首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The four serotypes of dengue virus (DENV) cause dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Severe disease has been associated with heterotypic secondary DENV infection, mediated by cross-reactive antibodies (Abs) and/or cross-reactive T cells. The role of cross-reactive immunity in mediating enhanced disease versus cross-protection against secondary heterotypic DENV infection is not well defined. A better understanding of the cross-reactive immune response in natural infections is critical for development of safe and effective tetravalent vaccines. We studied the B cell phenotype of circulating B cells in the blood of pediatric patients suspected of dengue during the 2010-2011 dengue season in Managua, Nicaragua (n = 216), which was dominated by the DENV-3 serotype. We found a markedly larger percentage of plasmablast/plasma cells (PB/PCs) circulating in DENV-positive patients as compared to patients with Other Febrile Illnesses (OFIs). The percentage of DENV-specific PB/PCs against DENV-3 represented 10% of the circulating antibody-producing cells (ASCs) in secondary DENV-3 infections. Importantly, the cross-reactive DENV-specific B cell response was higher against a heterotypic serotype, with 46% of circulating PB/PCs specific to DENV-2 and 10% specific to DENV-3 during acute infection. We also observed a higher cross-reactive DENV-specific IgG serum avidity directed against DENV-2 as compared to DENV-3 during acute infection. The neutralization capacity of the serum was broadly cross-reactive against the four DENV serotypes both during the acute phase and at 3 months post-onset of symptoms. Overall, the cross-reactive B cell immune response dominates during secondary DENV infections in humans. These results reflect our recent findings in a mouse model of DENV cross-protection. In addition, this study enabled the development of increased technical and research capacity of Nicaraguan scientists and the implementation of several new immunological assays in the field.  相似文献   

2.
The four dengue virus (DENV) serotypes cause dengue fever and dengue hemorrhagic fever/dengue shock syndrome. Although severe disease has been associated with heterotypic secondary DENV infection, most secondary DENV infections are asymptomatic or result in classic DF. The role of cross-reactive immunity in mediating cross-protection against secondary heterotypic DENV infection is not well understood. DENV infection of IFN-α/β and IFN-γ receptor-deficient (AG129) mice reproduces key features of human disease. We previously demonstrated a role in cross-protection for pre-existing cross-reactive Abs, maintained by long-lived plasma cells. In this study, we use a sequential infection model, infecting AG129 mice with DENV-1, followed by DENV-2 6-8 wk later. We find that increased DENV-specific avidity during acute secondary heterotypic infection is mediated by cross-reactive memory B cells, as evidenced by increased numbers of DENV-1-specific cells by ELISPOT and higher avidity against DENV-1 of supernatants from polyclonally stimulated splenocytes isolated from mice experiencing secondary DENV-2 infection. However, increased DENV-specific avidity is not associated with increased DENV-specific neutralization, which appears to be mediated by naive B cells. Adoptive transfer of DENV-1-immune B and T cells into naive mice prior to secondary DENV-2 infection delayed mortality. Mice depleted of T cells developed signs of disease, but recovered after secondary DENV infection. Overall, we found that protective cross-reactive Abs are secreted by both long-lived plasma cells and memory B cells and that both cross-reactive B cells and T cells provide protection against a secondary heterotypic DENV infection. Understanding the protective immunity that develops naturally against DENV infection may help design future vaccines.  相似文献   

3.
Dengue virus (DENV) infection of human endothelial cells has been implicated in the pathobiology of dengue hemorrhagic fever and dengue shock syndrome. However, the mechanisms by which DENV infections alter the functional physiology of endothelial cells remain incompletely understood. In the present study, we examined the susceptibility of a human liver sinusoidal endothelial cell line SK Hep1 to all four serotypes of DENV and studied the effect of the virus on in vitro angiogenesis. All four serotypes of DENV could infect the SK Hep1 cells, but showed variable cytopathic effects, the most pronounced being that of DENV-2. Electron microscopy of the infected cells showed significant ultrastructural changes. In vitro angiogenesis assays on DENV-2 exposed SK Hep1 cells in the matrigel system showed inhibition compared with the controls. Importantly, transfection and transient expression of the DENV-2 envelope glycoprotein (E) in these cells showed drastic alterations in cell shapes and the E protein could be localized by fluorescence microscopy in terminal knob-like structures. Therefore, SK Hep1, a human hepatic sinusoid-derived endothelial cell line, may constitute a potential model to study DENV-endothelial cell interactions in vitro, especially towards understanding the possible virus-induced changes in hepatic endothelium and its role in disease pathogenesis.  相似文献   

