首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The structural integrity of mitochondrial cristae is crucial for mitochondrial functions; however, the molecular events controlling the structural integrity and biogenesis of mitochondrial cristae remain to be fully elucidated. Here, we report the functional characterization of a novel mitochondrial protein named CHCM1 (coiled coil helix cristae morphology 1)/CHCHD6. CHCM1/CHCHD6 harbors a coiled coil helix-coiled coil helix domain at its C-terminal end and predominantly localizes to mitochondrial inner membrane. CHCM1/CHCHD6 knockdown causes severe defects in mitochondrial cristae morphology. The mitochondrial cristae in CHCM1/CHCHD6-deficient cells become hollow with loss of structural definitions and reduction in electron-dense matrix. CHCM1/CHCHD6 depletion also leads to reductions in cell growth, ATP production, and oxygen consumption. CHCM1/CHCHD6 through its C-terminal end strongly and directly interacts with the mitochondrial inner membrane protein mitofilin, which is known to also control mitochondrial cristae morphology. CHCM1/CHCHD6 also interacts with other mitofilin-associated proteins, including DISC1 and CHCHD3. Knockdown of CHCM1/CHCHD6 reduces mitofilin protein levels; conversely, mitofilin knockdown leads to reduction in CHCM1 levels, suggesting coordinate regulation between these proteins. Our results further indicate that genotoxic anticancer drugs that induce DNA damage down-regulate CHCM1/CHCHD6 expression in multiple human cancer cells, whereas mitochondrial respiratory chain inhibitors do not affect CHCM1/CHCHD6 levels. CHCM1/CHCHD6 knockdown in human cancer cells enhances chemosensitivity to genotoxic anticancer drugs, whereas its overexpression increases resistance. Collectively, our results indicate that CHCM1/CHCHD6 is linked to regulation of mitochondrial cristae morphology, cell growth, ATP production, and oxygen consumption and highlight its potential as a possible target for cancer therapeutics.  相似文献   

5.
Rotenone is an inhibitor of mitochondrial complex I-induced neurotoxicity in PC12 cells and has been widely studied to elucidate the pathogenesis of Parkinson’s disease. We investigated the neuroprotective effects of betaine on rotenone-induced neurotoxicity in PC12 cells. Betaine inhibited rotenone-induced apoptosis in a dose-dependent manner, with cell viability increasing from 50 % with rotenone treatment alone to 71 % with rotenone plus 100-μM betaine treatment. Flow cytometric analysis demonstrated cell death in the rotenone-treated cells to be over 50 %; the number of live cells increased with betaine pretreatment. Betaine pretreatment of PC12 cells attenuated rotenone-mediated mitochondrial dysfunction, including nuclear fragmentation, ATP depletion, mitochondrial membrane depolarization, caspase-3/7 activation, and reactive oxygen species production. Western blots demonstrated activation of caspase-3 and caspase-9, and their increased expression levels in rotenone-treated cells; betaine decreased caspase-3 and caspase-9 expression levels and suppressed their activation. Together, these results suggest that betaine may serve as a neuroprotective agent in the treatment of neurodegenerative diseases.  相似文献   

6.
7.
Decreases in GSH pools detected during ischemia sensitize neurons to excitotoxic damage. Thermodynamic analysis predicts that partial GSH depletion will cause an oxidative shift in the thiol redox potential. To investigate the acute bioenergetic consequences, neurons were exposed to monochlorobimane (mBCl), which depletes GSH by forming a fluorescent conjugate. Neurons transfected with redox-sensitive green fluorescent protein showed a positive shift in thiol redox potential synchronous with the formation of the conjugate. Mitochondria within neurons treated with mBCl for 1 h failed to hyperpolarize upon addition of oligomycin to inhibit their ATP synthesis. A decreased ATP turnover was confirmed by monitoring neuronal oxygen consumption in parallel with mitochondrial membrane potential (Deltapsi(m)) and GSH-mBCl formation. mBCl progressively decreased cell respiration, with no effect on mitochondrial proton leak or maximal respiratory capacity, suggesting adequate glycolysis and a functional electron transport chain. This approach to "state 4" could be mimicked by the adenine nucleotide translocator inhibitor bongkrekic acid, which did not further decrease respiration when administered after mBCl. The cellular ATP/ADP ratio was decreased by mBCl, and consistent with mitochondrial ATP export failure, respiration could not respond to an increased cytoplasmic ATP demand by plasma membrane Na(+) cycling; instead, mitochondria depolarized. More prolonged mBCl exposure induced mitochondrial failure, with Deltapsi(m) collapse followed by cytoplasmic Ca(2+) deregulation. The initial bioenergetic consequence of neuronal GSH depletion in this model is thus an inhibition of ATP export, which precedes other forms of mitochondrial dysfunction.  相似文献   

