首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 462 毫秒
1.
The Golgi apparatus in mammalian cells is positioned near the centrosome-based microtubule-organizing center (Fig. 1). Secretory cargo moves inward in membrane carriers for delivery to Golgi membranes in which it is processed and packaged for transport outward to the plasma membrane. Cytoplasmic dynein motor proteins (herein termed dynein) primarily mediate inward cargo carrier movement and Golgi positioning. These motors move along microtubules toward microtubule minus-ends embedded in centrosomes. Centripetal motility is controlled by a host of regulators whose precise functions remain to be determined. Significantly, a specific Golgi receptor for dynein has not been identified. This has impaired progress toward elucidation of membrane-motor-microtubule attachment in the periphery and, after inward movement, recycling of the motor for another round. Pericentrosomal positioning of the Golgi apparatus is dynamic. It is regulated during critical cellular processes such as mitosis, differentiation, cell polarization, and cell migration. Positioning is also important as it aligns the Golgi along an axis of cell polarity. In certain cell types, this promotes secretion directed to the proximal plasma membrane domain thereby maintaining specializations critical for diverse processes including wound healing, immunological synapse formation, and axon determination.  相似文献   

2.
Dynactin is a multisubunit protein complex required for the activity of dynein in diverse intracellular motility processes, including membrane transport. Dynactin can bind to vesicles and liposomes containing acidic phospholipids, but general properties such as this are unlikely to explain the regulated recruitment of dynactin to specific sites on organelle membranes. Additional factors must therefore exist to control this process. Candidates for these factors are the Rab GTPases, which function in the tethering of vesicles to their target organelle prior to membrane fusion. In particular, Rab27a tethers melanosomes to the actin cytoskeleton. Other Rabs have been implicated in microtubule-dependent organelle motility; Rab7 controls lysosomal transport, and Rab6 is involved in microtubule-dependent transport pathways through the Golgi and from endosomes to the Golgi. We demonstrate that dynactin binds to Rab6 and shows a Rab6-dependent recruitment to Golgi membranes. Other Golgi Rabs do not bind to dynactin and are unable to support its recruitment to membranes. Rab6 therefore functions as a specificity or tethering factor controlling the recruitment of dynactin to membranes.  相似文献   

3.
Microtubules (MT) are required for the efficient transport of membranes from the trans-Golgi and for transcytosis of vesicles from the basolateral membrane to the apical cytoplasm in polarized epithelia. MTs in these cells are primarily oriented with their plus ends basally near the Golgi and their minus-ends in the apical cytoplasm. Here we report that isolated Golgi and Golgi-enriched membranes from intestinal epithelial cells possess the actin based motor myosin-I, the MT minus- end-directed motor cytoplasmic dynein and its in vitro motility activator dynactin (p150/Glued). The Golgi can be separated into stacks, possessing features of the Golgi cisternae, and small membranes enriched in the trans-Golgi network marker TGN 38/41. Whereas myosin-I is present on all membranes in the Golgi fraction, dynein is present only on the small membrane fraction. Dynein, like myosin-I, is associated with membranes as a cytoplasmic peripheral membrane protein. Dynein and myosin-I coassociate with membranes that bind to MTs and cross-link actin filaments and MTs in a nucleotide-dependent manner. We propose that cytoplasmic dynein moves Golgi membranes along MTs to the cell cortex where myosin-I provides local delivery through the actin- rich cytoskeleton to the apical membrane.  相似文献   

4.
The molecular mechanisms underlying cytoskeleton‐dependent Golgi positioning are poorly understood. In mammalian cells, the Golgi apparatus is localized near the juxtanuclear centrosome via dynein‐mediated motility along microtubules. Previous studies implicate Cdc42 in regulating dynein‐dependent motility. Here we show that reduced expression of the Cdc42‐specific GTPase‐activating protein, ARHGAP21, inhibits the ability of dispersed Golgi membranes to reposition at the centrosome following nocodazole treatment and washout. Cdc42 regulation of Golgi positioning appears to involve ARF1 and a binding interaction with the vesicle‐coat protein coatomer. We tested whether Cdc42 directly affects motility, as opposed to the formation of a trafficking intermediate, using a Golgi capture and motility assay in permeabilized cells. Disrupting Cdc42 activation or the coatomer/Cdc42 binding interaction stimulated Golgi motility. The coatomer/Cdc42‐sensitive motility was blocked by the addition of an inhibitory dynein antibody. Together, our results reveal that dynein and microtubule‐dependent Golgi positioning is regulated by ARF1‐, coatomer‐, and ARHGAP21‐dependent Cdc42 signaling.  相似文献   