4.
The risk of antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is a major obstacle for the development of dengue vaccine candidates. Here, we described a novel approach for assessment of ADE by measuring DENV nonstructural protein 1 (NS1) production in culture supernatants with Fcγ receptor-expressing K562 cells in ELISA format (ELISA-ADE). Enhancing activities quantified by measurement of kinetics of NS1 production were in a good agreement with the results of the virus titration assay. In conjunction with the previously established enzyme-linked immunospot-based micro-neutralization test (ELISPOT-MNT) in 96-well format, the observable dose–response profiles of enhancing and neutralizing activities against all four DENV serotypes were produced with two flaviviral envelope cross-reactive monoclonal antibodies and four primary DENV-1-infected human sera. The simple high-throughput ELISA-ADE assay offers advantages for quantitative measurement of infection enhancement that can potentially be applied to large-scale seroepidemiological studies of DENV infection and vaccination.  相似文献   

5.
Dengue fever of tropics is a mosquito transmitted devastating disease caused by dengue virus (DENV). There is no effective vaccine available, so far, against any of its four serotypes (DENV-1, DENV-2, DENV-3, and DENV-4). There is a need for the development of preventive and therapeutic vaccines against DENV to decrease the prevalence of dengue fever, especially in Pakistan. In this research, linear and conformational B-cell epitopes of envelope glycoprotein of DENV-2 and DENV-3 (the most prevalent serotypes in Pakistan) were predicted. We used Kolaskar and Tongaonkar method for linear epitope prediction, Emini’s method for surface accessibility prediction and Karplus and Schulz’s algorithm for flexibility determination. To propose three dimensional epitopes, the E proteins for both serotypes were homology modeled by using Phyre2 V 2.0 server, and ElliPro was used for the prediction of surface epitopes on their globular structure. Total 21 and 19 linear epitopes were predicted for DENV-2 and DENV-3 Pakistani isolates respectively. Whereas, 5 and 4 discontinuous epitopes were proposed for DENV-2 and DENV-3 Pakistani isolates respectively. Moreover, the values of surface accessibility, flexibility and solvent-accessibility can be helpful in analyzing vaccines against DENV-2 and DENV-3. In conclusion, the proposed continuous and discontinuous antigenic peptides can be valuable candidates for diagnostic and therapeutics of DENV.  相似文献   

6.
Dengue virus (DENV) may cause symptomatic infection with mild, undifferentiated febrile illness called classical dengue fever (DF) or a more severe disease, potentially fatal, known as dengue hemorrhagic fever (DHF) or dengue shock syndrome. The pathogenesis of DHF is based on the virulence of the infecting DENV and depends on the infecting serotypes and genotypes; it is also based on the immunopathogenesis that is mediated by host immune responses, including dengue virus-cross-reactive antibodies that augment the severity of infections. Involvement of central nervous system (CNS) is extensively described. The present study describes the virulence of DENV-3 isolates in a mouse model by intracranial (i.c.) inoculation with genotypes I and III. Our data suggest that, in this experimental model, DENV-3 genotype I may have the propensity to cause neurological disease in mice, whereas the genotype III is associated with asymptomatic infection in mice. Additionally, the symptomatic mice show a decrease of white blood cell count, infectious DENV in the brains and alterations in levels of IFN-gamma, IL-6 and MCP-1. The results confirm the mouse model as a way to study the biology of DENV-3 isolates and to improve the knowledge about the neurovirulence of the different genotypes of DENV.  相似文献   

