共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Effects of the human immunodeficiency virus type 1 Tat protein on the expression of inflammatory cytokines. 总被引:20,自引:13,他引:20 下载免费PDF全文
L Buonaguro G Barillari H K Chang C A Bohan V Kao R Morgan R C Gallo B Ensoli 《Journal of virology》1992,66(12):7159-7167
Increased levels of inflammatory cytokines, including tumor necrosis factor (TNF), interleukin-1 (IL-1), and IL-6, have been detected in specimens from human immunodeficiency virus type 1 (HIV-1)-infected individuals. Here we demonstrate that HIV-1 activates the expression of TNF but not of IL-1 and IL-6 in acutely and chronically infected T cells. The increase in TNF gene expression is due to activation of the TNF promoter by the viral gene product Tat. Transactivation of TNF gene expression requires the product of the first exon of the tat gene and is cell type independent. T cells chronically infected with pol-defective HIV-1 provirus constitutively express both Tat and TNF at levels significantly higher (fivefold) than those seen in control cells, and treatment with phorbol myristate acetate greatly enhances Tat expression and TNF production. As TNF can increase the production of IL-1 and IL-6 and these inflammatory cytokines all enhance HIV-1 gene expression and affect the immune, vascular, and central nervous systems, the activation of TNF by Tat may be part of a complex pathway in which HIV-1 uses viral products and host factors to increase its own expression and infectivity and to induce disease. 相似文献
3.
Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells 下载免费PDF全文
Smed-Sörensen A Loré K Vasudevan J Louder MK Andersson J Mascola JR Spetz AL Koup RA 《Journal of virology》2005,79(14):8861-8869
Human immunodeficiency virus type 1 (HIV-1) infection of dendritic cells (DCs) plays an important role in HIV-1 transmission and pathogenesis. Here, we studied the susceptibility of ex vivo-isolated CD11c+ myeloid DCs (MDCs) and CD123+ plasmacytoid DCs (PDCs) to HIV-1 infection and the function of these cells early after infection. Both DC subsets were susceptible to CCR5- and CXCR4-using HIV-1 isolates (BaL and IIIB, respectively). However, MDCs were more susceptible to HIV-1(BaL) infection than donor-matched PDCs. In addition, HIV-1(BaL) infected MDCs more efficiently than HIV-1(IIIB), whereas PDCs were equally susceptible to both isolates. While exposure to HIV-1 alone resulted in only weak maturation of DCs, Toll-like receptor 7/8 ligation induced full maturation in both infected and uninfected DCs. Maturation did not increase HIV-1 replication in infected DCs, and infected DCs retained their ability to produce tumor necrosis factor alpha after stimulation. Both HIV-1 isolates induced alpha interferon production exclusively in PDCs, irrespective of productive infection. In conclusion, PDCs and MDCs were susceptible to HIV-1 infection, but neither displayed functional defects as a consequence of infection. The difference in susceptibility of PDCs and MDCs to HIV-1 may have implications for HIV-1 transmission and DC-mediated transfer of HIV-1 to T cells. 相似文献
4.
5.
De Filippo A Binder RJ Camisaschi C Beretta V Arienti F Villa A Della Mina P Parmiani G Rivoltini L Castelli C 《Journal of immunology (Baltimore, Md. : 1950)》2008,181(9):6525-6535
Glucose-regulated stress protein gp96 is known to be involved in the host response to pathogens and to cancer. Our study explored the relationships between gp96 and human blood plasmacytoid dendritic cells (pDC) and proved that gp96 directly targets pDC by a receptor-dependent interaction. Competition studies identified CD91 as a gp96 receptor on pDC, and laser confocal imaging indicated that CD91 triggering was followed by gp96 endocytosis and trafficking into early endosomes and later into the endoplasmic reticulum compartment. Using two alternative Abs, we showed that human blood pDC reproducibly expressed CD91, although different levels of expression were detectable among the analyzed donors. Moreover, CpG-matured pDC displayed CD91 receptor up-regulation that correlated with an increased gp96 binding. Functionally, gp96-pDC interaction activated the NF-kappaB pathway, leading to the nuclear translocation of the NF-kappaB complex. gp96-treated pDC maintained an immature phenotype, while they down-modulated the release of IL-8, suggesting an anti-inflammatory role of this pathway, and they strongly up-regulated the cell surface expression of the gp96 receptor CD91. CpG-matured or gp96-treated pDC, expressing high levels of the gp96 receptor CD91, antagonized the gp96-induced activation of monocyte-derived dendritic cells in terms of cell surface phenotype and cytokine production. Altogether, these results suggest that gp96-pDC interaction might represent an active mechanism controlling the strength of the immune response to free, extracellular available gp96; this mechanism could be particularly relevant in wounds and chronic inflammation. 相似文献
6.
