首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, a dysfunction of the SMALL ACIDIC PROTEIN1 (SMAP1) gene was identified as the cause of the anti-auxin resistant1 (aar1) mutant of Arabidopsis (Arabidopsis thaliana). SMAP1 is involved in the response pathway of synthetic auxin, 2,4-dichlorophenoxyacetic acid, and functions upstream of the auxin/indole-3-acetic acid protein degradation step in auxin signaling. However, the exact mechanism by which SMAP1 functions in auxin signaling remains unknown. Here, we demonstrate that SMAP1 is required for normal plant growth and development and the root response to indole-3-acetic acid or methyl jasmonate in the auxin resistant1 (axr1) mutation background. Deletion analysis and green fluorescent protein/glutathione S-transferase pull-down assays showed that SMAP1 physically interacts with the CONSTITUTIVE PHOTOMORPHOGENIC9 SIGNALOSOME (CSN) via the SMAP1 F/D region. The extremely dwarf phenotype of the aar1-1 csn5a-1 double mutant confirms the functional role of SMAP1 in plant growth and development under limiting CSN functionality. Our findings suggest that SMAP1 is involved in the auxin response and possibly in other cullin-RING ubiquitin ligase-regulated signaling processes via its interaction with components associated with RELATED TO UBIQUITIN modification.  相似文献   

2.
Summary Auxin (indole-3-acetic acid) is considered to be an important signalling molecule in the regulation of plant growth and development but neither auxin synthesis nor its mode of action is clearly understood. To identify genes involved in these processes, mutations were sought that altered the auxin requirement of plant tissues for growth. For the first time mutant plants were obtained that carry a recessive mutation at a single nuclear locus (auxl) which results in an absolute requirement for exogenous auxin for normal growth. In the absence of auxin treatment, mutant plants undergo premature senescence and die.Abbreviations BAP 6-benzylaminopurine - BUdR 5-bromodeoxyuridine - 2,4-D 2,4-dichlorophenoxyacetic acid - FUdR 5-fluorodeoxyuridine - IAA-EE indole-3-acetic acid ethyl ester - IMS indole-3-methanesulfonic acid  相似文献   

3.
Promotion of peroxidase activity in the cell wall of Nicotiana   总被引:3,自引:1,他引:2       下载免费PDF全文
Peroxidase catalyzes the oxidation of indole-3-acetic acid. The primary products of this reaction stimulate growth in plants. Therefore, our concept is that an increase in peroxidase activity will increase the effect of indole-3-acetic acid as a growth hormone. Our objective was to study the effect of 2,3,5-triiodobenzoic acid, a growth regulator, on isoperoxidases in the cell wall and cytoplasm of Nicotiana. Isoperoxidases from the cell wall and cytoplasmic fractions were separated by acrylamide gel electrophoresis. We found that 2,3,5-triiodobenzoic acid and indole-3-acetic acid increase peroxidase activity in the cell wall. Since both 2,3,5-triiodobenzoic acid and indole-3-acetic acid increase the activity of the same isoperoxidase, we conclude that 2,3,5-triiodobenzoic acid synergizes rather than antagonizes auxin action, and we suggest that this increase in indole-3-acetic acid oxidase activity sensitizes plant tissues to auxin.  相似文献   

4.
5.
Previous studies have demonstrated that auxin (indole-3-acetic acid) and nitric oxide (NO) are plant growth regulators that coordinate several plant physiological responses determining root architecture. Nonetheless, the way in which these factors interact to affect these growth and developmental processes is not well understood. The Arabidopsis thaliana F-box proteins TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFB) are auxin receptors that mediate degradation of AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) repressors to induce auxin-regulated responses. A broad spectrum of NO-mediated protein modifications are known in eukaryotic cells. Here, we provide evidence that NO donors increase auxin-dependent gene expression while NO depletion blocks Aux/IAA protein degradation. NO also enhances TIR1-Aux/IAA interaction as evidenced by pull-down and two-hybrid assays. In addition, we provide evidence for NO-mediated modulation of auxin signaling through S-nitrosylation of the TIR1 auxin receptor. S-nitrosylation of cysteine is a redox-based post-translational modification that contributes to the complexity of the cellular proteome. We show that TIR1 C140 is a critical residue for TIR1-Aux/IAA interaction and TIR1 function. These results suggest that TIR1 S-nitrosylation enhances TIR1-Aux/IAA interaction, facilitating Aux/IAA degradation and subsequently promoting activation of gene expression. Our findings underline the importance of NO in phytohormone signaling pathways.  相似文献   