7.
Dengue is a mosquito-borne disease caused by one of four serotypes of Dengue virus (DENV-1-4). Severe dengue infection in humans is characterized by thrombocytopenia, increased vascular permeability, hemorrhage and shock. However, there is little information about host response to DENV infection. Here, mechanisms accounting for IFN-γ production and effector function during dengue disease were investigated in a murine model of DENV-2 infection. IFN-γ expression was greatly increased after infection of mice and its production was preceded by increase in IL-12 and IL-18 levels. In IFN-γ(-/-) mice, DENV-2-associated lethality, viral loads, thrombocytopenia, hemoconcentration, and liver injury were enhanced, when compared with wild type-infected mice. IL-12p40(-/-) and IL-18(-/-) infected-mice showed decreased IFN-γ production, which was accompanied by increased disease severity, higher viral loads and enhanced lethality. Blockade of IL-18 in infected IL-12p40(-/-) mice resulted in complete inhibition of IFN-γ production, greater DENV-2 replication, and enhanced disease manifestation, resembling the response seen in DENV-2-infected IFN-γ(-/-) mice. Reduced IFN-γ production was associated with diminished Nitric Oxide-synthase 2 (NOS2) expression and NOS2(-/-) mice had elevated lethality, more severe disease evolution and increased viral load after DENV-2 infection. Therefore, IL-12/IL-18-induced IFN-γ production and consequent NOS2 induction are of major importance to host resistance against DENV infection.  相似文献   

8.
Approximately 500,000 people are hospitalized with severe dengue illness annually. Antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is believed to contribute to the pathogenic cytokine storm described in severe dengue patients, but the precise signaling pathways contributing to elevated cytokine production are not elucidated. IL-1β is a potent inflammatory cytokine that is frequently elevated during severe dengue, and the unique dual regulation of IL-1β provides an informative model to study ADE-induced cytokines. This work utilizes patient-derived anti-DENV mAbs and primary human monocytes to study ADE-induced IL-1β and other cytokines. ADE of DENV serotype 2 (DENV-2) elevates mature IL-1β secretion by monocytes independent of DENV replication by 4 h postinoculation (hpi). Prior to this, DENV immune complexes activate spleen tyrosine kinase (Syk) within 1 hpi. Syk induces elevated IL1B, TNF, and IL6 mRNA by 2 hpi. Syk mediates elevated IL-1β secretion by activating ERK1/2, and both Syk and ERK1/2 inhibitors ablated ADE-induced IL-1β secretion. Maturation of pro-IL-1β during ADE requires caspase-1 and NLRP3, but caspase-1 is suboptimally increased by ADE and can be significantly enhanced by a typical inflammasome agonist, ATP. Importantly, this inflammatory Syk-ERK signaling axis requires DENV immune complexes, because DENV-2 in the presence of serotype-matched anti-DENV-2 mAb, but not anti-DENV-1 mAb, activates Syk, ERK, and IL-1β secretion. This study provides evidence that DENV-2 immune complexes activate Syk to mediate elevated expression of inflammatory cytokines. Syk and ERK may serve as new therapeutic targets for interfering with ADE-induced cytokine expression during severe dengue.  相似文献   

9.

Background

There is an urgent need to field test dengue vaccines to determine their role in the control of the disease. Our aims were to study dengue epidemiology and prepare the site for a dengue vaccine efficacy trial.

Methods and Findings

We performed a prospective cohort study of children in primary schools in central Thailand from 2006 through 2009. We assessed the epidemiology of dengue by active fever surveillance for acute febrile illness as detected by school absenteeism and telephone contact of parents, and dengue diagnostic testing. Dengue accounted for 394 (6.74%) of the 5,842 febrile cases identified in 2882, 3104, 2717 and 2312 student person-years over the four years, respectively. Dengue incidence was 1.77% in 2006, 3.58% in 2007, 5.74% in 2008 and 3.29% in 2009. Mean dengue incidence over the 4 years was 3.6%. Dengue virus (DENV) types were determined in 333 (84.5%) of positive specimens; DENV serotype 1 (DENV-1) was the most common (43%), followed by DENV-2 (29%), DENV-3 (20%) and DENV-4 (8%). Disease severity ranged from dengue hemorrhagic fever (DHF) in 42 (10.5%) cases, dengue fever (DF) in 142 (35.5%) cases and undifferentiated fever (UF) in 210 (52.5%) cases. All four DENV serotypes were involved in all disease severity. A majority of cases had secondary DENV infection, 95% in DHF, 88.7% in DF and 81.9% in UF. Two DHF (0.5%) cases had primary DENV-3 infection.

Conclusion

The results illustrate the high incidence of dengue with all four DENV serotypes in primary school children, with approximately 50% of disease manifesting as mild clinical symptoms of UF, not meeting the 1997 WHO criteria for dengue. Severe disease (DHF) occurred in one tenth of cases. Data of this type are required for clinical trials to evaluate the efficacy of dengue vaccines in large scale clinical trials.  相似文献   

10.

