首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genioglossus (GG) muscle activity of four infants with micrognathia and obstructive sleep apnea was recorded to assess the role of this tongue muscle in upper airway maintenance. Respiratory air flow, esophageal pressure, and intramuscular GG electromyograms (EMG) were recorded during wakefulness and sleep. Both tonic and phasic inspiratory GG-EMG activity was recorded in each of the infants. On occasion, no phasic GG activity could be recorded; these silent periods were unassociated with respiratory embarrassment. GG activity increased during sigh breaths. GG activity also increased when the infants spontaneously changed from oral to nasal breathing and, in two infants, with neck flexion associated with complete upper airway obstruction, suggesting that GG-EMG activity is influenced by sudden changes in upper airway resistance. During sleep, the GG-EMG activity significantly increased with 5% CO2 breathing (P less than or equal to 0.001). With nasal airway occlusion during sleep, the GG-EMG activity increased with the first occluded breath and progressively increased during the subsequent occluded breaths, indicating mechanoreceptor and suggesting chemoreceptor modulation. During nasal occlusion trials, there was a progressive increase in phasic inspiratory activity of the GG-EMG that was greater than that of the diaphragm activity (as reflected by esophageal pressure excursions). When pharyngeal airway closure occurred during a nasal occlusion trial, the negative pressure at which the pharyngeal airway closed (upper airway closing pressure) correlated with the GG-EMG activity at the time of closure, suggesting that the GG muscle contributes to maintaining pharyngeal airway patency in the micrognathic infant.  相似文献   

2.
It is generally believed that reflex recruitment of pharyngeal dilator muscles is insufficient to open the airway of obstructive apnea (OSA) patients once it is closed and, therefore, that arousal is required. Yet arousal promotes recurrence of obstruction. There is no information about how much dilator [genioglossus (GG)] activation is required to open the airway (GG Opening Threshold) or about the capacity of reflex mechanisms to increase dilator activity before/without arousal (Non-Arousal Activation). The relationship between these two variables is important for ventilatory stability. We measured both variables in 32 OSA patients (apnea-hypopnea index 74 ± 42 events/h). GG activity was monitored while patients were on optimal continuous positive airway pressure (CPAP). Zopiclone was administered to delay arousal. Maximum GG activity (GG(MAX)) and airway closing pressure (P(CRIT)) were measured. During stable sleep CPAP was decreased to 1 cmH(2)O to induce obstructive events and the dial-downs were maintained until the airway opened with or without arousal. GG activity at the instant of opening (GG Opening Threshold) was measured. GG Opening Threshold averaged only 10.4 ± 9.5% GG(Max) and did not correlate with P(CRIT) (r = 0.04). Twenty-six patients had >3 openings without arousal, indicating that Non-Arousal Activation can exceed GG Opening Threshold in the majority of patients. GG activity reached before arousal in Arousal-Associated Openings was only 5.4 ± 4.6% GG(MAX) below GG Opening Threshold. We conclude that in most patients GG activity required to open the airway is modest and can be reached by non-arousal mechanisms. Arousals occur in most cases just before non-arousal mechanisms manage to increase activity above GG Opening Threshold. Measures to reduce GG Opening Threshold even slightly may help stabilize breathing in many patients.  相似文献   

3.
The sleeping state places unique demands on the ventilatory control system. The sleep-induced increase in airway resistance, the loss of consciousness, and the need to maintain the sleeping state without frequent arousals require the presence of complex compensatory mechanisms. The increase in upper airway resistance during sleep represents the major effect of sleep on ventilatory control. This occurs because of a loss of muscle activity, which narrows the airway and also makes it more susceptible to collapse in response to the intraluminal pressure generated by other inspiratory muscles. The magnitude and timing of the drive to upper airway vs. other inspiratory pump muscles determine the level of resistance and can lead to inspiratory flow limitation and complete upper airway occlusion. The fall in ventilation with this mechanical load is not prevented, as it is in the awake state, because of the absence of immediate compensatory responses during sleep. However, during sleep, compensatory mechanisms are activated that tend to return ventilation toward control levels if the load is maintained. Upper airway protective reflexes, intrinsic properties of the chest wall, muscle length-compensating reflexes, and most importantly chemoresponsiveness of both upper airway and inspiratory pump muscles are all present during sleep to minimize the adverse effect of loading on ventilation. In non-rapid-eye-movement sleep, the high mechanical impedance combined with incomplete load compensation causes an increase in arterial PCO2 and augmented respiratory muscle activity. Phasic rapid-eye-movement sleep, however, interferes further with effective load compensation, primarily by its selective inhibitory effects on the phasic activation of postural muscles of the chest wall. The level and pattern of ventilation during sleep in health and disease states represent a compromise toward the ideal goal, which is to achieve maximum load compensation and meet the demand for chemical homeostasis while maintaining sleep state.  相似文献   