5.
Cytoplasmic dynein is a minus end-directed microtubule motor that performs distinct functions in interphase and mitosis. In interphase, dynein transports organelles along microtubules, whereas in metaphase this motor has been implicated in mitotic spindle formation and orientation as well as chromosome segregation. The manner in which dynein activity is regulated during the cell cycle, however, has not been resolved. In this study, we have examined the mechanism by which organelle transport is controlled by the cell cycle in extracts of Xenopus laevis eggs. Here, we show that photocleavage of the dynein heavy chain dramatically inhibits minus end-directed organelle transport and that purified dynein restores this motility, indicating that dynein is the predominant minus end-directed membrane motor in Xenopus egg extracts. By measuring the amount of dynein associated with isolated membranes, we find that cytoplasmic dynein and its activator dynactin detach from the membrane surface in metaphase extracts. The sevenfold decrease in membrane-associated dynein correlated well with the eightfold reduction in minus end-directed membrane transport observed in metaphase versus interphase extracts. Although dynein heavy or intermediate chain phosphorylation did not change in a cell cycle- dependent manner, the dynein light intermediate chain incorporated approximately 12-fold more radiolabeled phosphate in metaphase than in interphase extracts. These studies suggest that cell cycle-dependent phosphorylation of cytoplasmic dynein may regulate organelle transport by modulating the association of this motor with membranes.  相似文献   

6.
Cytoplasmic dynein is a microtubule minus-end–directed motor that is thought to power the transport of vesicles from the TGN to the apical cortex in polarized epithelial cells. Trans-Golgi enriched membranes, which were isolated from primary polarized intestinal epithelial cells, contain both the actin-based motor myosin-I and dynein, whereas isolated Golgi stacks lack dynein but contain myosin-I (Fath, K.R., G.M. Trimbur, and D.R. Burgess. 1994. J. Cell Biol. 126:661–675). We show now that Golgi stacks in vitro bind dynein supplied from cytosol in the absence of ATP, and bud small membranes when incubated with cytosol and ATP. Cytosolic dynein binds to regions of stacks that are destined to bud because dynein is present in budded membranes, but absent from stacks after budding. Budded membranes move exclusively towards microtubule minus-ends in in vitro motility assays. Extraction studies suggest that dynein binds to a Golgi peripheral membrane protein(s) that resists extraction by ice-cold Triton X-100. In the presence of cytosol, these membrane ghosts can move towards the minus-ends of microtubules. Detergent-extracted Golgi stacks and TGN-containing membranes are closely associated with an amorphous matrix composed in part of spectrin and ankyrin. Although spectrin has been proposed to help link dynein to organellar membranes, we found that functional dynein may bind to extracted membranes independently of spectrin and ankyrin.  相似文献   

7.
Cytoplasmic dynein is the major microtubule minus-end–directed cellular motor. Most dynein activities require dynactin, but the mechanisms regulating cargo-dependent dynein–dynactin interaction are poorly understood. In this study, we focus on dynein–dynactin recruitment to cargo by the conserved motor adaptor Bicaudal D2 (BICD2). We show that dynein and dynactin depend on each other for BICD2-mediated targeting to cargo and that BICD2 N-terminus (BICD2-N) strongly promotes stable interaction between dynein and dynactin both in vitro and in vivo. Direct visualization of dynein in live cells indicates that by itself the triple BICD2-N–dynein–dynactin complex is unable to interact with either cargo or microtubules. However, tethering of BICD2-N to different membranes promotes their microtubule minus-end–directed motility. We further show that LIS1 is required for dynein-mediated transport induced by membrane tethering of BICD2-N and that LIS1 contributes to dynein accumulation at microtubule plus ends and BICD2-positive cellular structures. Our results demonstrate that dynein recruitment to cargo requires concerted action of multiple dynein cofactors.  相似文献   