Background

Disease caused by the dengue virus (DENV) is a significant cause of morbidity throughout the world. Although prior research has focused on the association of specific DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) with the development of severe outcomes such as dengue hemorrhagic fever and dengue shock syndrome, relatively little work has correlated other clinical manifestations with a particular DENV serotype. The goal of this study was to estimate and compare the prevalence of non-hemorrhagic clinical manifestations of DENV infection by serotype.

Methodology and Principal Findings

Between the years 2005–2010, individuals with febrile disease from Peru, Bolivia, Ecuador, and Paraguay were enrolled in an outpatient passive surveillance study. Detailed information regarding clinical signs and symptoms, as well as demographic information, was collected. DENV infection was confirmed in patient sera with polyclonal antibodies in a culture-based immunofluorescence assay, and the infecting serotype was determined by serotype-specific monoclonal antibodies. Differences in the prevalence of individual and organ-system manifestations were compared across DENV serotypes. One thousand seven hundred and sixteen individuals were identified as being infected with DENV-1 (39.8%), DENV-2 (4.3%), DENV-3 (41.5%), or DENV-4 (14.4%). When all four DENV serotypes were compared with each other, individuals infected with DENV-3 had a higher prevalence of musculoskeletal and gastrointestinal manifestations, and individuals infected with DENV-4 had a higher prevalence of respiratory and cutaneous manifestations.

Conclusions/Significance

Specific clinical manifestations, as well as groups of clinical manifestations, are often overrepresented by an individual DENV serotype.  相似文献   

11.

Background

Nearly half of the world’s population is at risk for dengue, yet no licensed vaccine or anti-viral drug is currently available. Dengue is caused by any of four dengue virus serotypes (DENV-1 through DENV-4), and infection by a DENV serotype is assumed to provide life-long protection against re-infection by that serotype. We investigated the validity of this fundamental assumption during a large dengue epidemic caused by DENV-2 in Iquitos, Peru, in 2010–2011, 15 years after the first outbreak of DENV-2 in the region.

Methodology/Principal Findings

We estimated the age-dependent prevalence of serotype-specific DENV antibodies from longitudinal cohort studies conducted between 1993 and 2010. During the 2010–2011 epidemic, active dengue cases were identified through active community- and clinic-based febrile surveillance studies, and acute inapparent DENV infections were identified through contact tracing studies. Based on the age-specific prevalence of DENV-2 neutralizing antibodies, the age distribution of DENV-2 cases was markedly older than expected. Homologous protection was estimated at 35.1% (95% confidence interval: 0%–65.2%). At the individual level, pre-existing DENV-2 antibodies were associated with an incomplete reduction in the frequency of symptoms. Among dengue cases, 43% (26/66) exhibited elevated DENV-2 neutralizing antibody titers for years prior to infection, compared with 76% (13/17) of inapparent infections (age-adjusted odds ratio: 4.2; 95% confidence interval: 1.1–17.7).

Conclusions/Significance

Our data indicate that protection from homologous DENV re-infection may be incomplete in some circumstances, which provides context for the limited vaccine efficacy against DENV-2 in recent trials. Further studies are warranted to confirm this phenomenon and to evaluate the potential role of incomplete homologous protection in DENV transmission dynamics.  相似文献   

12.
Dengue is the leading cause of mosquito-borne viral infections and no vaccine is available now. Envelope protein domain III (ED3) is the major target for the binding of dengue virus neutralizing antibodies; however, the ED3-specifc T-cell response is less well understood. To investigate the T-cell responses to four serotypes of dengue virus (DENV-1 to 4), we immunized mice using either a tetravalent ED3-based DNA or protein vaccine, or combined both as a DNA prime-protein boost strategy (prime-boost). A significant serotype-dependent IFN-γ or IL-4 response was observed in mice immunized with either the DNA or protein vaccine. The IFN-γ response was dominant to DENV-1 to 3, whereas the IL-4 response was dominant to DENV-4. Although the similar IgG titers for the four serotypes were observed in mice immunized with the tetravalent vaccines, the neutralizing antibody titers varied and followed the order of 2 = 3>1>4. Interestingly, the lower IFN-γ response to DENV-4 is attributable to the immunodominance change between two CD4+ T-cell epitopes; one T-cell epitope located at E349-363 of DENV-1 to 3 was more immunogenic than the DENV-4 epitope E313-327. Despite DENV-4 specific IFN-γ responses were suppressed by immunodominance change, either DENV-4-specific IFN-γ or neutralizing antibody responses were still recalled after DENV-4 challenge and contributed to virus clearance. Immunization with the prime-boost elicited both IFN-γ and neutralizing antibody responses and provided better protection than either DNA or protein immunization. Our findings shed light on how ED3-based tetravalent dengue vaccines sharpen host CD4 T-cell responses and contribute to protection against dengue virus.  相似文献   