6.
The phytohormone auxin plays critical roles in regulating myriads of plant growth and developmental processes. Microbe infection can disturb auxin signaling resulting in defects in these processes, but the underlying mechanisms are poorly understood. Auxin signaling begins with perception of auxin by a transient co-receptor complex consisting of an F-box transport inhibitor response 1/auxin signaling F-box (TIR1/AFB) protein and an auxin/indole-3-acetic acid (Aux/IAA) protein. Auxin binding to the co-receptor triggers ubiquitination and 26S proteasome degradation of the Aux/IAA proteins, leading to subsequent events, including expression of auxin-responsive genes. Here we report that Rice dwarf virus (RDV), a devastating pathogen of rice, causes disease symptoms including dwarfing, increased tiller number and short crown roots in infected rice as a result of reduced sensitivity to auxin signaling. The RDV capsid protein P2 binds OsIAA10, blocking the interaction between OsIAA10 and OsTIR1 and inhibiting 26S proteasome-mediated OsIAA10 degradation. Transgenic rice plants overexpressing wild-type or a dominant-negative (degradation-resistant) mutant of OsIAA10 phenocopy RDV symptoms are more susceptible to RDV infection; however, knockdown of OsIAA10 enhances the resistance of rice to RDV infection. Our findings reveal a previously unknown mechanism of viral protein reprogramming of a key step in auxin signaling initiation that enhances viral infection and pathogenesis.  相似文献   

7.
生长素合成途径的研究进展   总被引:5,自引:0,他引:5  
生长素是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素, 参与植物生长发育的许多过程。植物和一些侵染植物的病原微生物都可以通过改变生长素的合成来调节植株的生长。吲哚-3-乙酸(IAA)是天然植物生长素的主要活性成分。近年来, 随着IAA生物合成过程中一些关键调控基因的克隆和功能分析, 人们对IAA的生物合成途径有了更加深入的认识。IAA的生物合成有依赖色氨酸和非依赖色氨酸两条途径。依据IAA合成的中间产物不同, 依赖色氨酸的生物合成过程通常又划分成4条支路: 吲哚乙醛肟途径、吲哚丙酮酸途径、色胺途径和吲哚乙酰胺途径。该文综述了近几年在IAA生物合成方面取得的新进展。  相似文献   

8.
Ding X  Cao Y  Huang L  Zhao J  Xu C  Li X  Wang S 《The Plant cell》2008,20(1):228-240
New evidence suggests a role for the plant growth hormone auxin in pathogenesis and disease resistance. Bacterial infection induces the accumulation of indole-3-acetic acid (IAA), the major type of auxin, in rice (Oryza sativa). IAA induces the expression of expansins, proteins that loosen the cell wall. Loosening the cell wall is key for plant growth but may also make the plant vulnerable to biotic intruders. Here, we report that rice GH3-8, an auxin-responsive gene functioning in auxin-dependent development, activates disease resistance in a salicylic acid signaling- and jasmonic acid signaling-independent pathway. GH3-8 encodes an IAA-amino synthetase that prevents free IAA accumulation. Overexpression of GH3-8 results in enhanced disease resistance to the rice pathogen Xanthomonas oryzae pv oryzae. This resistance is independent of jasmonic acid and salicylic acid signaling. Overexpression of GH3-8 also causes abnormal plant morphology and retarded growth and development. Both enhanced resistance and abnormal development may be caused by inhibition of the expression of expansins via suppressed auxin signaling.  相似文献   