Human immunodeficiency virus type 1 gp120 and other activation stimuli are highly effective in triggering alpha interferon and CC chemokine production in circulating plasmacytoid but not myeloid dendritic cells 下载免费PDF全文
Del Cornò M Gauzzi MC Penna G Belardelli F Adorini L Gessani S 《Journal of virology》2005,79(19):12597-12601
Exposure to aldrithiol-2-inactivated human immunodeficiency virus type 1 or gp120, but not gp41, triggered alpha interferon (IFN-alpha), CC chemokine ligand 2 (CCL2), CCL3, and CCL4 production in human plasmacytoid dendritic cells (DCs) but not in myeloid DCs (M-DCs) or monocyte-derived DCs from the same donors. The nonresponsiveness of M-DCs for IFN-alpha/beta production was a general feature specific to these cells, as they also failed to produce it in response to inactivated influenza virus, poly(I-C), lipopolysaccharide, Staphylococcus aureus Cowans I, or CD40L. The different capacities of circulating DC subsets to produce immune mediators in response to most stimuli argue for a different role for these cells in the regulation of innate immunity to pathogens. 相似文献
7.
S Matsushita S Matsumi K Yoshimura T Morikita T Murakami K Takatsuki 《Journal of virology》1995,69(6):3333-3340
Monoclonal antibodies (MAbs) were obtained by immunizing mice with synthetic peptides corresponding to the third variable (V3) or the third conserved (C3) domain of the external envelope protein (gp120) of human immunodeficiency virus type 2 (HIV-2ROD). One MAb, designated B2C, which was raised against V3 peptide NKI26, bound to the surface of HIV-2-infected cells but not to their uninfected counterparts. B2C was capable of neutralizing cell-free and cell-associated virus infection in an isolate-specific fashion. The antibody-binding epitope was mapped to a 6-amino-acid peptide in the V3 variable domain which had the core sequence His-Tyr-Gln. Two MAbs, 2H1B and 2F19C, which were raised against the C3 peptide TND27 reacted with gp120 of HIV-2ROD in a Western immunoblot assay. The C3 epitopes recognized by these two MAbs appeared inaccessible because of their poor reactivity in a surface immunofluorescence assay. Although partial inhibition of syncytium formation was observed in the presence of the anti-C3 MAbs, their neutralizing activity appeared weak. Finally, the effects of these MAbs against CD4-gp120 binding were assessed. Partial inhibition of CD4-gp120 binding was observed in the presence of high concentrations of B2C. On the other hand, no inhibition of CD4-gp120 binding was observed in the presence of anti-C3 MAbs. Since complete neutralization could be achieved at a concentration corresponding to that of partial binding inhibition by B2C, some different mechanisms may be involved in the B2C-mediated neutralization. These results, taken together, indicated that analogous to the function of the V3 region of HIV-1, the V3 region of HIV-2ROD contained at least a type-specific fusion-inhibiting neutralizing epitope. In this respect, the V3 sequence of HIV-2 may be a useful target in an animal model for HIV vaccine development. 相似文献
8.