4.
Obstructive sleep apnea (OSA) in infants has been shown to resolve frequently without a cortical arousal. It is unknown whether infants do not require arousal to terminate apneas or whether this is a consequence of the OSA. We studied the apnea and arousal patterns of eight infants with OSA before and after treatment with nasal continuous positive airway pressure (CPAP). These infants were age matched to eight untreated infants with OSA and eight normal infants. Polysomnographic studies were performed on each infant. We found that the majority of central and obstructive apneas were terminated without arousal in all OSA infants. After several weeks of nasal CPAP treatment, the proportion of apneas terminating with an arousal during rapid-eye-movement sleep increased in treated infants compared with untreated infants. Spontaneous arousals during rapid-eye-movement sleep were reduced in all OSA infants; however, during CPAP treatment, the spontaneous arousals increased to the normal control level. We conclude that OSA in infants possibly depresses the arousal response and treatment of these infants with nasal CPAP partially reverses this depression.  相似文献   

5.
To characterize ventilatory responses to bronchoconstriction during sleep and to assess the effect of prior sleep deprivation on ventilatory and arousal responses to bronchoconstriction, bronchoconstriction was induced in eight asthmatic subjects while they were awake, during normal sleep, and during sleep after a 36-h period of sleep deprivation. Each subject was bronchoconstricted with increasing concentrations of aerosolized methacholine while ventilatory patterns and lower airway resistance (Rla) were continually monitored. The asthmatic patients maintained their minute ventilation as Rla increased under all conditions, demonstrating a stable tidal volume with a mild increase in respiratory frequency. Inspiratory drive, as measured by occlusion pressure (P0.1), increased progressively and significantly as Rla increased under all conditions (slopes of P0.1 vs. Rla = 0.249, 0.112, and 0.154 for awake, normal sleep, and sleep after sleep deprivation, respectively, P less than 0.0006). Chemostimuli did not appear to contribute significantly to the observed increases in P0.1. Prior sleep deprivation had no effect on ventilatory and P0.1 responses to bronchoconstriction but did significantly raise the arousal threshold to induced bronchoconstriction. We conclude that ventilatory responses to bronchoconstriction, unlike extrinsic loading, are not imparied by the presence of sleep, nor are they chemically mediated. However, prior sleep deprivation does increase the subsequent arousal threshold.  相似文献   