8.
This review summarizes the data describing the role of cellular microtubules in transportation of membrane vesicles — transport containers for secreted proteins or lipids. Most events of early vesicular transport in animal cells (from the endoplasmic reticulum to the Golgi apparatus and in the opposite recycling direction) are mediated by microtubules and microtubule motor proteins. Data on the role of dynein and kinesin in early vesicle transport remain controversial, probably because of the differentiated role of these proteins in the movements of vesicles or membrane tubules with various cargos and at different stages of secretion and retrograde transport. Microtubules and dynein motor protein are essential for maintaining a compact structure of the Golgi apparatus; moreover, there is a set of proteins that are essential for Golgi compactness. Dispersion of ribbon-like Golgi often occurs under physiological conditions in interphase cells. Golgi is localized in the leading part of crawling cultured fibroblasts, which also depends on microtubules and dynein. The Golgi apparatus creates its own system of microtubules by attracting γ-tubulin and some microtubule-associated proteins to membranes. Molecular mechanisms of binding microtubule-associated and motor proteins to membranes are very diverse, suggesting the possibility of regulation of Golgi interaction with microtubules during cell differentiation. To illustrate some statements, we present our own data showing that the cluster of vesicles induced by expression of constitutively active GTPase Sar1a[H79G] in cells is dispersed throughout the cell after microtubule disruption. Movement of vesicles in cells containing the intermediate compartment protein ERGIC53/LMANI was inhibited by inhibiting dynein. Inhibiting protein kinase LOSK/SLK prevented orientation of Golgi to the leading part of crawling cells, but the activity of dynein was not inhibited according to data on the movement of ERGIC53/LMANI-marked vesicles.  相似文献   

9.
Drosophila melanogaster cellularization is a dramatic form of cytokinesis in which a membrane furrow simultaneously encapsulates thousands of cortical nuclei of the syncytial embryo to generate a polarized cell layer. Formation of this cleavage furrow depends on Golgi-based secretion and microtubules. During cellularization, specific Golgi move along microtubules, first to sites of furrow formation and later to accumulate within the apical cytoplasm of the newly forming cells. Here we show that Golgi movements and furrow formation depend on cytoplasmic dynein. Furthermore, we demonstrate that Lava lamp (Lva), a golgin protein that is required for cellularization, specifically associates with dynein, dynactin, cytoplasmic linker protein-190 (CLIP-190) and Golgi spectrin, and is required for the dynein-dependent targeting of the secretory machinery. The Lva domains that bind these microtubule-dependent motility factors inhibit Golgi movement and cellularization in a live embryo injection assay. Our results provide new evidence that golgins promote dynein-based motility of Golgi membranes.  相似文献   

10.
The ClC-2 chloride channel has been implicated in essential physiological functions. Analyses of ClC-2 knock-out mice suggest that ClC-2 expression in retinal pigment epithelia and Sertoli cells normally supports the viability of photoreceptor cells and male germ cells, respectively. Further, other studies suggest that ClC-2 expression in neurons may modify inhibitory synaptic transmission via the gamma-aminobutyric acid, type A receptor. However, complete understanding of the physiological functions of ClC-2 requires elucidation of the molecular basis for its regulation. Using cell imaging and biochemical and electrophysiological techniques, we show that expression of ClC-2 at the cell surface may be regulated via an interaction with the dynein motor complex. Mass spectrometry and Western blot analysis of eluate from a ClC-2 affinity matrix showed that heavy and intermediate chains of dynein bind ClC-2 in vitro. The dynein intermediate chain co-immunoprecipitates with ClC-2 from hippocampal membranes suggesting that they also interact in vivo. Disruption of dynein motor function perturbs ClC-2 localization and increases the functional expression of ClC-2 in the plasma membranes of COS7 cells. Thus, cell surface expression of ClC-2 may be regulated by dynein motor activity. This work is the first to demonstrate an in vivo interaction between an ion channel and the dynein motor complex.  相似文献   

