首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human lymphocytes were incubated during two mitotic cycles in the presence of 5-bromodeoxyuridine and differentiation between chromatids was obtained with combined Hoechst 33258 and azur-eosine staining. Analysis of non-irradiated cells revealed numerous sister chromatid exchanges (SCE) and no abnormalities of harlequine appearance of chromosomes. When, however, the cells were irradiated, an identical staining (IS, isostaining) of some chromosomes or chromosome segments were observed. Production of IS was accompanied by decrease of the frequency of SCE, the total frequency of SCE+IS remained, however, the same as in control. An antagonism between SCE and IS was established: the frequency of SCE decreased in the cells with multiple IS, and chromosomes with both SCE and IS were only rarely observed. Thus, IS is neither an artifact nor a physiologic event but a phenomenon induced by radiation. The reliable existence of IS is considered as an evidence for binemic structure of chromatid. It is suggested that some mechanism of lateral spread of genetic information is involved in the production of SCE. If delayed by radiation, the spread could be restricted only to a fraction of chromosome cross-section resulting in IS.  相似文献   

3.
Fourteen genotypes of barley were compared for response to salinity by monitoring the parameters gas exchange and chlorophyll fluorescence. We present relationships between stomatal conductance (gs) gas exchange chlorophyll fluorescence parameters and aboveground dry matter (AGDM). We found that genetic variability provided a continuum of data for gs across control and saline conditions. We used this continuum of gs values to test the overall relationships between gs and net photosynthesis (A), leaf internal CO2 concentration (Ci), actual quantum yield of PSII electron transport (PhiPSII), relative electron yield over net CO2 assimilation rate (ETR/A), and AGDM. The relationship between gs and A was highly significant (P < 0.0001) for both control and saline treatments, while correlations between gs and Ci, and Ci and A were significant only under control conditions. Unexpectedly, we found positive correlations between gs and PhiPSII (P < 0.0001) for both conditions. A comparison between relationships of gs and A, and gs and PhiPSII seemed to indicate a possible acclimation to salinity at the chloroplastic level. Finally, the relationships between gs and ETR/A were exceptionally strong for both growing conditions (P < 0.0001) indicating that, as gs values were negatively affected in barley by genetics and salinity as main or interactive effects, there was a progressive increase in photorespiration in barley. Overall, we found that stomatal conductance was a key parameter in the study of barley responses to limiting situations for photosynthesis. We also found a strong relationship between AGDM and gs regardless of growing conditions and genotypes. For breeding evaluations to select barley genotypes for salinity tolerance, it may be possible to replace all measurements of gas exchange and chlorophyll fluorescence by the simple use of a porometer.  相似文献   

4.
Plant cell cultures provide a renewable source for synthesis and supply of commercially valuable plant-derived products, particularly for secondary metabolites. However, instability in product yields over multiple passages has hampered the efficient and sustainable use of this technology. Paclitaxel accumulation in Taxus cell suspension culture was quantified over multiple passages and correlated to mean aggregate size, extracellular sugar level, ploidy, and cell cycle distribution. Paclitaxel levels varied approximately 6.9-fold over the 6-month timeframe investigated. Of all of the parameters examined, only mean aggregate size correlated with paclitaxel accumulation, where a significant negative correlation (r = ?0.75, p < 0.01) was observed. These results demonstrate the relevance of measuring, and potentially controlling, aggregate size during long term culture passages, particularly for plant suspensions where industrially relevant secondary metabolites are not pigmented to enable rapid culture selection.  相似文献   

5.
Vaccine-induced immunity is expected to target the native antigens expressed by the pathogens. Therefore, it is highly important to generate vaccine antigens that are immunologically indistinguishable from the native antigens. Nucleic acid vaccines, comprised of DNA, mRNA, or recombinant viral vector vaccines, introduce the genetic material encoding the antigenic protein for the host to express. Because these proteins will undergo host posttranslational modifications, host glycosylation can potentially alter the structure and immunological efficacy of the antigen. In this review, we discuss the potential impact of host protein glycosylation on the immune responses generated by nucleic acid vaccines against bacterial and viral pathogens.  相似文献   

6.
Catchability: a key parameter for fish stock assessment   总被引:11,自引:1,他引:10  
Summary Catchability is a concept in fishery biology which reflects the efficiency of a particular fishery. Its quantitative magnitude is expressed by the catchability coefficient, which relates the biomass abundance to the capture or fishing mortality. This paper is a comprehensive review of catchability including the development of our knowledge, interpretation and estimation.Catchability patterns indicate that the catchability coefficient has been used in two main lines: (a) increased efficiency of fishing effort and (b) its relation to population fishery processes for assessment and management purposes. It involves various aspects of the fishery, such as individual and population biology, characteristics of the fishing gear, amount of fishing, fishing strategies, and environmental fluctuation, among others.The concept is proposed of an integrated model of the catchability coefficient, which incorporates various of the aspects mentioned above. It is illustrated with two examples of its application: the red grouper (Epinephelus morio) fishery from the Campeche Bank, Gulf of Mexico, and the sardine (Sardinops caeruleus) fishery from the Gulf of California.  相似文献   