13.
Dengue virus is a major global health threat and can lead to life-threatening hemorrhagic complications due to immune activation and cytokine production. Cross-reactive antibodies to an earlier dengue virus infection are a recognized risk factor for severe disease. These antibodies bind heterologous dengue serotypes and enhance infection into Fc-receptor-bearing cells, a process known as antibody-dependent enhancement of infection. One crucial cytokine seen elevated in severe dengue patients is IL-1β, a potent inflammatory cytokine matured by the inflammasome. We used a highly-physiologic system by studying antibody-dependent enhancement of IL-1β in primary human monocytes with anti-dengue human monoclonal antibodies isolated from patients. Antibody-enhancement increased viral replication in primary human monocytes inoculated with supernatant harvested from Vero cells infected with dengue virus serotype 2 (DENV-2) 16681. Surprisingly, IL-1β secretion induced by infectious supernatant harvested from two independent Vero cell lines was not enhanced by antibody. Secretion of multiple other inflammatory cytokines was also independent of antibody signaling. However, IL-1β secretion did require NLRP3 and caspase-1 activity. Immunodepletion of dengue virions from the infectious supernatant confirmed that virus was not the main IL-1β-inducing agent, suggesting that a supernatant component(s) not associated with the virion induced IL-1β production. We excluded RNA, DNA, contaminating LPS, viral NS1 protein, complement, and cytokines. In contrast, purified Vero-derived DENV-2 16681 exhibited antibody-enhancement of both infection and IL-1β induction. Furthermore, C6/36 mosquito cells did not produce such an inflammatory component, as crude supernatant harvested from insect cells infected with DENV-2 16681 induced antibody-dependent IL-1β secretion. This study indicates that Vero cells infected with DENV-2 16681 may produce inflammatory components during dengue virus propagation that mask the virus-specific immune response. Thus, the choice of host cell and viral purity should be carefully considered, while insect-derived virus represents a system that elicits antibody-dependent cytokine responses to dengue virus with fewer confounding issues.  相似文献   

14.
Passive immunization with monoclonal antibodies from humans or nonhuman primates represents an attractive alternative to vaccines for prevention of illness caused by dengue viruses (DENV) and other flaviviruses, including the West Nile virus. In a previous study, repertoire cloning to recover Fab fragments from bone marrow mRNA of chimpanzees infected with all four DENV serotypes (dengue virus serotype 1 [DENV-1] to DENV-4) was described. In that study, a humanized immunoglobulin G1 (IgG1) antibody that efficiently neutralized DENV-4 was recovered and characterized. In this study, the phage library constructed from the chimpanzees was used to recover Fab antibodies against the other three DENV serotypes. Serotype-specific neutralizing Fabs were not identified. Instead, we recovered DENV-neutralizing Fabs that specifically precipitated the envelope protein and were cross-reactive with all four DENV serotypes. Three of the Fabs competed with each other for binding to DENV-1 and DENV-2, although each of these Fabs contained a distinct complementarity determining region 3 (CDR3)-H sequence. Fabs that shared an identical or nearly identical CDR3-H sequences cross-neutralized DENV-1 and DENV-2 at a similar high 50% plaque reduction neutralization test (PRNT(50)) titer, ranging from 0.26 to 1.33 microg/ml, and neutralized DENV-3 and DENV-4 but at a titer 10- to 20-fold lower. One of these Fabs, 1A5, also neutralized the West Nile virus most efficiently among other flaviviruses tested. Fab 1A5 was converted to a full-length antibody in combination with human sequences for production in mammalian CHO cells. Humanized IgG1 1A5 proved to be as efficient as Fab 1A5 for cross-neutralization of DENV-1 and DENV-2 at a titer of 0.48 and 0.95 microg/ml, respectively. IgG1 1A5 also neutralized DENV-3, DENV-4, and the West Nile virus at a PRNT(50) titer of approximately 3.2 to 4.2 microg/ml. This humanized antibody represents an attractive candidate for further development of immunoprophylaxis against DENV and perhaps other flavivirus-associated diseases.  相似文献   