Human immunodeficiency virus type 1 activates plasmacytoid dendritic cells and concomitantly induces the bystander maturation of myeloid dendritic cells 总被引:20,自引:0,他引:20 下载免费PDF全文
Fonteneau JF Larsson M Beignon AS McKenna K Dasilva I Amara A Liu YJ Lifson JD Littman DR Bhardwaj N 《Journal of virology》2004,78(10):5223-5232
In this study, we analyzed the phenotypic and physiological consequences of the interaction of plasmacytoid dendritic cells (pDCs) with human immunodeficiency virus type 1 (HIV-1). pDCs are one cellular target of HIV-1 and respond to the virus by producing alpha/beta interferon (IFN-alpha/beta) and chemokines. The outcome of this interaction, notably on the function of bystander myeloid DC (CD11c+ DCs), remains unclear. We therefore evaluated the effects of HIV-1 exposure on these two DC subsets under various conditions. Blood-purified pDCs and CD11c+ DCs were exposed in vitro to HIV-1, after which maturation markers, cytokine production, migratory capacity, and CD4 T-cell stimulatory capacity were analyzed. pDCs exposed to different strains of infectious or even chemically inactivated, nonreplicating HIV-1 strongly upregulated the expression of maturation markers, such as CD83 and functional CCR7, analogous to exposure to R-848, a synthetic agonist of toll-like receptor-7 and -8. In addition, HIV-1-activated pDCs produced cytokines (IFN-alpha and tumor necrosis factor alpha), migrated in response to CCL19 and, in coculture, matured CD11c+ DCs, which are not directly activated by HIV. pDCs also acquired the ability to stimulate na?ve CD4+ T cells, albeit less efficiently than CD11c+ DCs. This HIV-1-induced maturation of both DC subsets may explain their disappearance from the blood of patients with high viral loads and may have important consequences on HIV-1 cellular transmission and HIV-1-specific T-cell responses. 相似文献
9.
Oligomeric organization of gp120 on infectious human immunodeficiency virus type 1 particles. 总被引:22,自引:14,他引:8 下载免费PDF全文
The oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein (gp120) was examined by treating infectious virions with chemical cross-linking agents and subjecting the protein to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and velocity centrifugation. Immunoblots of cross-linked samples revealed three gp120 bands and an approximately threefold shift in gp120 sedimentation. Our finding of cross-linking solely between gp120 suggests that the gp120 subunits are closely associated in the native envelope structure. 相似文献
10.
Characterization of conserved human immunodeficiency virus type 1 gp120 neutralization epitopes exposed upon gp120-CD4 binding. 总被引:4,自引:29,他引:4 下载免费PDF全文
M Thali J P Moore C Furman M Charles D D Ho J Robinson J Sodroski 《Journal of virology》1993,67(7):3978-3988
Interaction with the CD4 receptor enhances the exposure on the human immunodeficiency type 1 gp120 exterior envelope glycoprotein of conserved, conformation-dependent epitopes recognized by the 17b and 48d neutralizing monoclonal antibodies. The 17b and 48d antibodies compete with anti-CD4 binding antibodies such as 15e or 21h, which recognize discontinuous gp120 sequences near the CD4 binding region. To characterize the 17b and 48d epitopes, a panel of human immunodeficiency virus type 1 gp120 mutants was tested for recognition by these antibodies in the absence or presence of soluble CD4. Single amino acid changes in five discontinuous, conserved, and generally hydrophobic regions of the gp120 glycoprotein resulted in decreased recognition and neutralization by the 17b and 48d antibodies. Some of these regions overlap those previously shown to be important for binding of the 15e and 21h antibodies or for CD4 binding. These results suggest that discontinuous, conserved epitopes proximal to the binding sites for both CD4 and anti-CD4 binding antibodies become better exposed upon CD4 binding and can serve as targets for neutralizing antibodies. 相似文献
11.