9.
10.
The regulation of cellular auxin levels is a critical factor in determining plant growth and architecture, as indole-3-acetic acid (IAA) gradients along the plant axis and local IAA maxima are known to initiate numerous plant growth responses. The regulation of auxin homeostasis is mediated in part by transport, conjugation and deconjugation, as well as by de novo biosynthesis. However, the pathways of IAA biosynthesis are yet not entirely characterized at the molecular and biochemical level. It is suggested that several biosynthetic routes for the formation of IAA have evolved. One such pathway proceeds via the intermediate indole-3-acetamide (IAM), which is converted into IAA by the activity of specific IAM hydrolases, such as Arabidopsis AMIDASE1 (AMI1). In this article we present evidence to support the argument that AMI1-dependent IAA synthesis is likely not to be used during the first two days of seedling development.Key words: Arabidopsis thaliana, auxin biosynthesis, AMIDASE1, indole-3-acetic acid, indole-3-acetamide, LEAFY COTYLEDON1, seed developmentAuxins are versatile plant hormones that play diverse roles in regulating many aspects of plant growth and development.1 To enable auxins to develop their activity, a tight spatiotemporal control of cellular indole-3-acetic acid (IAA) contents is absolutely necessary since it is well-documented that auxin action is dose dependent, and that high IAA levels can have inhibitory effects on plant growth.2 To achieve this goal, plants have evolved a set of different mechanisms to control cellular hormone levels. On the one hand, plants possess several pathways that contribute to the de novo synthesis of IAA. This multiplicity of biosynthetic routes presumably facilitates fine-tuning of the IAA production. On the other hand, plants are equipped with a variety of enzymes that are used to conjugate free auxin to either sugars, amino acids or peptides and small proteins, respectively, or on the contrary, that act as IAA-conjugate hydrolases, releasing free IAA from corresponding conjugates. IAA-conjugates serve as a physiologically inactive storage form of IAA from which the active hormone can be quickly released on demand. Alternatively, conjugation of IAA can mark the first step of IAA catabolism. In general, conjugation and deconjugation of free IAA are ways to positively or negatively affect active hormone levels, which adds another level of complexity to the system. Additionally, IAA can be transported from cell to cell in a polar manner, which is dependent on the action of several transport proteins. All together, these means are used to form auxin gradients and local maxima that are essential to initiate plant growth processes, such as root or leaf primordia formation.3  相似文献   

11.
Oncogenes carried by the transferred DNA (T-DNA) of Agrobacterium Ti plasmids encode the synthesis of plant growth factors, auxin and cytokinin, and induce tumour development in plants. Other T-DNA genes regulate the tumorous growth in ways that are not yet understood. To determine the function of T-DNA gene 5, its coding region was expressed in Escherichia coli. Synthesis of the gene 5 encoded protein (26 kDa) correlated with a 28-fold increase in conversion of tryptophan to indole-3-lactate (ILA), an auxin analogue. Expression of chimeric gene 5 constructs in transgenic tobacco resulted in overproduction of ILA that enhanced shoot formation in undifferentiated tissues and increased the tolerance of germinating seedlings to the inhibitory effect of externally supplied auxin. Promoter analysis of gene 5 in plants revealed that its expression was inducible by auxin and confined to the vascular phloem cells. cis-regulatory elements required for auxin regulation and phloem specific expression of gene 5 were mapped to a 90 bp promoter region that carried DNA sequence motifs common to several auxin induced plant promoters, as well as a binding site for a nuclear factor, Ax-1. ILA was found to inhibit the auxin induction of the gene 5 promoter and to compete with indole-3-acetic acid (IAA) for in vitro binding to purified cellular auxin binding proteins. It is suggested therefore that ILA autoregulates its own synthesis and thereby modulates a number of auxin responses in plants.  相似文献   

12.
The auxin indole-3-acetic acid (IAA), which is essential for plant growth and development, is suggested to be synthesized via several redundant pathways. In maize (Zea mays), the nitrilase ZmNIT2 is expressed in auxin-synthesizing tissues and efficiently hydrolyses indole-3-acetonitrile to IAA. Zmnit2 transposon insertion mutants were compromised in root growth in young seedlings and sensitivity to indole-3-acetonitrile, and accumulated lower quantities of IAA conjugates in kernels and root tips, suggesting a substantial contribution of ZmNIT2 to total IAA biosynthesis in maize. An additional enzymatic function, turnover of beta-cyanoalanine, is acquired when ZmNIT2 forms heteromers with the homologue ZmNIT1. In plants carrying an insertion mutation in either nitrilase gene this activity was strongly reduced. A dual role for ZmNIT2 in auxin biosynthesis and in cyanide detoxification as a heteromer with ZmNIT1 is therefore proposed.  相似文献   