15.
Low socioeconomic status (SES), high temperature, and increasing rainfall patterns are associated with increased dengue case counts. However, the effect of climatic variables on individual dengue virus (DENV) serotypes and the extent to which serotype count affects the rate of severe dengue in Mexico have not been studied before. A principal components analysis was used to determine the poverty indices across Mexico. Conditional autoregressive Bayesian models were used to determine the effect of poverty and climatic variables on the rate of serotype distribution and severe dengue in Mexico. A unit increase in poverty increased the rate of DENV-1, DENV-2, DENV-3, and DENV-4 by 8.4%, 5%, 16%, and 13.8% respectively. An increase in one case attributable to DENV-1, DENV-2, DENV-3, and DENV-4 was independently associated with an increase in the rate of severe dengue by 0.02%, 0.1%, 0.03%, and 5.8% respectively. Hotspots of all DENV serotypes and severe dengue are found mostly in parts of the Northeastern, Center west, and Southeastern regions of Mexico. The association between climatic parameters predominant in the Southeast region and severe dengue leaves several states in this region at an increased risk of a higher number of severe dengue cases. Our study's results may guide policies that help allocate public health resources to the most vulnerable municipalities in Mexico.  相似文献   

16.
The global spread of the four dengue virus serotypes (DENV-1 to -4) has made this virus a major and growing public health concern. Generally, pre-existing neutralizing antibodies derived from primary infection play a significant role in protecting against subsequent infection with the same serotype. By contrast, these pre-existing antibodies are believed to mediate a non-protective response to subsequent heterotypic DENV infections, leading to the onset of dengue illness. In this study, we prepared hybridomas producing human monoclonal antibodies (HuMAbs) against DENV using peripheral blood mononuclear cells (PBMCs) from patients in the acute phase (around 1 week after the onset of illness) or the convalescent phase (around 2weeks after the onset of illness) of secondary infection. Interestingly, a larger number of hybridoma clones was obtained from patients in the acute phase than from those in the convalescent phase. Most HuMAbs from acute-phase infections were cross-reactive with all four DENV serotypes and showed significant neutralization activity to all four DENV serotypes. Thus, secondary DENV infection plays a significant role in stimulating memory cells to transiently increase the number of antibody-secreting plasma cells in patients in the early phase after the secondary infection. These HuMAbs will enable us to better understand the protective and pathogenic effects of DENV infection, which could vary greatly among secondarily-infected individuals.  相似文献   

17.
Although prior studies have characterized the neutralizing activities of monoclonal antibodies (MAbs) against dengue virus (DENV) serotypes 1, 2, and 3 (DENV-1, DENV-2, and DENV-3), few reports have assessed the activity of MAbs against DENV-4. Here, we evaluated the inhibitory activity of 81 new mouse anti-DENV-4 MAbs. We observed strain- and genotype-dependent differences in neutralization of DENV-4 by MAbs mapping to epitopes on domain II (DII) and DIII of the envelope (E) protein. Several anti-DENV-4 MAbs inefficiently inhibited at least one strain and/or genotype, suggesting that the exposure or sequence of neutralizing epitopes varies within isolates of this serotype. Remarkably, flavivirus cross-reactive MAbs, which bound to the highly conserved fusion loop in DII and inhibited infection of DENV-1, DENV-2, and DENV-3, more weakly neutralized five different DENV-4 strains encompassing the genetic diversity of the serotype after preincubation at 37°C. However, increasing the time of preincubation at 37°C or raising the temperature to 40°C enhanced the potency of DII fusion loop-specific MAbs and some DIII-specific MAbs against DENV-4 strains. Prophylaxis studies in two new DENV-4 mouse models showed that neutralization titers of MAbs after preincubation at 37°C correlated with activity in vivo. Our studies establish the complexity of MAb recognition against DENV-4 and suggest that differences in epitope exposure relative to other DENV serotypes affect antibody neutralization and protective activity.  相似文献   