Haupt S Donhauser N Chaipan C Schuster P Puffer B Daniels RS Greenough TC Kirchhoff F Schmidt B 《Journal of virology》2008,82(17):8900-8905
Plasmacytoid dendritic cells (PDC) are major producers of type I interferons (IFN) in response to human immunodeficiency virus type 1 (HIV-1) infection. To better define the underlying mechanisms, we studied the magnitude of alpha IFN (IFN-α) induction by recombinant viruses containing changes in the Env protein that impair or disrupt CD4 binding or expressing primary env alleles with differential coreceptor tropism. We found that the CD4 binding affinity but not the viral coreceptor usage is critical for the attachment of autofluorescing HIV-1 to PDC and for subsequent IFN-α induction. Our results illustrate the importance of the gp120-CD4 interaction in determining HIV-1-induced immune stimulation via IFN-α production. 相似文献
12.
Migration of antigen-specific T cells away from CXCR4-binding human immunodeficiency virus type 1 gp120 下载免费PDF全文
Brainard DM Tharp WG Granado E Miller N Trocha AK Ren XH Conrad B Terwilliger EF Wyatt R Walker BD Poznansky MC 《Journal of virology》2004,78(10):5184-5193
Cell-mediated immunity depends in part on appropriate migration and localization of cytotoxic T lymphocytes (CTL), a process regulated by chemokines and adhesion molecules. Many viruses, including human immunodeficiency virus type 1 (HIV-1), encode chemotactically active proteins, suggesting that dysregulation of immune cell trafficking may be a strategy for immune evasion. HIV-1 gp120, a retroviral envelope protein, has been shown to act as a T-cell chemoattractant via binding to the chemokine receptor and HIV-1 coreceptor CXCR4. We have previously shown that T cells move away from the chemokine stromal cell-derived factor 1 (SDF-1) in a concentration-dependent and CXCR4 receptor-mediated manner. Here, we demonstrate that CXCR4-binding HIV-1 X4 gp120 causes the movement of T cells, including HIV-specific CTL, away from high concentrations of the viral protein. This migratory response is CD4 independent and inhibited by anti-CXCR4 antibodies and pertussis toxin. Additionally, the expression of X4 gp120 by target cells reduces CTL efficacy in an in vitro system designed to account for the effect of cell migration on the ability of CTL to kill their target cells. Recombinant X4 gp120 also significantly reduced antigen-specific T-cell infiltration at a site of antigen challenge in vivo. The repellant activity of HIV-1 gp120 on immune cells in vitro and in vivo was shown to be dependent on the V2 and V3 loops of HIV-1 gp120. These data suggest that the active movement of T cells away from CXCR4-binding HIV-1 gp120, which we previously termed fugetaxis, may provide a novel mechanism by which HIV-1 evades challenge by immune effector cells in vivo. 相似文献
13.
Productive infection of plasmacytoid dendritic cells with human immunodeficiency virus type 1 is triggered by CD40 ligation 总被引:4,自引:0,他引:4 下载免费PDF全文
Immature plasmacytoid dendritic cells are the principal alpha interferon-producing cells (IPC), responsible for primary antiviral immunity. IPC express surface molecules CD4, CCR5, and CXCR4, which are known coreceptors required for human immunodeficiency virus (HIV) infection. Here we show that IPC are susceptible to and replicate HIV type 1 (HIV-1). Importantly, viral replication is triggered upon activation of IPC with CD40 ligand, a signal physiologically delivered by CD4 T cells. Immunohistochemical staining of tonsil from HIV-infected individuals reveals HIV p24(+) IPC, consistent with in vivo infection of these cells. IPC exposed in vitro to HIV produce alpha interferon, which partially inhibits viral replication. Nevertheless, IPC efficiently transmit HIV-1 to CD4 T-cells, and such transmission is also augmented by CD40 ligand activation. IPC produce RANTES/CCL5 and MIP-1alpha/CCL3 when exposed to HIV in vitro. IPC also induce na?ve CD4 T cells to proliferate and would therefore preferentially infect these cells. These results indicate that IPC may play an important role in the dissemination of HIV. 相似文献
14.