7.
Current immunosuppressive therapies act on T lymphocytes by modulation of cytokine production, modulation of signaling pathways or by inhibition of the enzymes of nucleotide biosynthesis. We have identified a previously unknown series of immunomodulatory compounds that potently inhibit human and rat T lymphocyte proliferation in vitro and in vivo in immune-mediated animal models of disease, acting by a novel mechanism. Here we identify the target of these compounds, the monocarboxylate transporter MCT1 (SLC16A1), using a strategy of photoaffinity labeling and proteomic characterization. We show that inhibition of MCT1 during T lymphocyte activation results in selective and profound inhibition of the extremely rapid phase of T cell division essential for an effective immune response. MCT1 activity, however, is not required for many stages of lymphocyte activation, such as cytokine production, or for most normal physiological functions. By pursuing a chemistry-led target identification strategy, we have discovered that MCT1 is a previously unknown target for immunosuppressive therapy and have uncovered an unsuspected role for MCT1 in immune biology.  相似文献   

8.
9.
10.
11.
PKCtheta is a key player in the development of insulin resistance   总被引:1,自引:0,他引:1  
Activation of PKCtheta is associated with lipid-induced insulin resistance and PKCtheta knockout mice are protected from the lipid-induced defects. However, the exact mechanism by which PKCtheta contributes to insulin resistance is not known. To investigate whether an increase in PKCtheta expression leads to insulin resistance, C2C12 skeletal muscle cells were transfected with PKCtheta DNA and treated with different concentrations of insulin for 10 min. PKCtheta overexpression induced reduction of IRS-1 protein levels with a decrease in insulin-induced p85 binding to IRS-1, phosphorylation of PKB and its substrates, p70 and GSK3. Pretreatment of these cells with GF-109203X (a non-specific PKC inhibitor, IC50 for PKCtheta = 10 nM) recovered insulin signaling. PKCtheta was found to be expressed in liver and treatment of human hepatoma cells (HepG2) with high insulin and glucose resulted in an increase in PKCtheta expression that correlated with a decrease in IRS-1 protein levels and the development of insulin resistance. Reduction of PKCtheta expression using RNAi technology significantly inhibited the degradation of IRS-1 and enhanced insulin-induced IRS-1 tyrosine phosphorylation, p85 association to IRS-1 and PKB phosphorylation. In conclusion, by overexpressing PKCtheta or using RNAi technology to downregulate PKCtheta, we have demonstrated that PKCtheta has a key role in the development of insulin resistance. These findings suggest that PKCtheta mediates not only insulin resistance in muscle but also in liver, which may contribute to the development of whole body insulin resistance and diabetes.  相似文献   

12.
Lysin is a 16kDa acrosomal protein used by abalone sperm to create a hole in the egg vitelline envelope (VE). The interaction of lysin with the VE is species-selective and is one step in the multistep fertilization process that restricts heterospecific (cross-species) fertilization. For this reason, the evolution of lysin could play a role in establishing prezygotic reproductive isolation between species. Previously, we sequenced sperm lysin cDNAs from seven California abalone species and showed that positive Darwinian selection promotes their divergence. In this paper an additional 13 lysin sequences are presented representing species from Japan, Taiwan, Australia, New Zealand, South Africa, and Europe. The total of 20 sequences represents the most extensive analysis of a fertilization protein to date. The phylogenetic analysis divides the sequences into two major clades, one composed of species from the northern Pacific (California and Japan) and the other composed of species from other parts of the world. Analysis of nucleotide substitution demonstrates that positive selection is a general process in the evolution of this fertilization protein. Analysis of nucleotide and codon usage bias shows that neither parameter can account for the robust data supporting positive selection. The selection pressure responsible for the positive selection on lysin remains unknown.   相似文献   