11.
The Golgi complex of mammalian cells is composed of cisternal stacks that function in processing and sorting of membrane and luminal proteins during transport from the site of synthesis in the endoplasmic reticulum to lysosomes, secretory vacuoles, and the cell surface. Even though exceptions are found, the Golgi stacks are usually arranged as an interconnected network in the region around the centrosome, the major organizing center for cytoplasmic microtubules. A close relation thus exists between Golgi elements and microtubules (especially the stable subpopulation enriched in detyrosinated and acetylated tubulin). After drug-induced disruption of microtubules, the Golgi stacks are disconnected from each other, partly broken up, dispersed in the cytoplasm, and redistributed to endoplasmic reticulum exit sites. Despite this, intracellular protein traffic is only moderately disturbed. Following removal of the drugs, scattered Golgi elements move along reassembling microtubules back to the centrosomal region and reunite into a continuous system. The microtubule-dependent motor proteins cytoplasmic dynein and kinesin bind to Golgi membranes and have been implicated in vesicular transport to and from the Golgi complex. Microinjection of dynein heavy chain antibodies causes dispersal of the Golgi complex, and the Golgi complex of cells lacking cytoplasmic dynein is likewise spread throughout the cytoplasm. In a similar manner, kinesin antibodies have been found to inhibit Golgi-to-endoplasmic reticulum transport in brefeldin A-treated cells and scattering of Golgi elements along remaining microtubules in cells exposed to a low concentration of nocodazole. The molecular mechanisms in the interaction between microtubules and membranes are, however, incompletely understood. During mitosis, the Golgi complex is extensively reorganized in order to ensure an equal partitioning of this single-copy organelle between the daughter cells. Mitosis-promoting factor, a complex of cdc2 kinase and cyclin B, is a key regulator of this and other events in the induction of cell division. Cytoplasmic microtubules depolymerize in prophase and as a result thereof, the Golgi stacks become smaller, disengage from each other, and take up a perinuclear distribution. The mitotic spindle is thereafter put together, aligns the chromosomes in the metaphase plate, and eventually pulls the sister chromatids apart in anaphase. In parallel, the Golgi stacks are broken down into clusters of vesicles and tubules and movement of protein along the exocytic and endocytic pathways is inhibited. Using a cell-free system, it has been established that the fragmentation of the Golgi stacks is due to a continued budding of transport vesicles and a concomitant inhibition of the fusion of the vesicles with their target membranes. In telophase and after cytokinesis, a Golgi complex made up of interconnected cisternal stacks is recreated in each daughter cell and intracellular protein traffic is resumed. This restoration of a normal interphase morphology and function is dependent on reassembly of a radiating array of cytoplasmic microtubules along which vesicles can be carried and on reactivation of the machinery for membrane fusion.  相似文献   

12.
Zeste white 10 (ZW10) is a mitotic checkpoint protein and the anchor for cytoplasmic dynein at mitotic kinetochores, though it is expressed throughout the cell cycle. We find that ZW10 localizes to pericentriolar membranous structures during interphase and cosediments with Golgi membranes. Dominant-negative ZW10, anti-ZW10 antibody, and ZW10 RNA interference (RNAi) caused Golgi dispersal. ZW10 RNAi also dispersed endosomes and lysosomes. Live imaging of Golgi, endosomal, and lysosomal markers after reduced ZW10 expression showed a specific decrease in the frequency of minus end-directed movements. Golgi membrane-associated dynein was markedly decreased, suggesting a role for ZW10 in dynein cargo binding during interphase. We also find ZW10 enriched at the leading edge of migrating fibroblasts, suggesting that ZW10 serves as a general regulator of dynein function throughout the cell cycle.  相似文献   

13.
Distinct cell cycle-dependent roles for dynactin and dynein at centrosomes   总被引:1,自引:0,他引:1  
Centrosomal dynactin is required for normal microtubule anchoring and/or focusing independently of dynein. Dynactin is present at centrosomes throughout interphase, but dynein accumulates only during S and G2 phases. Blocking dynein-based motility prevents recruitment of dynactin and dynein to centrosomes and destabilizes both centrosomes and the microtubule array, interfering with cell cycle progression during mitosis. Destabilization of the centrosomal pool of dynactin does not inhibit dynein-based motility or dynein recruitment to centrosomes, but instead causes abnormal G1 centriole separation and delayed entry into S phase. The correct balance of centrosome-associated dynactin subunits is apparently important for satisfaction of the cell cycle mechanism that monitors centrosome integrity before centrosome duplication and ultimately governs the G1 to S transition. Our results suggest that, in addition to functioning as a microtubule anchor, dynactin contributes to the recruitment of important cell cycle regulators to centrosomes.  相似文献   

14.
Nudel and Lis1 appear to regulate cytoplasmic dynein in neuronal migration and mitosis through direct interactions. However, whether or not they regulate other functions of dynein remains elusive. Herein, overexpression of a Nudel mutant defective in association with either Lis1 or dynein heavy chain is shown to cause dispersions of membranous organelles whose trafficking depends on dynein. In contrast, the wild-type Nudel and the double mutant that binds to neither protein are much less effective. Time-lapse microscopy for lysosomes reveals significant reduction in both frequencies and velocities of their minus end-directed motions in cells expressing the dynein-binding defective mutant, whereas neither the durations of movement nor the plus end-directed motility is considerably altered. Moreover, silencing Nudel expression by RNA interference results in Golgi apparatus fragmentation and cell death. Together, it is concluded that Nudel is critical for dynein motor activity in membrane transport and possibly other cellular activities through interactions with both Lis1 and dynein heavy chain.  相似文献   