18.
Dengue is an emerging infectious disease that has become the most important arboviral infection worldwide. There are four serotypes of dengue virus, DENV-1, DENV-2, DENV-3, and DENV-4, each capable of causing the full spectrum of disease. rDEN1Δ30 is a live attenuated investigational vaccine for the prevention of DENV-1 illness and is also a component of an investigational tetravalent DENV vaccine currently in Phase I evaluation. A single subcutaneous dose of rDEN1Δ30 was previously shown to be safe and immunogenic in healthy adults. In the current randomized placebo-controlled trial, 60 healthy flavivirus-naive adults were randomized to receive 2 doses of rDEN1Δ30 (N = 50) or placebo (N = 10), either on study days 0 and 120 (cohort 1) or 0 and 180 (cohort 2). We sought to evaluate the safety and immunogenicity of this candidate vaccine in 50 additional vaccinees and to test whether the humoral immune response could be boosted by a second dose administered 4 or 6 months after the first dose. The first dose of vaccine was well tolerated, infected 47/50 vaccinees and induced seroconversion in 46/50 vaccinees. Irrespective of dosing interval, the second dose of vaccine was also well tolerated but did not induce any detectable viremia or ≥4-fold rise in serum neutralizing antibody titer.Only five subjects had an anamnestic antibody response detectable by ELISA following a second dose of vaccine, demonstrating that the vaccine induced sterilizing humoral immunity in most vaccinees for at least six months following primary vaccination.The promising safety and immunogenicity profile of this vaccine confirms its suitability for inclusion in a tetravalent dengue vaccine.  相似文献   

19.

Background

Although antibody responses to dengue virus (DENV) in naturally infected individuals have been extensively studied, the functionality of DENV specific memory T cell responses in relation to clinical disease severity is incompletely understood.

Methodology/Principal findings

Using ex vivo IFNγ ELISpot assays, and by determining cytokines produced in ELISpot supernatants, we investigated the functionality of DENV-specific memory T cell responses in a large cohort of individuals from Sri Lanka (n=338), who were naturally infected and were either hospitalized due to dengue or had mild or sub clinical dengue infection. We found that T cells of individuals with both past mild or sub clinical dengue infection and who were hospitalized produced multiple cytokines when stimulated with DENV-NS3 peptides. However, while DENV-NS3 specific T cells of those with mild/sub clinical dengue infection were more likely to produce only granzyme B (p=0.02), those who were hospitalized were more likely to produce both TNFα and IFNγ (p=0.03) or TNFα alone.We have also investigated the usefulness of a novel T cell based assay, which can be used to determine the past infecting DENV serotype. 92.4% of DENV seropositive individuals responded to at least one DENV serotype of this assay and none of the seronegatives responded. Individuals who were seronegative, but had received the Japanese encephalitis vaccine too made no responses, suggesting that the peptides used in this assay did not cross react with the Japanese encephalitis virus.

Conclusions/significance

The types of cytokines produced by DENV-specific memory T cells appear to influence the outcome of clinical disease severity. The novel T cell based assay, is likely to be useful in determining the past infecting DENV serotype in immune-epidemiological studies and also in dengue vaccine trials.  相似文献   

20.
Dengue disease is currently a major health problem in Indonesia and affects all provinces in the country, including Semarang Municipality, Central Java province. While dengue is endemic in this region, only limited data on the disease epidemiology is available. To understand the dynamics of dengue in Semarang, we conducted clinical, virological, and demographical surveillance of dengue in Semarang and its surrounding regions in 2012. Dengue cases were detected in both urban and rural areas located in various geographical features, including the coastal and highland areas. During an eight months'' study, a total of 120 febrile patients were recruited, of which 66 were serologically confirmed for dengue infection using IgG/IgM ELISA and/or NS1 tests. The cases occurred both in dry and wet seasons. Majority of patients were under 10 years old. Most patients were diagnosed as dengue hemorrhagic fever, followed by dengue shock syndrome and dengue fever. Serotyping was performed in 31 patients, and we observed the co-circulation of all four dengue virus (DENV) serotypes. When the serotypes were correlated with the severity of the disease, no direct correlation was observed. Phylogenetic analysis of DENV based on Envelope gene sequence revealed the circulation of DENV-2 Cosmopolitan genotype and DENV-3 Genotype I. A striking finding was observed for DENV-1, in which we found the co-circulation of Genotype I with an old Genotype II. The Genotype II was represented by a virus strain that has a very slow mutation rate and is very closely related to the DENV strain from Thailand, isolated in 1964 and never reported in other countries in the last three decades. Moreover, this virus was discovered in a cool highland area with an elevation of 1,001 meters above the sea level. The discovery of this old DENV strain may suggest the silent circulation of old virus strains in Indonesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号