富集区功能研究   总被引:3,自引:0,他引:3  
 已有的报告基因和EMSA实验研究表明 ,人干细胞生长因子 (SCF)基因 5′旁侧AT富集区- 1 1 90~ - 853在HeLa和MCF 7细胞中均能增强下游基因转录 ,可能为一个核基质结合区(MAR) ,对人SCF基因的转录发挥调控作用 .为进一步研究该AT富集区的功能 ,将人SCF基因 5′旁侧 - 1 1 90~ - 853AT富集区分别克隆入SV40或CMV启动子前后紧接着CAT报告基因 ,瞬时转染Jurkat,HepG2和 3T3细胞 ,检测CAT报告基因的瞬时表达活性 .结果表明 :人SCF基因 5′旁侧- 1 1 90~ - 853AT富集区在Jurkat和HepG2细胞中 ,对分别由SV40和CMV启动子引导的CAT基因表达均有抑制作用 ;但在 3T3细胞中对SV40启动子的转录活性表现出增强作用 ,对CMV启动子的转录活性无明显影响 .这些结果提示 ,人SCF基因 5′旁侧 - 1 1 90~ - 853AT富集区转录调控具有组织细胞特异性 ,在不同的细胞中可能发挥转录增强或抑制作用  相似文献   

20.
Human uroplakin lb gene structure and promoter analysis   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号