Selective interactions of polyanions with basic surfaces on human immunodeficiency virus type 1 gp120 总被引:14,自引:0,他引:14 下载免费PDF全文
Moulard M Lortat-Jacob H Mondor I Roca G Wyatt R Sodroski J Zhao L Olson W Kwong PD Sattentau QJ 《Journal of virology》2000,74(4):1948-1960
It is well established that the gp120 V3 loop of T-cell-line-adapted human immunodeficiency virus type 1 (HIV-1) binds both cell-associated and soluble polyanions. Virus infectivity is increased by interactions between HIV-1 and heparan sulfate proteoglycans on some cell types, and soluble polyanions such as heparin and dextran sulfate neutralize HIV-1 in vitro. However, the analysis of gp120-polyanion interactions has been limited to T-cell-line-adapted, CXCR4-using virus and virus-derived gp120, and the polyanion binding ability of gp120 regions other than the V3 loop has not been addressed. Here we demonstrate by monoclonal-antibody inhibition, labeled heparin binding, and surface plasmon resonance studies that a second site, most probably corresponding to the newly defined, highly conserved coreceptor binding region on gp120, forms part of the polyanion binding surface. Consistent with the binding of polyanions to the coreceptor binding surface, dextran sulfate interfered with the gp120-CXCR4 association while having no detectable effect on the gp120-CD4 interaction. The interaction between polyanions and X4 or R5X4 gp120 was readily detectable, whereas weak or undetectable binding was observed with R5 gp120. Analysis of mutated forms of X4 gp120 demonstrated that the V3 loop is the major determinant for polyanion binding whereas other regions, including the V1/V2 loop structure and the NH(2) and COOH termini, exert a more subtle influence. A molecular model of the electrostatic potential of the conserved coreceptor binding region confirmed that it is basic but that the overall charge on this surface is dominated by the V3 loop. These results demonstrate a selective interaction of gp120 with polyanions and suggest that the conserved coreceptor binding surface may present a novel and conserved target for therapeutic intervention. 相似文献
15.
Identification of the optimal DC-SIGN binding site on human immunodeficiency virus type 1 gp120 下载免费PDF全文
Human immunodeficiency virus type 1 (HIV-1) envelope (gp120) binding to DC-SIGN, a C-type lectin that can facilitate HIV infection in cis and in trans, is largely dependent on high-mannose-content moieties. Here, we delineate the N-linked glycosylation (N-glycan) sites in gp120 that contribute to optimal DC-SIGN binding. Soluble DC-SIGN was able to block 2G12 binding to gp120, but not vice versa, suggesting that DC-SIGN binds to a more flexible combination of N-glycans than 2G12. Consistent with this observation, HIV strain JRCSF gp120 prebound to 2G12 was 10-fold more sensitive to mannan competition than gp120 that was not prebound in a DC-SIGN cell surface binding assay. The analysis of multiple mutant forms of the 2G12 epitope revealed one triple glycosylation mutant form, termed 134mut (carrying N293Q, N382Q, and N388Q mutations), that exhibited a significant increase in sensitivity to both mannan competition and endoglycosidase H digestion compared to that of the 124mut form (carrying N293Q, N328Q, and N388Q mutations) and wild-type gp120 in a DC-SIGN binding assay. Importantly, no such differences were observed when binding to Galanthus nivalis was assessed. The 134mut form of gp120 also exhibited decreased binding to DC-SIGN in the context of native envelope spikes on a virion, and virus bearing 134mut exhibited less efficient DC-SIGN-mediated infection in trans. Significantly, 124mut and 134mut differed by only one glycosylation site mutation in each construct, and both 124mut and 134mut viruses exhibited wild-type levels of infectivity when used in a direct infection assay. In summary, while DC-SIGN can bind to a flexible combination of N-glycans on gp120, its optimal binding site overlaps with specific N-glycans within the 2G12 epitope. Conformationally intact envelopes that are DC-SIGN binding deficient can be used to probe the in vivo biological functions of DC-SIGN. 相似文献
16.