13.
14.
The functional significance of multiple isoactins in the same cell is still not understood. To address this question, we examined the response of smooth muscle and cardiac muscle alpha-isoactins to a serial extraction procedure applied to both muscle and nonmuscle cell types. We compared these extraction results with results obtained with the beta- and gamma-nonmuscle actin isoforms from the same cells. In differentiated BC3H1 nonfusing muscle cells (smooth muscle alpha-isoactin), in human rhabdomyosarcoma cells (cardiac alpha-isoactin), and in chick skeletal muscle cells (cardiac alpha-isoactin), different fractions were found selectively enriched in either the nonmuscle or the muscle-specific actin isoforms compared with their relative abundance in whole cell extracts. Conversely, when these same isoactins were examined either in undifferentiated BC3H1 cells or in mouse nonmuscle cells stably transfected with a cardiac alpha-isoactin gene, no enrichment of these isoforms above their relative abundance in whole cell extracts was observed. These results indicate that within the muscle or muscle-like cells examined, the different actin isoforms were either selectively utilized or localized. These results further show that isoactin-specific responses observed were apparently related to the cell type in which they were found and not to differences in inherent physical properties such as solubility of the different isoactins examined.  相似文献   

15.
We have measured the transbilayer diffusion of spin-labeled analogs of sphingomyelin, phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine in pig lymphocyte plasma membrane. At 4 degrees C and 37 degrees C the aminophospholipids are rapidly transported from the outer to the inner leaflet of the membrane, whereas the choline-containing phospholipids experience a slower diffusion. This selectivity is abolished after cell treatment by SH-group reagents indicating that the aminophospholipid translocation is protein-dependent and must be driven by a system analogous to the one existing in the human red cell membrane. The fact that the selectivity exists at low temperature, that it does not depend on cytoskeleton integrity and that there is a competition between the two aminophospholipids show that this translocation is not purely an endocytic process.  相似文献   

16.
MicroRNA-223 is a key factor in osteoclast differentiation   总被引:3,自引:0,他引:3  
MicroRNAs (miRNAs) are a class of noncording RNAs that control gene expression by translational inhibition and messenger RNAs (mRNAs) degradation in plants and animals. Although miRNAs have been implicated in developmental and homeostatic events of vertebrates and invertebrates, the role of miRNAs in bone metabolism has not been explored. Here, we show that microRNA-223 (miR-223) is expressed in RAW264.7 cells, mouse osteoclast precursor cell lines, and plays a critical role in osteoclast differentiation. We constructed miR-223 short interfering RNA (siRNA) or precursor miR-223 (pre-miR-223) overexpression retroviral vectors, and established miR-223 knockdown by siRNA or pre-miR-223 overexpression in stably infected RAW264.7 cells. Tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells were observed in miR-223 knockdown cells as well as control cells. In contrast, pre-miR-223 overexpression completely blocked TRAP-positive multinucleated cell formation compared with control cells. Apoptotic cells were not observed in this study. Our results indicate that miR-223 plays an essential role during osteoclast differentiation, and miR-223 might be a viable therapeutic target for a range of bone metabolic disorders with excess osteoclast activity.  相似文献   

