首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A proteomic analysis of the synaptic vesicle was undertaken to obtain a better understanding of vesicle regulation. Synaptic vesicles primarily consist of integral membrane proteins that are not well resolved on traditional isoelectric focusing/two-dimensional gel electrophoresis (IEF/2-DE) gels and are resistant to in-gel digestion with trypsin thereby reducing the number of peptides available for mass spectrometric analysis. To address these limitations, two complementary 2-DE methods were investigated in the proteome analysis: (a) IEF/sodium dodecyl sulfate-polyacrylamide gel electrophoresis (IEF/SDS-PAGE) for resolution of soluble proteins and, (b) Benzyl hexadecyl ammonium chloride/SDS-PAGE (16-BAC/SDS-PAGE) for resolution of integral membrane proteins. The IEF/SDS-PAGE method provided superior resolution of soluble proteins, but could only resolve membrane proteins with a single transmembrane domain. The 16-BAC/SDS-PAGE method improved separation, resolution and identification of integral membrane proteins with up to 12 transmembrane domains. Trypsin digestion of the integral membrane proteins was poor and fewer peptides were identified from these proteins. Analysis of both the peptide mass fingerprint and the tandem mass spectra using electrospray ionization quadrupole-time of flight mass spectrometry led to the positive identification of integral membrane proteins. Using both 2-DE separation methods, a total of 36 proteins were identified including seven integral membrane proteins, 17 vesicle regulatory proteins and four proteins whose function in vesicles is not yet known.  相似文献   

2.
Glycosylation, a very important post-translational modification of proteins, is increasingly coming into notice. However, large-scale, throughput investigations on glycosylated proteins are few. We applied a sensitive and fast fluorescence-based multiplexed proteomics (MP) technology which included two-dimensional gel electrophoresis (2-DE) followed by the fluorescence staining of glycoprotein and mass spectrometry identification for the purpose of constructing glycoprotein databases of the typical human hepatocellular carcinoma cell lines including Hep3B cell line without metastasis and MHCC97H with highly metastatic potential as well as the control non-tumor Chang liver cell. 74+/-2 (n=3), 78+/-3 (n=3) and 72+/-5 (n=3) glycoprotein spots were detected on 2-DE gels from Chang liver, Hep3B and MHCC97H cell sample using this MP technique, respectively. In all, 80 glycoproteins from three cell lines were successfully identified via peptide mass profiling using MALDI-TOF-MS/MS and the identified glycoproteins were annotated to our databases. In addition, we also found the glycosylation pattern differences among these three cell lines. The protein glycosylation alteration would be have great significance for the diagnosis of HCC and prediction of its metastasis. This study described the construction of glycosylation patterns of proteins and glycoproteome databases of human liver cells by the novel technological platform. The glycoproteome databases also provide essential basis for following study.  相似文献   

3.
Most cell membrane proteins are known or predicted to be glycosylated in eukaryotic organisms, where surface glycans are essential in many biological processes including cell development and differentiation. Nonetheless, the glycosylation on cell membranes remains not well characterized because of the lack of sensitive analytical methods. This study introduces a technique for the rapid profiling and quantitation of N- and O-glycans on cell membranes using membrane enrichment and nanoflow liquid chromatography/mass spectrometry of native structures. Using this new method, the glycome analysis of cell membranes isolated from human embryonic stem cells and somatic cell lines was performed. Human embryonic stem cells were found to have high levels of high mannose glycans, which contrasts with IMR-90 fibroblasts and a human normal breast cell line, where complex glycans are by far the most abundant and high mannose glycans are minor components. O-Glycosylation affects relatively minor components of cell surfaces. To verify the quantitation and localization of glycans on the human embryonic stem cell membranes, flow cytometry and immunocytochemistry were performed. Proteomics analyses were also performed and confirmed enrichment of plasma membrane proteins with some contamination from endoplasmic reticulum and other membranes. These findings suggest that high mannose glycans are the major component of cell surface glycosylation with even terminal glucoses. High mannose glycans are not commonly presented on the surfaces of mammalian cells or in serum yet may play important roles in stem cell biology. The results also mean that distinguishing stem cells from other mammalian cells may be facilitated by the major difference in the glycosylation of the cell membrane. The deep structural analysis enabled by this new method will enable future mechanistic studies on the biological significance of high mannose glycans on stem cell membranes and provide a general tool to examine cell surface glycosylation.  相似文献   