6.
Studies of sleep influences on human pharyngeal and other respiratory muscles suggest that the activity of these muscles may be affected by non-rapid-eye-movement (NREM) sleep in a nonuniform manner. This variable sleep response may relate to the pattern of activation of the muscle (inspiratory phasic vs. tonic) and peripheral events occurring in the airway. Furthermore, the ability of these muscles to respond to respiratory stimuli during NREM sleep may also differ. To systematically investigate the effect of NREM sleep on respiratory muscle activity, we studied two tonic muscles [tensor palatini (TP), masseter (M)] and two inspiratory phasic ones [genioglossus (GG), diaphragm (D)], also measuring the response of these muscles to inspiratory resistive loading (12 cmH2O.l-1.s) during wakefulness and NREM sleep. Seven normal male subjects were studied on a single night with intramuscular electrodes placed in the TP and GG and surface electrodes placed over the D and M. Sleep stage, inspiratory airflow, and moving time average electromyograph (EMG) of the above four muscles were continuously recorded. The EMG of both tonic muscles fell significantly (P less than 0.05) during NREM sleep [TP awake, 4.3 +/- 0.05 (SE) arbitrary units, stage 2, 1.1 +/- 0.2; stage 3/4, 1.0 +/- 0.2. Masseter awake, 4.8 +/- 0.6; stage 2, 3.3 +/- 0.5; stage 3/4, 3.1 +/- 0.5]. On the other hand, the peak phasic EMG of both inspiratory phasic muscles (GG and D) was well maintained.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effects of 26 h of normoxic hypocapnia (PaCO2, 31 MMHg) vs. 26 h of hypocapnia plus hypobaric hypoxia (PaCO2 32, PaO2 57 mmHg) were compared with respect to: a) CSF acid-base status; and b) the spontaneous ventilation (at PIO2 145 mmHg) which followed the imposed (voluntary) hyperventilation. For each condition of prolonged hypocapnia, PaCO2 was held constant throughout and pHa and [HCO3-]a were constant over the final 6-10 h. We assumed that measured changes in lumbar CSF acid-base status paralleled those in cisternal CSF. Spontaneous hyperventilation followed both normoxic and hypoxic hypocapnia but was significantly greater following hypoxic hypocapnia. In the CSF, pH compensation after 26 h of hyperventilation was incomplete (similar to 45-50%), was similar to that in arterial blood, and was unaffected by a superimposed hypoxemia. These data were inconsistent with current theory which proposes the regulation of CSF [HCO2] via local mechanisms and, in turn, the mediation of ventilatory acclimatization to hypoxemia and/or hypocapnia via CSF [H+]. Alternative mediators of ventilatory acclimatization were postulated, including mechanisms both dependent on and independent of "chemoreceptor" stimuli.  相似文献   

8.
Arousal concomitant with obstructive sleep apnea-hypopnea syndrome (OSAHS) is known to result in sleep fragmentation and excessive daytime sleepiness. The cause of arousal is multifarious, and the mechanism is not yet clear. The aim of this study was to further research the induction mechanism of arousal by investigating the variation of electroencephalogram (EEG) and oxygen saturation (SaO2). This study enrolled 20 subjects with a clinical diagnosis of OSAHS who underwent overnight polysomnography. Respiratory events and arousals were scored, and individuals with insufficient samples (<30) were excluded. Thus, 13 subjects mostly with severe OSAHS were analyzed in this study. The wavelet coefficients, spectral power of EEG (C4-M1 and C3-M2) before arousal or airway reopening, and the maximum desaturations of SaO2 during respiratory events were analyzed. For most subjects, EEG (in stages N1 and N2) during respiratory events with arousals exhibited significantly lower values of wavelet coefficients and spectral power (p < 0.05). The maximum desaturations of SaO2 during respiratory events with arousals are larger than those without among individual. In binary logistic regression analysis, the P values of EEG features and SaO2 desaturation were both less than 0.001. Our results demonstrate that in light NREM stage, less activity in EEG during respiratory events and larger SaO2 drop both independently were related to the occurrence of arousal. These significant differences come from major subjects based on the statistical analysis, and help supplement the induction mechanism of arousal.  相似文献   

9.
To determine upper airway and respiratory muscle responses to nasal continuous negative airway pressure (CNAP), we quantitated the changes in diaphragmatic and genioglossal electromyographic activity, inspiratory duration, tidal volume, minute ventilation, and end-expiratory lung volume (EEL) during CNAP in six normal subjects during wakefulness and five during sleep. During wakefulness, CNAP resulted in immediate increases in electromyographic diaphragmatic and genioglossal muscle activity, and inspiratory duration, preserved or increased tidal volume and minute ventilation, and decreased EEL. During non-rapid-eye-movement and rapid-eye-movement sleep, CNAP was associated with no immediate muscle or timing responses, incomplete or complete upper airway occlusion, and decreased EEL. Progressive diaphragmatic and genioglossal responses were observed during non-rapid-eye-movement sleep in association with arterial O2 desaturation, but airway patency was not reestablished until further increases occurred with arousal. These results indicate that normal subjects, while awake, can fully compensate for CNAP by increasing respiratory and upper airway muscle activities but are unable to do so during sleep in the absence of arousal. This sleep-induced failure of load compensation predisposes the airways to collapse under conditions which threaten airway patency during sleep. The abrupt electromyogram responses seen during wakefulness and arousal are indicative of the importance of state effects, whereas the gradual increases seen during sleep probably reflect responses to changing blood gas composition.  相似文献   