8.
《Free radical research》2013,47(7):758-768
Abstract

Stromal interaction molecule (STIM) proteins are parts of elaborate eukaryotic Ca2+ signaling systems and are considered to be important players in regulating neuronal Ca2+ homeostasis under normal ageing and pathological conditions. Here, we investigated the potential role of STIM1 in 6-hydroxydopamine (6-OHDA)-induced toxicity in undifferentiated PC12 cell lines. Cells exposed to 6-OHDA demonstrated alterations in the generation of reactive oxygen species (ROS) in a Ca2+-dependent manner. Downregulation of STIM1 expression by specific small interfering RNA (siRNA) attenuated apoptotic cell death, reduced intracellular ROS production, and partially prevented the impaired endogenous antioxidant enzyme activities after 6-OHDA treatment. Furthermore, STIM1 knockdown significantly attenuated 6-OHDA-induced intracellular Ca2+ overload by inhibiting endogenous store-operated calcium entry (SOCE). The effect of STIM1 siNRA on SOCE was related to orai1 and L-type Ca2+ channels, but not to transient receptor potential canonical type 1 (TRPC1) channel. In addition, silencing of STIM1 increased the Ca2+ buffering capacity of the endoplasmic reticulum (ER) in 6-OHDA-injured cells. ER vacuoles formed from the destruction of ER structural integrity and activation of ER-related apoptotic factors (CHOP and Caspase-12) were partially prevented by STIM1 knockdown. Moreover, STIM1 knockdown attenuated 6-OHDA-induced mitochondrial Ca2+ uptake and mitochondrial dysfunction, including the collapse of mitochondrial membrane potential (MMP) and the decrease of ATP generation. Taken together, our data provide the first evidence that inhibition of STIM1-meditated intracellular Ca2+ dyshomeostasis protects undifferentiated PC12 cells against 6-OHDA toxicity and indicate that STIM1 may be responsible for neuronal oxidative stress induced by ER stress and mitochondrial dysfunction in PD.  相似文献   

9.
Thioredoxins (Trx) are a class of small multifunctional redox-active proteins found in all organisms. Recently, we reported the cloning of a mitochondrial thioredoxin, Trx2, from rat heart. To investigate the biological role of Trx2 we have isolated the human homologue, hTrx2, and generated HEK-293 cells overexpressing Trx2 (HEK-Trx2). Here, we show that HEK-Trx2 cells are more resistant toward etoposide. In addition, HEK-Trx2 are more sensitive toward rotenone, an inhibitor of complex I of the respiratory chain. Finally, overexpression of Trx2 confers an increase in mitochondrial membrane potential, DeltaPsi(m). Treatment with oligomycin could both reverse the effect of rotenone and decrease the membrane potential suggesting that Trx2 interferes with the activity of ATP synthase. Taken together, these results suggest that Trx2 interacts with specific components of the mitochondrial respiratory chain and plays an important role in the regulation of the mitochondrial membrane potential.  相似文献   