13.
Auxins are growth regulators involved in virtually all aspects of plant development. However, little is known about how plants synthesize these essential compounds. We propose that the level of indole-3-acetic acid is regulated by the flux of indole-3-acetaldoxime through a cytochrome P450, CYP83B1, to the glucosinolate pathway. A T-DNA insertion in the CYP83B1 gene leads to plants with a phenotype that suggests severe auxin overproduction, whereas CYP83B1 overexpression leads to loss of apical dominance typical of auxin deficit. CYP83B1 N-hydroxylates indole-3-acetaldoxime to the corresponding aci-nitro compound, 1-aci-nitro-2-indolyl-ethane, with a K(m) of 3 microM and a turnover number of 53 min(-1). The aci-nitro compound formed reacts non-enzymatically with thiol compounds to produce an N-alkyl-thiohydroximate adduct, the committed precursor of glucosinolates. Thus, indole-3-acetaldoxime is the metabolic branch point between the primary auxin indole-3-acetic acid and indole glucosinolate biosynthesis in Arabidopsis.  相似文献   

14.
Many aspects of plant development are associated with changing concentrations of the phytohormone auxin. Several stages of root formation exhibit extreme sensitivities to exogenous auxin and are correlated with shifts in endogenous auxin concentration. In an effort to elucidate mechanisms regulating development of adventitious roots, an ethyl methanesulfonate-mutagenized M2 population of Arabidopsis was screened for mutants altered in this process. A recessive nuclear mutant, rooty (rty), displayed extreme proliferation of roots, inhibition of shoot growth, and other alterations suggesting elevated responses to auxin or ethylene. Wild-type Arabidopsis seedlings grown on auxin-containing media phenocopied rty, whereas rty seedlings were partially rescued on cytokinin-containing media. Analysis by gas chromatography-selected ion monitoring-mass spectrometry showed endogenous indole-3-acetic acid concentrations to be two to 17 times higher in rty than in the wild type. Dose-response assays with exogenous indole-3-acetic acid indicated equal sensitivities to auxin in tissues of the wild type and rty. Combining rty with mutations conferring resistance to auxin (axr1-3) or ethylene (etr1-1) suggested that root proliferation and restricted shoot growth are auxin effects, whereas other phenotypic alterations are due to ethylene. Four mutant alleles from independently mutagenized populations were identified, and the locus was mapped using morphological and restriction fragment length polymorphism markers to 3.9 centimorgans distal to marker m605 on chromosome 2. The wild-type RTY gene product may serve a critical role in regulating auxin concentrations and thereby facilitating normal plant growth and development.  相似文献   

15.
The role and metabolism of indole-3-acetic acid in gram-negative bacteria is well documented, but little is known about indole-3-acetic acid biosynthesis and regulation in gram-positive bacteria. The phytopathogen Rhodococcus fascians, a gram-positive organism, incites diverse developmental alterations, such as leafy galls, on a wide range of plants. Phenotypic analysis of a leafy gall suggests that auxin may play an important role in the development of the symptoms. We show here for the first time that R. fascians produces and secretes the auxin indole-3-acetic acid. Interestingly, whereas noninfected-tobacco extracts have no effect, indole-3-acetic acid synthesis is highly induced in the presence of infected-tobacco extracts when tryptophan is not limiting. Indole-3-acetic acid production by a plasmid-free strain shows that the biosynthetic genes are located on the bacterial chromosome, although plasmid-encoded genes contribute to the kinetics and regulation of indole-3-acetic acid biosynthesis. The indole-3-acetic acid intermediates present in bacterial cells and secreted into the growth media show that the main biosynthetic route used by R. fascians is the indole-3-pyruvic acid pathway with a possible rate-limiting role for indole-3-ethanol. The relationship between indole-3-acetic acid production and the symptoms induced by R. fascians is discussed.  相似文献   