N-butyldeoxynojirimycin-mediated inhibition of human immunodeficiency virus entry correlates with impaired gp120 shedding and gp41 exposure. 总被引:1,自引:0,他引:1 下载免费PDF全文
The alpha-glucosidase inhibitor N-butyldeoxynojirimycin (NB-DNJ) is an inhibitor of human immunodeficiency virus (HIV) replication and HIV-induced syncytium formation in vitro. Although an NB-DNJ-mediated change in viral envelope N-glycan composition inhibits HIV entry at the level of post-CD4 binding, the exact mechanism of inhibition remains to be established. In this study we have examined the effects of NB-DNJ on virion envelope composition and CD4-induced gp120 shedding and gp41 exposure. Virion composition analysis revealed an NB-DNJ-mediated reduction of 15% in overall virion envelope glycoprotein content and a reduction of 26% in the proteolytic maturation of virion gp160. Taken together, these two effects resulted in a reduction of approximately 40% in virion gp120 content. CD4-induced shedding of gp120 from the surfaces of envelope-transfected Cos cells was undetectable when gp120 was expressed in the presence of NB-DNJ. Similarly, the shedding of virion-associated gp120 was reduced 7.4-fold. CD4-induced exposure of cryptic gp41 epitopes on the surfaces of HIV-expressing ACH-2 cells was also greatly impaired, and the exposure of virion-associated gp41 epitopes was reduced 4.0-fold. Finally, CD4-induced increases in the binding of antibodies to the V3 loop of ACH-2-cell-expressed envelope glycoproteins were reduced 25-fold when the glycoproteins were expressed in the presence of NB-DNJ. These results suggest that the NB-DNJ-mediated retention of glycosylated N-glycans inhibits HIV entry by a combined effect of a reduction in virion gp120 content and a qualitative defect within the remaining gp120, preventing it from undergoing conformational changes after CD4 binding. 相似文献
17.
Mutations in human immunodeficiency virus type 1 gp41 affect sensitivity to neutralization by gp120 antibodies. 总被引:2,自引:8,他引:2 下载免费PDF全文
N K Back L Smit M Schutten P L Nara M Tersmette J Goudsmit 《Journal of virology》1993,67(11):6897-6902
Three closely related molecular human immunodeficiency virus type 1 (HIV-1) clones, with differential neutralization phenotypes, were generated by cloning of an NcoI-BamHI envelope (env) gene fragment (HXB2R nucleotide positions 5221 to 8021) into the full-length HXB2 molecular clone of HIV-1 IIIB. These env gene fragments, containing the complete gp120 coding region and a major part of gp41, were obtained from three different biological clones derived from a chimpanzee-passaged HIV-1 IIIB isolate. Two of the viruses thus obtained (4.4 and 5.1) were strongly resistant to neutralization by infection-induced chimpanzee and human polyclonal antibodies and by HIV-1 IIIB V3-specific monoclonal antibodies and weakly resistant to soluble CD4 and a CD4-binding-site-specific monoclonal antibody. The third virus (6.8) was sensitive to neutralization by the same reagents. The V3 coding sequence and the gp120 amino acid residues important for the discontinuous neutralization epitope overlapping the CD4-binding site were completely conserved among the clones. However, the neutralization-resistant clones 4.4 and 5.1 differed from neutralization-sensitive clone 6.8 by two mutations in gp41. Exchange experiments confirmed that the 3' end of clone 6.8 (nucleotides 6806 to 8021; amino acids 346 to 752) conferred a neutralization-sensitive phenotype to both of the neutralization-resistant clones 4.4 and 5.1. From our study, we conclude that mutations in the extracellular portion of gp41 may affect neutralization sensitivity to gp120 antibodies. 相似文献
18.