10.
Our study was concerned with the effect of brain hypoxia on cardiorespiratory control in the sleeping dog. Eleven unanesthetized dogs were studied; seven were prepared for vascular isolation and extracorporeal perfusion of the carotid body to assess the effects of systemic [and, therefore, central nervous system (CNS)] hypoxia (arterial PO(2) = 52, 45, and 38 Torr) in the presence of a normocapnic, normoxic, and normohydric carotid body during non-rapid eye movement sleep. A lack of ventilatory response to systemic boluses of sodium cyanide during carotid body perfusion demonstrated isolation of the perfused carotid body and lack of other significant peripheral chemosensitivity. Four additional dogs were carotid body denervated and exposed to whole body hypoxia for comparison. In the sleeping dog with an intact and perfused carotid body exposed to specific CNS hypoxia, we found the following. 1) CNS hypoxia for 5-25 min resulted in modest but significant hyperventilation and hypocapnia (minute ventilation increased 29 +/- 7% at arterial PO(2) = 38 Torr); carotid body-denervated dogs showed no ventilatory response to hypoxia. 2) The hyperventilation was caused by increased breathing frequency. 3) The hyperventilatory response developed rapidly (<30 s). 4) Most dogs maintained hyperventilation for up to 25 min of hypoxic exposure. 5) There were no significant changes in blood pressure or heart rate. We conclude that specific CNS hypoxia, in the presence of an intact carotid body maintained normoxic and normocapnic, does not depress and usually stimulates breathing during non-rapid eye movement sleep. The rapidity of the response suggests a chemoreflex meditated by hypoxia-sensitive respiratory-related neurons in the CNS.  相似文献   

11.
Abnormal centralregulation of upper airway muscles may contribute to thepathophysiology of the childhood obstructive sleep apnea syndrome(OSAS). We hypothesized that this was secondary to global abnormalitiesof ventilatory control during sleep. We therefore compared the responseto chemical stimuli during sleep between prepubertal children with OSASand controls. Patients with OSAS aroused at a higherPCO2 (58 ± 2 vs. 60 ± 5 Torr,P < 0.05); those with the highestapnea index had the highest arousal threshold(r = 0.52, P < 0.05). The hypercapnic arousal threshold decreased after treatment. For all subjects, hypoxia was apoor stimulus to arousal, whereas hypercapnia and, particularly, hypoxic hypercapnia were potent stimuli to arousal. Hypercapnia resulted in decreased airway obstruction in OSAS. Ventilatory responseswere similar between patients with OSAS and controls; however, thesample size was small. We conclude that children with OSAS haveslightly blunted arousal responses to hypercapnia. However, the overallventilatory and arousal responses are normal in children with OSAS,indicating that a global deficit in respiratory drive is not a majorfactor in the etiology of childhood OSAS. Nevertheless, subtleabnormalities in ventilatory control may exist.

  相似文献   

12.
We assessed respiratory muscle response patterns to chemoreceptor stimuli (hypercapnia, hypoxia, normocapnic hypoxia, almitrine, and almitrine + CO2) in six awake dogs. Mean electromyogram (EMG) activities were measured in the crural (CR) diaphragm, triangularis sterni (TS), and transversus abdominis (TA). Hypercapnia and normocapnic hypoxia caused mild to marked hyperpnea [2-5 times control inspiratory flow (VI)] and increased activity in CR diaphragm, TS, and TA. When hypocapnia was permitted to develop during hypoxia and almitrine-induced moderate hyperpnea, CR diaphragm activity increased, whereas TS and TA activities usually did not change or were reduced below control. Over time in hypercapnia, CR diaphragm, TS, and TA were augmented and maintained at these levels over many minutes; with hypoxic hyperventilation CR diaphragm, TS, and TA were first augmented but then CR diaphragm remained augmented while TS and, less consistently, TA were inhibited over time. Marked hyperpnea (4-5 times control) due to carotid body stimulation increased TA and TS EMG activity despite an accompanying hypocapnia. We conclude that in the intact awake dog 1) carotid body stimulation augments the activity of both inspiratory and expiratory muscles; 2) hypocapnia overrides the augmenting effect of carotid body stimulation on expiratory muscles during moderate hyperpnea, usually resulting in either no change or inhibition; 3) at higher levels of hyperpnea both chemoreceptor stimulation and stimulatory effects secondary to a high ventilatory output favor expiratory muscle activation; these effects override any inhibitory effects of a coincident hypocapnia; and 4) expiratory muscles of the rib cage/abdomen may be augmented/inhibited independently of one another.  相似文献   