4.
Adhesion molecules are essential for a wide range of biological and physiological functions, including cell-cell interactions, cell interactions with the extracellular matrix, cell migration, proliferation and survival. Defects in cell adhesion have been associated with pathological conditions such as neoplasia, and neurodegenerative diseases. We have identified a new adhesion molecule of the immunoglobulin family, GlialCAM. The same protein was recently published under the name hepaCAM and was suggested to be associated with hepatocellular carcinoma. Here we have expressed and purified the extracellular domain of this molecule in two mammalian expression systems, HEK and CHO cells. A three step purification protocol gave an over 95% pure protein. The extracellular domain of GlialCAM possesses several potential N- and O-glycosylation sites. Glycosylation is one of the most common post-translational modifications of secreted proteins and of the extracellular domains of membrane bound proteins. It can influence both the activity and the stability of the protein. The glycosylation pattern has been shown to depend on the cell type where the protein is expressed. We examined if differences in the glycosylation of this protein could be detected when it was expressed in the two commonly used mammalian expression systems, HEK and CHO. Differences in the glycosylation were detected.  相似文献   

5.
Comparative proteomics analysis of human lung squamous carcinoma   总被引:33,自引:0,他引:33  
Two-dimensional polyacrylamide gel electrophoresis (2-DE) profiles of human lung squamous carcinoma tissue and paired surrounding normal bronchial epithelial tissue were compared. Selected differential protein-spots were identified with peptide mass fingerprinting based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and database searching. Well-resolved and reproducible 2-DE patterns of both the tumor and the normal tissues were acquired. The average deviations of spot position were 0.873+/-0.125mm in IEF direction and 1.025+/-0.213mm in SDS-PAGE direction, respectively. For the tumor tissues, a total of 1349+/-67 spots were detected and 1235+/-48 spots were matched with an average matching rate of 91.5%. For the corresponding normal tissues, a total of 1297+/-73 spots were detected and 1183+/-56 spots were matched with an average matching rate of 91.2%. A total of 1069+/-45 spots were matched between the tumor and the normal tissues. Forty differential proteins between tumor and normal tissues were characterized. Some proteins were the products of oncogenes and others were involved in the regulation of cell cycle and signal transduction. These data are valuable for mass identification of differentially expressed proteins involved in lung carcinogenesis, establishing human lung cancer proteome database and screening molecular marker to further study human lung squamous carcinoma.  相似文献   

6.
The cDNA for human interleukin 6 (IL 6) was stably expressed at high levels in the three mammalian cell lines COS-7, PA317, and GH3 to yield IL 6 proteins of 25 to 27, 26, 22 to 24, and 23 kDa molecular mass. Both size and relative amounts of the recombinant IL 6 (rIL 6) species produced correspond to those of natural IL 6 secreted by LPS-stimulated monocytes. Oligosaccharide analysis of recombinant IL 6 utilizing tunicamycin and endoglycosidases revealed O- and N-linked glycosylation that is comparable to that of natural IL 6 derived from human monocytes and fibroblasts. IL 6 expressed in each of the three cell lines was phosphorylated similarly to the IL 6 produced in human monocytes and fibroblasts. IL 6 secreted by the three different cell lines have marked differences in specific biological activities. COS-7 IL 6 appeared to be 12-fold more active in its hybridoma growth factor activity than that made in PA317 or GH3 cells. In contrast, PA317 and GH3 IL 6 were 230 and 6.7 times more effective than COS-7 IL 6 in inducing Ig production in CESS cells. Also, PA317 and GH3 IL 6 were more effective than COS-7 IL 6 in inducing the acute-phase protein fibrinogen in human hepatocytes. The rIL 6 species exhibited no antiviral activity.  相似文献   

7.
8.
Because the glycosylation of proteins is known to change in tumor cells during the development of breast cancer, a glycomics approach is used here to find relevant biomarkers of breast cancer. These glycosylation changes are known to correlate with increasing tumor burden and poor prognosis. Current antibody-based immunochemical tests for cancer biomarkers of ovarian (CA125), breast (CA27.29 or CA15-3), pancreatic, gastric, colonic, and carcinoma (CA19-9) target highly glycosylated mucin proteins. However, these tests lack the specificity and sensitivity for use in early detection. This glycomics approach to find glycan biomarkers of breast cancer involves chemically cleaving oligosaccharides (glycans) from glycosylated proteins that are shed or secreted by breast cancer tumor cell lines. The resulting free glycan species are analyzed by MALDI-FT-ICR MS. Further structural analysis of the glycans can be performed in FTMS through the use of tandem mass spectrometry with infrared multiphoton dissociation. Glycan profiles were generated for each cell line and compared. These methods were then used to analyze sera obtained from a mouse model of breast cancer and a small number of serum samples obtained from human patients diagnosed with breast cancer or patients with no known history of breast cancer. In addition to the glycosylation changes detected in mice as mouse mammary tumors developed, glycosylation profiles were found to be sufficiently different to distinguish patients with cancer from those without. Although the small number of patient samples analyzed so far is inadequate to make any legitimate claims at this time, these promising but very preliminary results suggest that glycan profiles may contain distinct glycan biomarkers that may correspond to glycan "signatures of cancer."  相似文献   