17.
A majority of ovarian follicles are lost to natural death, but the disruption of factors involved in maintenance of the oocyte pool results in a further untimely follicular depletion known as premature ovarian failure. The anti-apoptotic B-cell lymphoma 2 (Bcl-2) family member myeloid cell leukemia-1 (MCL-1) has a pro-survival role in various cell types; however, its contribution to oocyte survival is unconfirmed. We present a phenotypic characterization of oocytes deficient in Mcl-1, and establish its role in maintenance of the primordial follicle (PMF) pool, growing oocyte survival and oocyte quality. Mcl-1 depletion resulted in the premature exhaustion of the ovarian reserve, characterized by early PMF loss because of activation of apoptosis. The increasingly diminished surviving cohort of growing oocytes displayed elevated markers of autophagy and mitochondrial dysfunction. Mcl-1-deficient ovulated oocytes demonstrated an increased susceptibility to cellular fragmentation with activation of the apoptotic cascade. Concomitant deletion of the pro-apoptotic Bcl-2 member Bcl-2-associated X protein (Bax) rescued the PMF phenotype and ovulated oocyte death, but did not prevent the mitochondrial dysfunction associated with Mcl-1 deficiency and could not rescue long-term breeding performance. We thus recognize MCL-1 as the essential survival factor required for conservation of the postnatal PMF pool, growing follicle survival and effective oocyte mitochondrial function.Estimates of the human primordial follicle (PMF) reservoir, the size of which dictates the extent of the ovarian reserve, indicates the presence of at least half a million oocytes per ovary at birth.1, 2 The essential decision that PMFs face is either long-term arrest with a possibility of recruitment toward the growing pool, or death. Even upon recruitment to the growing pool, intricately orchestrated crosstalk of survival signals between ovarian somatic cells and oocytes facilitate the ovulation of a single oocyte in human in each cycle. Hence, the default fate for millions of ovarian germ cells is death, as only a small fraction survive till ovulation.3 Insufficient endowment during fetal development or excessive oocyte loss during postnatal life further limits the ovarian reserve and can result in an untimely exhaustion of the follicle pool leading to premature ovarian failure (POF); a syndrome that affects around 1% of all women, with a higher prevalence (up to 30%) in families with heritable traits of this condition.4, 5 Mechanisms responsible for maintenance of the follicular reserve are poorly understood, however, biological assessments and mathematical modeling reveal that progressive loss of follicles with age is non-linear and accelerates, especially after 38 years.6, 7 With a declining ovarian reserve, poor oocyte quality is an additional factor that contributes to the reduced fertility associated with increased maternal age. Oocytes and resulting embryos of older mothers have increased rates of aneuploidies likely due to defects in chromosomal cohesion and meiotic spindle stability, decreased DNA repair capacity, altered gene expression, impaired mitochondrial function and elevated cellular redox, all contributing to increased rates of cell death.8, 9, 10The marked decline of oocyte number in mammalian ovaries has been attributed to oocyte loss via stage-specific modes of death. As yet, perinatal PMF loss in mice most frequently engages apoptotic cell death,11, 12 whereas within the postnatal ovary, oocytes in growing follicles undergo atresia, a less ''molecularly'' defined death, carrying hallmarks of both apoptosis and autophagy.13, 14, 15 It is thus surprising that no member of the anti-apoptotic B-cell lymphoma 2 (Bcl-2) family has been identified with a definitive role in governing oocyte survival and the maintenance of the ovarian reserve. Bcl-2l2/Bcl-w and Bcl-2-l10/Diva deficiency had no apparent impact on the ovarian reserve, and although ablation of Bcl-2 led to a loss of one-third of the adult PMF pool, the growing follicle pool was not significantly impacted and these animals did not undergo POF.16, 17, 18, 19 Conditional Bcl-x (Bcl-2l1) inactivation led to increased primordial germ cell apoptosis in the embryo,20 but postnatal inactivation of Bcl-x in oocytes did not compromise the ovarian reserve in young females.21 Bcl2a1a/Bfl-1/A1 was low to undetectable in fully grown germinal vesicle (GV) or ovulated murine oocytes,22 however, the impact of Bfl-1 deficiency on the ovarian reserve has not yet been analyzed to the best of our knowledge. Consequently, either various anti-apoptotic Bcl-2 members have overlapping roles in governing postnatal oocyte survival and maintenance of the adult ovarian reserve in mice, or the anti-apoptotic Bcl-2 member that regulates this decision has yet to be identified.  相似文献   

18.
A third of the human genome encodes N-glycosylated proteins. These are co-translationally translocated into the lumen/membrane of the endoplasmic reticulum (ER) where they fold and assemble before they are transported to their final destination. Here, we show that calnexin, a major ER chaperone involved in glycoprotein folding is palmitoylated and that this modification is mediated by the ER palmitoyltransferase DHHC6. This modification leads to the preferential localization of calnexin to the perinuclear rough ER, at the expense of ER tubules. Moreover, palmitoylation mediates the association of calnexin with the ribosome-translocon complex (RTC) leading to the formation of a supercomplex that recruits the actin cytoskeleton, leading to further stabilization of the assembly. When formation of the calnexin-RTC supercomplex was affected by DHHC6 silencing, mutation of calnexin palmitoylation sites or actin depolymerization, folding of glycoproteins was impaired. Our findings thus show that calnexin is a stable component of the RTC in a manner that is exquisitely dependent on its palmitoylation status. This association is essential for the chaperone to capture its client proteins as they emerge from the translocon, acquire their N-linked glycans and initiate folding.  相似文献   

19.
20.
Barnes P  Thomas KL 《PloS one》2008,3(9):e3248
It is essential to understand the molecular processes underlying long-term memory to provide therapeutic targets of aberrant memory that produce pathological behaviour in humans. Under conditions of recall, fully-consolidated memories can undergo reconsolidation or extinction. These retrieval-mediated memory processes may rely on distinct molecular processes. The cellular mechanisms initiating the signature molecular events are not known. Using infusions of protein synthesis inhibitors, antisense oligonucleotide targeting brain-derived neurotrophic factor (BDNF) mRNA or tPA-STOP (an inhibitor of the proteolysis of BDNF protein) into the hippocampus of the awake rat, we show that acquisition and extinction of contextual fear memory depended on the increased and decreased proteolysis of proBDNF (precursor BDNF) in the hippocampus, respectively. Conditions of retrieval that are known to initiate the reconsolidation of contextual fear memory, a BDNF-independent memory process, were not correlated with altered proBDNF cleavage. Thus, the processing of BDNF was associated with the acquisition of new information and the updating of information about a salient stimulus. Furthermore, the differential requirement for the processing of proBDNF by tPA in distinct memory processes suggest that the molecular events actively engaged to support the storage and/or the successful retrieval of memory depends on the integration of ongoing experience with past learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号