15.
Dodding MP  Way M 《The EMBO journal》2011,30(17):3527-3539
It is now clear that transport on microtubules by dynein and kinesin family motors has an important if not critical role in the replication and spread of many different viruses. Understanding how viruses hijack dynein and kinesin motors using a limited repertoire of proteins offers a great opportunity to determine the molecular basis of motor recruitment. In this review, we discuss the interactions of dynein and kinesin-1 with adenovirus, the α herpes viruses: herpes simplex virus (HSV1) and pseudorabies virus (PrV), human immunodeficiency virus type 1 (HIV-1) and vaccinia virus. We highlight where the molecular links to these opposite polarity motors have been defined and discuss the difficulties associated with identifying viral binding partners where the basis of motor recruitment remains to be established. Ultimately, studying microtubule-based motility of viruses promises to answer fundamental questions as to how the activity and recruitment of the dynein and kinesin-1 motors are coordinated and regulated during bi-directional transport.  相似文献   

16.
Many of the kinesin microtubule motor proteins discovered during the past 8-9 years have roles in spindle assembly and function or chromosome movement during meiosis or mitosis. The discovery of kinesin motor proteins with a clear involvement in spindle and chromosome motility, together with recent evidence that cytoplasmic dynein plays a role in chromosome distribution, has attracted great interest. The identification of microtubule motors that function in chromosome distribution represents a major advance in understanding the forces that underlie chromosome and spindle movements during cell division.  相似文献   

17.
Cytoplasmic dynein is a large minus-end-directed microtubule motor complex, involved in many different cellular processes including intracellular trafficking, organelle positioning, and microtubule organization. Furthermore, dynein plays essential roles during cell division where it is implicated in multiple processes including centrosome separation, chromosome movements, spindle organization, spindle positioning, and mitotic checkpoint silencing. How is a single motor able to fulfill this large array of functions and how are these activities temporally and spatially regulated? The answer lies in the unique composition of the dynein motor and in the interactions it makes with multiple regulatory proteins that define the time and place where dynein becomes active. Here, we will focus on the different mitotic processes that dynein is involved in, and how its regulatory proteins act to support dynein. Although dynein is highly conserved amongst eukaryotes (with the exception of plants), there is significant variability in the cellular processes that depend on dynein in different species. In this review, we concentrate on the functions of cytoplasmic dynein in mammals but will also refer to data obtained in other model organisms that have contributed to our understanding of dynein function in higher eukaryotes.  相似文献   

18.
Radial glial (RG) cells are the neural stem cells of the developing neocortex. Apical RG (aRG) cells can delaminate to generate basal RG (bRG) cells, a cell type associated with human brain expansion. Here, we report that aRG delamination is regulated by the post‐Golgi secretory pathway. Using in situ subcellular live imaging, we show that post‐Golgi transport of RAB6+ vesicles occurs toward the minus ends of microtubules and depends on dynein. We demonstrate that the apical determinant Crumbs3 (CRB3) is also transported by dynein. Double knockout of RAB6A/A'' and RAB6B impairs apical localization of CRB3 and induces a retraction of aRG cell apical process, leading to delamination and ectopic division. These defects are phenocopied by knockout of the dynein activator LIS1. Overall, our results identify a RAB6‐dynein‐LIS1 complex for Golgi to apical surface transport in aRG cells, and highlights the role of this pathway in the maintenance of neuroepithelial integrity.  相似文献   

19.
Peter Satir has devoted his research career to elucidating the structural basis for ciliary motility. His ingenious use of structural analysis, combined with identification of powerful model systems, provided a model for the sliding microtubule hypothesis of ciliary bending and led to the discovery that dynein is a 'minus-end'-directed motor whose regulated activity underpins the bending motion of cilia. Here, we focus on ciliary motility to illustrate Satir's pioneering contributions to cell biology.  相似文献   

20.
Cytoplasmic dynein is recruited to the cell cortex in early mitosis, where it can generate pulling forces on astral microtubules to position the mitotic spindle. Recent work has shown that dynein displays a dynamic asymmetric cortical localization, and that dynein recruitment is negatively regulated by spindle pole-proximity. This results in oscillating dynein recruitment to opposite sides of the cortex to center the mitotic spindle. However, although the centrosome-derived signal that promotes displacement of dynein has been identified, it is currently unknown how dynein is re-recruited to the cortex once it has been displaced. Here we show that re-recruitment of cortical dynein requires astral microtubules. We find that microtubules are necessary for the sustained localized enrichment of dynein at the cortex. Furthermore, we show that stabilization of astral microtubules causes spindle misorientation, followed by mispositioning of dynein at the cortex. Thus, our results demonstrate the importance of astral microtubules in the dynamic regulation of cortical dynein recruitment in mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号