13.
Electrocortical arousal (ECA) as an effect of visceral provocation or of its temporal relationships with aerodigestive reflexes in premature neonates is not known. We tested the hypothesis that esophageal provocation results in both esophageal reflex responses and ECAs during sleep and that ECAs are dependent on the frequency characteristics of esophageal neuromotor responses. We defined the spatiotemporal relationship of ECAs in relation to 1) spontaneous pharyngoesophageal swallow sequences and gastroesophageal reflux (GER) events and 2) sensory-motor characteristics of esophageal reflexes. Sixteen healthy premature neonates born at 27.9 ± 3.4 wk were tested at 36.8 ± 1.9 wk postmenstrual age. Ninety-five midesophageal and 31 sham stimuli were given in sleep during concurrent manometry and videopolysomnography. With stimulus onset as reference point, we scored the response latency, frequency occurrence and duration of arousals, peristaltic reflex, and upper esophageal sphincter contractile reflex (UESCR). Changes in polysomnography-respiratory patterns and esophageal sensory-motor parameters were scored by blinded observers. Significantly (for each characteristic listed, P < 0.05), swallow sequences were associated with arousals and sleep state changes, and arousals were associated with incomplete peristalsis, response delays to lower esophageal sphincter relaxation, and prolonged esophageal clearance. GER events (73.5%) provoked arousals, and arousals were associated with response delays to peristaltic reflexes or clearance, sleep state modification, and prolonged respiratory arousal. Midesophageal stimuli (54%) provoked arousals and were associated with increased frequency, prolonged latency, prolonged response duration of peristaltic reflexes and UESCR, and increased frequency of sleep state changes and respiratory arousals. In human neonates, ECAs are provoked upon esophageal stimulation; the sensory-motor characteristics of esophageal reflexes are distinct when accompanied by arousals. Aerodigestive homeostasis is defended by multiple tiers of aerodigestive safety mechanisms, and when esophageal reflexes are delayed, cortical hypervigilance (ECAs) occurs.  相似文献   

14.
The effects of sleep on the ventilatory responses to hypercapnia have been well described in animals and in humans. In contrast, there is little information for genioglossus (GG) responses to a range of CO(2) stimuli across all sleep-wake states. Given the notion that sleep, especially rapid eye movement (REM) sleep, may cause greater suppression of muscles with both respiratory and nonrespiratory functions, this study tests the hypothesis that GG activity will be differentially affected by sleep-wake states with major suppression in REM sleep despite excitation by CO(2). Seven rats were chronically implanted with electroencephalogram, neck, GG, and diaphragm electrodes, and responses to 0, 1, 3, 5, 7, and 9% CO(2) were recorded. Diaphragm activity and respiratory rate increased with CO(2) (P < 0.001) across sleep-wake states with significant increases at 3-5% CO(2) compared with 0% CO(2) controls (P < 0.05). Phasic GG activity also increased in hypercapnia but required higher CO(2) (7-9%) for significant activation (P < 0.05). Further studies in 15 urethane-anesthetized rats with the vagi intact (n = 6) and cut (n = 9) showed that intact vagi delayed GG recruitment with hypercapnia but did not affect diaphragm responses. In the naturally sleeping rats, we also showed that GG activity was significantly reduced in non-REM and REM sleep (P < 0.04) and was almost abolished in REM even with stimulation by 9% CO(2) (decrease = 80.4% vs. wakefulness). Such major suppression of GG activity in REM, even with significant respiratory stimulation, may explain why obstructive apneas are more common in REM sleep.  相似文献   