10.
11.
12.
13.
14.
Increasing evidence suggests an important role of mitochondrial dysfunction in the pathogenesis of Alzheimer's disease. Thus, we investigated the effects of acute and chronic exposure to increasing concentrations of amyloid beta (Abeta) on mitochondrial function and nitric oxide (NO) production in vitro and in vivo. Our data demonstrate that PC12 cells and human embryonic kidney cells bearing the Swedish double mutation in the amyloid precursor protein gene (APPsw), exhibiting substantial Abeta levels, have increased NO levels and reduced ATP levels. The inhibition of intracellular Abeta production by a functional gamma-secretase inhibitor normalizes NO and ATP levels, indicating a direct involvement of Abeta in these processes. Extracellular treatment of PC12 cells with comparable Abeta concentrations only leads to weak changes, demonstrating the important role of intracellular Abeta. In 3-month-old APP transgenic (tg) mice, which exhibit no plaques but already detectable Abeta levels in the brain, reduced ATP levels can also be observed showing the in vivo relevance of our findings. Moreover, we could demonstrate that APP is present in the mitochondria of APPsw PC12 cells. This presence might be directly involved in the impairment of cytochrome c oxidase activity and depletion of ATP levels in APPsw PC12 cells. In addition, APPsw human embryonic kidney cells, which produce 20-fold increased Abeta levels compared with APPsw PC12 cells, and APP tg mice already show a significantly decreased mitochondrial membrane potential under basal conditions. We suggest a hypothetical sequence of pathogenic steps linking mutant APP expression and amyloid production with enhanced NO production and mitochondrial dysfunction finally leading to cell death.  相似文献   

15.
16.
17.
18.
Parkinson's disease is characterized by dopaminergic neurodegeneration and is associated with mitochondrial dysfunction. The bioenergetic susceptibility of dopaminergic neurons to toxins which induce Parkinson's like syndromes in animal models is then of particular interest. For example, rotenone, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its active metabolite 1-methyl-4-phenylpyridinium (MPP(+)), and 6-hydroxydopamine (6-OHDA), have been shown to induce dopaminergic cell death in vivo and in vitro. Exposure of animals to these compounds induce a range of responses characteristics of Parkinson's disease, including dopaminergic cell death, and Reactive Oxygen Species (ROS) production. Here we test the hypothesis that cellular bioenergetic dysfunction caused by these compounds correlates with induction of cell death in differentiated dopaminergic neuroblastoma SH-SY5Y cells. At increasing doses, rotenone induced significant cell death accompanied with caspase 3 activation. At these concentrations, rotenone had an immediate inhibition of mitochondrial basal oxygen consumption rate (OCR) concomitant with a decrease of ATP-linked OCR and reserve capacity, as well as a stimulation of glycolysis. MPP(+) exhibited a different behavior with less pronounced cell death at doses that nearly eliminated basal and ATP-linked OCR. Interestingly, MPP(+), unlike rotenone, stimulated bioenergetic reserve capacity. The effects of 6-OHDA on bioenergetic function was markedly less than the effects of rotenone or MPP(+) at cytotoxic doses, suggesting a mechanism largely independent of bioenergetic dysfunction. These studies suggest that these dopaminergic neurotoxins induce cell death through distinct mechanisms and differential effects on cellular bioenergetics.  相似文献   

19.
20.
The process of store-operated calcium entry (SOCE), whereby the release of intracellular Ca2+ from endoplasmic reticulum (ER) activates Ca2+ influx channels in the plasma membrane, has been demonstrated to impact a diverse range of cell functions. In the present study, we investigated the potential protective effect of SOCE inhibition against 1-methyl-4-phenylpyridinium (MPP+) injury by using pharmacological antagonists or specific small interfering RNA (siRNA) in PC12 cells. The results showed that both antagonists (15 μM MRS-1845 and 50 μM ML-9) and stromal interacting molecule-1 (STIM1) targeted siRNA (Si-STIM1) significantly increased cell viability, decreased apoptotic cell death and reduced intracellular reactive oxygen species (ROS) production and lipid peroxidation in MPP+ injured PC12 cells. SOCE inhibition also prevented MPP+ induced mitochondrial dysfunction and activation of mitochondrial related apoptotic factors, while had no effect on mitochondrial biogenesis. Moreover, inhibition of SOCE by antagonists and siRNA increased the expression levels of Homer1a mRNA and protein, and knockdown of Homer1a expression by specific siRNA partly reversed the protective effects induced by SOCE inhibition in PC12 cells. All these results indicated that SOCE inhibition protected PC12 cells against MPP+ insult through upregulation of Homer1a expression, and SOCE might be an ideal target for investigating therapeutic strategy against neuronal injury in PD patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号