9.
The aim of the present study was the molecular profiling of different Ph+ chronic myelogenous leukemia (CML) cell lines (LAMA84, K562, and KCL22) by a proteomic approach. By employing two-dimensional gel electrophoresis combined with mass spectrometry analysis, we have identified 191 protein spots corresponding to 142 different proteins. Among these, 63% were cancer-related proteins and 74% were described for the first time in leukemia cells. Multivariate analysis highlighted significant differences in the global proteomic profile of the three CML cell lines. In particular, the detailed analysis of 35 differentially expressed proteins revealed that LAMA84 cells preferentially expressed proteins associated with an invasive behavior, while K562 and KCL22 cells preferentially expressed proteins involved in drug resistance. These data demonstrate that these CML cell lines, although representing the same pathological phenotype, show characteristics in their protein expression profile that suggest different phenotypic leukemia subclasses. These data contribute a new potential characterization of the CML phenotype and may help to understand interpatient variability in the progression of disease and in the efficacy of a treatment.  相似文献   

10.
经典的蛋白质组学研究方法包括IEF/SDS-PAGE双向电泳和质谱技术的联用,但由于IEF的一些不足,限制了其应用范围。对角线电泳是蛋白质组学研究中的一项特殊分离技术,由于其原理与IEF/SDS-PAGE不同,正逐渐成为蛋白质组学中电泳分离技术的重要补充,特别是在膜蛋白和蛋白质相互关系的研究中将起到重要作用。本文综述了对角线双向电泳技术的特点、发展和在蛋白质组学研究中的最新进展,比较了双向电泳和对角线电泳的优缺点,展望了对角线电泳在蛋白质组学研究中的应用前景。  相似文献   

11.
The human cell lines FTC-133 and CGTH W-1, both derived from patients with thyroid cancer, assemble to form different types of spheroids when cultured on a random positioning machine. In order to obtain a possible explanation for their distinguishable aggregation behaviour under equal culturing conditions, we evaluated a proteomic analysis emphasising cytoskeletal and membrane-associated proteins. For this analysis, we treated the cells by ultrasound, which freed up some of the proteins into the supernatant but left some attached to the cell fragments. Both types of proteins were further separated by free-flow IEF and SDS gel electrophoresis until their identity was determined by MS. The MS data revealed differences between the two cell lines with regard to various structural proteins such as vimentin, tubulins and actin. Interestingly, integrin α-5 chains, myosin-10 and filamin B were only found in FTC-133 cells, while collagen was only detected in CGTH W-1 cells. These analyses suggest that FTC-133 cells express surface proteins that bind fibronectin, strengthening the three-dimensional cell cohesion.  相似文献   

12.
In this study we compare intracellular transport and processing of a recombinant glycoprotein in mammalian and insect cells. Detailed analysis of the N-glycosylation of recombinant human IFN-gamma by matrix-assisted laser-desorption mass spectrometry showed that the protein secreted by Chinese hamster ovary and baculovirus-infected insect Sf9 cells was associated with complex sialylated or truncated tri-mannosyl core glycans, respectively. However, the intracellular proteins were predominantly associated with high-mannose type oligosaccharides (Man-6 to Man-9) in both cases, indicating that endoplasmic reticulum to cis-Golgi transport is a predominant rate-limiting step in both expression systems. In CHO cells, although there was a minor intracellular subpopulation of sialylated IFN-gamma glycoforms identical to the secreted product (therefore associated with late-Golgi compartments or secretory vesicles), no other intermediates were evident. Therefore, anterograde transport processes in the Golgi stack do not limit secretion. In Sf9 insect cells, there was no direct evidence of post-ER glycan-processing events other than core fucosylation and de-mannosylation, both of which were glycosylation site-specific. To investigate the influence of nucleotide-sugar availability on cell-specific glycosylation, the cellular content of nucleotide-sugar substrates in both mammalian and insect cells was quantitatively determined by anion-exchange HPLC. In both host cell types, UDP-hexose and UDP-N-acetylhexosamine were in greater abundance relative to other substrates. However, unlike CHO cells, sialyltransferase activity and CMP-NeuAc substrate were not present in uninfected or baculovirus-infected Sf9 cells. Similar data were obtained for other insect cell hosts, Sf21 and Ea4. We conclude that although the limitations on intracellular transport and secretion of recombinant proteins in mammalian and insect cells are similar, N-glycan processing in Sf insect cells is limited, and that genetic modification of N-glycan processing in these insect cell lines will be constrained by substrate availability to terminal galactosylation.  相似文献   