15.
Obstructive sleep apnea is the result of repeated episodes of upper airway obstruction during sleep. Recent evidence indicates that alterations in upper airway anatomy and disturbances in neuromuscular control both play a role in the pathogenesis of obstructive sleep apnea. We hypothesized that subjects without sleep apnea are more capable of mounting vigorous neuromuscular responses to upper airway obstruction than subjects with sleep apnea. To address this hypothesis we lowered nasal pressure to induce upper airway obstruction to the verge of periodic obstructive hypopneas (cycling threshold). Ten patients with obstructive sleep apnea and nine weight-, age-, and sex-matched controls were studied during sleep. Responses in genioglossal electromyography (EMG(GG)) activity (tonic, peak phasic, and phasic EMG(GG)), maximal inspiratory airflow (V(I)max), and pharyngeal transmural pressure (P(TM)) were assessed during similar degrees of sustained conditions of upper airway obstruction and compared with those obtained at a similar nasal pressure under transient conditions. Control compared with sleep apnea subjects demonstrated greater EMG(GG), V(I)max, and P(TM) responses at comparable levels of mechanical and ventilatory stimuli at the cycling threshold, during sustained compared with transient periods of upper airway obstruction. Furthermore, the increases in EMG(GG) activity in control compared with sleep apnea subjects were observed in the tonic but not the phasic component of the EMG response. We conclude that sustained periods of upper airway obstruction induce greater increases in tonic EMG(GG), V(I)max, and P(TM) in control subjects. Our findings suggest that neuromuscular responses protect individuals without sleep apnea from developing upper airway obstruction during sleep.  相似文献   

16.
Children snore less than adults and have fewer obstructive apneas, suggesting a less collapsible upper airway. We therefore hypothesized that the compensatory upper airway responses to subatmospheric pressure loading decrease with age because of changes in upper airway structure and ventilatory drive. We measured upper airway upstream pressure-flow relationships during sleep in 20 nonsnoring, nonobese children and adults. Measurements were made by correlating maximal inspiratory airflow with the level of nasal pressure applied via a mask. The slope of the upstream pressure-flow curve (S(PF)) was used to characterize upper airway function. We found that S(PF) was flatter in children than in adults (8 +/- 5 vs. 30 +/- 18 ml x s(-1). cmH(2)O(-1), P < 0.002) and that S(PF) correlated with age (r = 0.62, P < 0.01) and body mass index (r = 0. 63, P < 0.01). The occlusion pressure in 100 ms during sleep was measured in six children and two adults; it correlated inversely with S(PF) (r = -0.80, P < 0.02). We conclude that the upper airway compensatory responses to subatmospheric pressure loading decrease with age. This is associated with increased body mass index, even in nonsnoring, nonobese subjects. Ventilatory drive during sleep plays a role in modulating upper airway responses.  相似文献   