16.
Auxin: regulation, action, and interaction   总被引:48,自引:0,他引:48  
  相似文献   

17.
The dependence of morphogenetic processes in the formation of vegetative and generative organs in spring oilseed rape and barley on exogenously applied physiological analogues of auxin: 2,4-D (2,4-dichlorphenoxyacetic acid), NAA (naphthalene-1-acetic acid), TA-12 (1-[2-chloroethoxycarbonyl-methyl]-4-naphthalenesulfonic acid calcium salt) and TA-14 (1-[2-dimethylaminoethoxicarbonylmethyl]naphtalene chlormethylate) were investigated. The experiments were performed with hypocotyl tissue cultures of oilseed rape and barley microspores in vitro. The auxin analogues applied revealed differences of morphogenetic competence in dedifferentiation-redifferentiation processes that occurred in oilseed rape cultures. TA-12 and TA-14 applied together with NAA and BA (6-benzylaminopurine) caused more intensive callus growth in comparison with 2,4-D. Rhizogenesis was induced when 2,4-D was substituted by TA-12. Compound TA-14, unlike TA-12, facilitated the appearance and development of cotyledons in callus tissues. Hower the compounds TA-12 and TA-14 have no positive effect in monocot plant — barly anther culture for callogenesis and regeneration in comparison to indole-3-acetic acid (IAA). TA-14 and TA-12 showed similar but not identical auxin properties and demonstrated high efficiency as modifiers of rape-dicot plant growth and morphogenesis.  相似文献   

18.
4-Chlorindole-3-acetic acid (4-CI-IAA), an endogenous auxin in certain plant species of Fabaceae, has a higher efficiency in stimulating cell elongation of grass coleoptiles compared with indole-3-acetic acid (IAA), particularly at low concentrations. However, some investigations reported a 1,000-fold discrepancy between growth stimulation and binding affinity of 4-CI-IAA to auxin-binding protein 1 (ABP1) from maize. Here we report binding data of 4-CI-IAA and three alkylated IAA derivatives using purified ABP1 in equilibrium dialysis. There is a clear correlation between the growth-promoting effects and the binding affinity to ABP1 of the different IAA analogues measured by competition of [3H]naphthalene-1-acetic acid binding. Our data are consistent with the hypothesis that ABP1 mediates auxin-induced cell elongation.Abbreviations ABP1 auxin-binding protein 1 - 4-CI-IAA 4-chloroindole-3-acetic acid - NAA naphthalene-1-acetic acid - ER endoplasmic reticulum - IAA indole-3-acetic acid - 2-Me-IAA 2-methylindole-3-acetic acid - 4-Me-IAA 4-methylindole-3-acetic acid - 4-Et-IAA 4-ethylindole-3-acetic acid - MES 4-morpholineethanesulfonic acid - PAA phenylacetic acid  相似文献   

19.
20.
Rapid, auxin-responsive degradation of multiple auxin/indole-3-acetic acid (Aux/IAA) proteins is essential for plant growth and development. Domain II residues were previously shown to be required for the degradation of several Arabidopsis thaliana Aux/IAA proteins. We examined the degradation of additional full-length family members and the proteolytic importance of N-terminal residues outside domain II using luciferase (LUC) fusions. Elimination of domain I did not affect degradation. However, substituting an Arg for a conserved Lys between domains I and II specifically impaired basal degradation without compromising the auxin-mediated acceleration of degradation. IAA8, IAA9, and IAA28 contain domain II and a conserved Lys, but they were degraded more slowly than previously characterized family members when expressed as LUC fusions, suggesting that sequences outside domain II influence proteolysis. We analyzed the degradation of IAA31, with a region somewhat similar to domain II but without the conserved Lys, and of IAA20, which lacks domain II and the conserved Lys. Both IAA20:LUC and epitope-tagged IAA20 were long-lived, and their longevity was not influenced by auxin. Epitope-tagged IAA31 was long-lived, like IAA20, but by contrast, it showed accelerated degradation in response to auxin. The existence of long-lived and auxin-insensitive Aux/IAA proteins suggeststhat they may play a novel role in auxin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号