The human immunodeficiency virus type 1 gp120 V2 domain mediates gp41-independent intersubunit contacts 下载免费PDF全文
The envelope protein of human immunodeficiency virus type 1 HIV-1 undergoes proteolytic cleavage in the Golgi complex to produce subunits designated gp120 and gp41, which remain noncovalently associated. While gp41 has a well-characterized oligomeric structure, the maintenance of gp41-independent gp120 intersubunit contacts remains a contentious issue. Using recombinant vaccinia virus to achieve high-level expression of gp120 in mammalian cells combined with gel filtration analysis, we were able to isolate a discrete oligomeric form of gp120. Oligomerization of gp120 occurred intracellularly between 30 and 120 min after synthesis. Analysis by sedimentation equilibrium unequivocally identified the oligomeric species as a dimer. In order to identify the domains involved in the intersubunit contact, we expressed a series of gp120 proteins lacking various domains and assessed the effects of mutation on oligomeric structure. Deletion of the V1 or V3 loops had little effect on the relative amounts of monomer and dimer in comparison to wild-type gp120. In contrast, deletion of either all or part of the V2 loop drastically reduced dimer formation, indicating that this domain is required for intersubunit contact formation. Consistent with this, the V2 loop of the dimer was less accessible than that of the monomer to a specific monoclonal antibody. Previous studies have shown that while the V2 loop is not an absolute requirement for viral entry, the absence of this domain reduces viral resistance to neutralization by monoclonal antibodies or sera. We propose that the quaternary structure of gp120 may contribute to resistance to neutralization by limiting the exposure of conserved epitopes. 相似文献
19.
Model for intracellular folding of the human immunodeficiency virus type 1 gp120. 总被引:18,自引:14,他引:4 下载免费PDF全文
The intracellular folding of the human immunodeficiency virus type 1 gp120 has been assessed by analyzing the ability of the glycoprotein to bind to the viral receptor CD4. Pulse-chase experiments revealed that the glycoprotein was initially produced in a conformation that was unable to bind to CD4 and that the protein attained the appropriate tertiary structure for binding with a half-life of approximately 30 min. The protein appears to fold within the rough endoplasmic reticulum, since blocking of transport to the Golgi apparatus by the oxidative phosphorylation inhibitor carbonyl cyanide m-chlorophenylhydrazone did not appear to perturb the folding kinetics of the molecule. The relatively lengthy folding time was not due to modification of the large number of N-linked glycosylation sites on gp120, since inhibition of the first steps in oligosaccharide modification by the inhibitors deoxynojirimycin or deoxymannojirimycin did not impair the CD4-binding activity of the glycoprotein. However, production of the glycoprotein in the presence of tunicamycin and removal of the N-linked sugars by endoglycosidase H treatment both resulted in deglycosylated proteins that were unable to bind to CD4, suggesting in agreement with previous results, that glycosylation contributes to the ability of gp120 to bind to CD4. Interestingly, incomplete endoglycosidase H treatment revealed that a partially glycosylated glycoprotein could bind to the receptor, implying that a subset of glycosylation sites, perhaps some of those conserved in different isolates of human immunodeficiency virus type 1, might be important for binding of the viral glycoprotein to the CD4 receptor. 相似文献
20.
Madeleine Herrmann Klemens Ruprecht Marlies Sauter Pearl van Heteren Barbara Best Klaus Roemer 《FEBS letters》2010,584(16):3513-3518
Retrovirus replication critically depends on a dynamic interplay between retroviral and host proteins. We report on the binding of the surface subunit (glycoprotein 120 (gp120)) of the human immunodeficiency virus type 1 (HIV-1) envelope protein (Env) to the cytoplasmic C-terminus of the voltage-gated potassium channel BEC1 (brain-specific ether-a-go-go-like channel 1), an interaction that can result in the repression of BEC’s activity and the inhibition of HIV-1 particle-release. BEC1 protein was found to be expressed in T cells and macrophages, the major target cells of HIV-1. Thus, gp120/BEC1 interaction may be involved in HIV-1 life cycle and/or pathogenesis.