17.
Experiments were done on seven lambs to determine if site of occlusion--nasal versus tracheal--influences the cardiopulmonary and arousal responses from sleep to upper airway obstruction. Each lamb was anesthetized and instrumented for sleep staging and measurements of heart rate and arterial hemoglobin oxygen saturation. A tracheostomy was also done and a fenestrated tracheostomy tube placed in the trachea. Prior to an experiment, A 5F balloon-tipped catheter was inserted through the decannulation cannula into the tracheostomy tube so that tracheal occlusions could be accomplished by inflating the balloon. In addition, a 5F balloon-tipped catheter was inserted into the inlet of a pre-formed silicone mask sealed to the animals snout with silicone rubber foam so that nasal occlusions could be accomplished by inflating the balloon. During an experiment, measurements were made in quiet sleep and in active sleep during control periods of tidal breathing and during experimental periods of nasal or tracheal occlusion. Upper airway obstruction was terminated by deflating the balloon once the animal aroused from sleep. Arousal occurred sooner following nasal occlusion than during tracheal occlusion in quiet sleep; 64 percent of arousals occurred within five seconds of nasal occlusion whereas only 14 percent of arousals occurred within five seconds of tracheal occlusion in quiet sleep. In addition, SaO2 and heart rate decreased more before arousal following tracheal occlusion than following nasal occlusion. However, there was not a significant effect of site of obstruction on time to arousal or the change in SaO2 before arousal in active sleep.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Our aim was to evaluate cardiac changes evoked by spontaneous and sound-induced arousals from sleep. Cardiac responses to spontaneous and auditory-induced arousals were recorded during overnight sleep studies in 28 young healthy subjects (14 males, 14 females) during non-rapid eye movement sleep. Computerized analysis was applied to assess beat-to-beat changes in heart rate, atrio-ventricular conductance, and ventricular repolarization from 30 s before to 60 s after the auditory tone. During both types of arousals, the most consistent change was the increase in the heart rate (in 62% of spontaneous and in 89% of sound-induced arousals). This was accompanied by an increase or no change in PR interval and by a decrease or no change in QT interval. The magnitude of all cardiac changes was significantly higher for tone-induced vs. spontaneous arousals (mean +/- SD for heart rate: +9 +/- 8 vs. +13 +/- 9 beats per min; for PR prolongation: 14 +/- 16 vs. 24 +/- 22 ms; for QT shortening: -12 +/- 6 vs. -20 +/- 9 ms). The prevalence of transient tachycardia and PR prolongation was also significantly higher for tone-induced vs. spontaneous arousals (tachycardia: 85% vs. 57% of arousals, P < 0.001; PR prolongation: 51% vs. 25% of arousals, P < 0.001). All cardiac responses were short-lasting (10-15 s). We conclude that cardiac pacemaker region, conducting system, and ventricular myocardium may be under independent neural control. Prolongation of atrio-ventricular delay may serve to increase ventricular filling during arousal from sleep. Whether prolonged atrio-ventricular conductance associated with increased sympathetic outflow to the ventricular myocardium contributes to arrhythmogenesis during sudden arousal from sleep remains to be evaluated.  相似文献   

19.
Spontaneous and provoked nonrespiratoryarousals can be accompanied by a patterned hemodynamic response. Toinvestigate whether a patterned response is also elicited byrespiratory arousals, we compared nonrespiratory arousals (NRA) torespiratory arousals (RA) induced by airway occlusion during non-rapideye movement sleep. We monitored mean arterial blood pressure (MAP),heart rate, iliac and renal blood flow, and sleep stage in 7 pigsduring natural sleep. Iliac and renal vascular resistance werecalculated. Airway occlusions were obtained by manually inflating achronically implanted tracheal balloon during sleep. The balloon wasquickly deflated as soon as electroencephalogram arousal occurred. As previously reported, NRA generally elicited iliac vasodilation, renalvasoconstriction, little change in MAP, and tachycardia. In contrast,RA generally elicited iliac and renal vasoconstriction, an increase inMAP and tachycardia. The frequent occurrence of iliac vasoconstrictionand arterial pressure elevation following RA but not NRA suggests thatsleep state change alone does not account for the hemodynamic responseto airway occlusion during sleep.

  相似文献   

20.
Alterations in sleep pattern during acclimatisation at an altitude of 3500 m were studied on 27 healthy men (20–30 years of age). Of these, 15 were sojourners (SJ), 6 were acclimatised lowlanders (AL) and 6 were high altitude natives (HAN). Baseline sleep profile of SJ was electrophysiologically monitored, initially at Delhi (260 m) and later at 3500 m altitude in Western Himalayas for 2 weeks. At high altitude (HA) the sleep patterns of AL and HAN were also monitored for comparison. There were 4 cases of acute mountain sickness (AMS) among SJ, whose sleep profiles were also recorded. The state of autonomic arousal was assessed by a battery of indices, while the psychological arousal was measured by the anxiety scales. On completion of studies at HA, the SJ were flown back to the plains and re-tested within one week of return. SJ showed curtailment of slow wave sleep (SWS) and frequent short episodes of arousal during sleep at HA. AL and HAN also had lesser amounts of SWS; however, the arousals and awakenings during sleep were less frequent. Subjects who experienced AMS had normal amounts of SWS at HA. There was sympathetic hyperactivity and slight increase in anxiety level in SJ, while HAN and AL had relatively reduced level of sympathetic activity. The curtailment of SWS and frequent arousals observed in SJ during the initial phase of acclimatisation at HA, appear to be adaptive features to prevent the accentuation of arterial hypoxemia due to sleep hypoventilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号