13.
In the analysis of proteins in complex samples, pre-fractionation is imperative to obtain the necessary depth in the number of reliable protein identifications by mass spectrometry. Here we explore isoelectric focusing of peptides (peptide IEF) as an effective fractionation step that at the same time provides the added possibility to eliminate spurious peptide identifications by filtering for pI. Peptide IEF in IPG strips is fast and sharply confines peptides to their pI. We have evaluated systematically the contribution of pI filtering and accurate mass measurements on the total number of protein identifications in a complex protein mixture (Drosophila nuclear extract). At the same time, by varying Mascot identification cutoff scores, we have monitored the false positive rate among these identifications by searching reverse protein databases. From mass spectrometric analyses at low mass accuracy using an LTQ ion trap, false positive rates can be minimized by filtering of peptides not focusing at their expected pI. Analyses using an LTQ-FT mass spectrometer delivers low false positive rates by itself due to the high mass accuracy. In a direct comparison of peptide IEF with SDS-PAGE as a pre-fractionation step, IEF delivered 25% and 43% more proteins when identified using FT-MS and LTQ-MS, respectively. Cumulatively, 2190 non redundant proteins were identified in the Drosophila nuclear extract at a false positive rate of 0.5%. Of these, 1751 proteins (80%) were identified after peptide IEF and FT-MS alone. Overall, we show that peptide IEF allows to increase the confidence level of protein identifications, and is more sensitive than SDS-PAGE.  相似文献   

14.
Protein kinase C (PKC) isoforms are present in the cell nucleus in diverse cell lines and tissues. Since little is known about proteins interacting with PKC inside the cell nucleus, we used Neuro-2a neuroblastoma cells, in which PKCalpha is present in the nucleus, to screen for nuclear binding partners for PKC. Applying overlay assays, we detected several nuclear proteins which bind to PKCalpha. Specificity of binding was shown by its dependence on PKC activation by phorbol ester, calcium, and phosphatidylserine. The PKC-binding proteins were partially purified and analyzed by microsequencing and mass spectrometry. Four proteins could be identified: PTB-associated splicing factor (PSF), p68 RNA helicase, and the heterogeneous nuclear ribonucleoprotein (hnRNP) proteins A3 and L. In the case of PSF, binding to PKC could also be demonstrated in a GST-pull-down assay using GST-PKCalpha, expressed in insect cells. Phosphorylation experiments revealed that PSF is a weak in vitro substrate for PKCalpha.  相似文献   

15.
The HIV-1 envelope (Env) is a key determinant in mediating viral entry and fusion to host cells and is a major target for HIV vaccine development. While Env is typically about 50% glycan by mass, glycosylation sites are known to evolve, with some glycosylation profiles presumably being more effective at facilitating neutralization escape than others. Thus, characterizing glycosylation patterns of Env and native virions and correlating glycosylation profiles with infectivity and Env immunogenicity are necessary first steps in designing effective immunogens. Herein, we describe a mass spectrometry-based strategy to determine HIV-1 Env glycosylation patterns and have compared two mammalian cell expressed recombinant Env immunogens, one a limited immunogen and one that induces cross-clade neutralizing antibodies. We have used a glycopeptide-based mass mapping approach to identify and characterize Env's glycosylation patterns by elucidating which sites are utilized and what type of glycan motif is present at each glycosylation site. Our results show that the immunogens displayed different degrees of glycosylation as well as a different characteristic set of glycan motifs. Thus, these techniques can be used to (1) define glycosylation profiles of recombinant Env proteins and Env on mature virions, (2) define specific carbohydrate moieties at each glycosylation site, and (3) determine the role of certain carbohydrates in HIV-1 infectivity and in modulation of Env immunogenicity.  相似文献   

16.
Characterization and role of fucose mutarotase in mammalian cells   总被引:1,自引:0,他引:1  
Park D  Ryu KS  Choi D  Kwak J  Park C 《Glycobiology》2007,17(9):955-962
L-Fucose for mammalian glycosylation contains an anomeric carbon atom generating alpha- and beta-L-fucoses. Based on sequence comparison of mouse and human homologs with the prokaryotic fucose mutarotases (FucU) characterized previously, we investigated their function in mammalian cells. By nuclear magnetic resonance (NMR) measurement with saturation difference analysis, the purified mammalian mutarotases were demonstrated to be involved in an interconversion between the two anomeric forms with comparable efficiency as that of the Escherichia coli FucU. The mouse gene was widely expressed in various tissues and cell lines, including kidney, liver, and pancreas, although expression was marginal in muscle and testis. By generating stably expressed cell lines for mutarotase genes in HepG2, it was shown that fucose incorporations into cellular proteins were increased as demonstrated by an incorporation of radiolabeled fucose into the cells. Furthermore, intracellular levels of GDP-L-fucose, measured with high performance liquid chromatography (HPLC), were enhanced by an overproduction of cellular mutarotase, which was reversed by gene silencing of mutarotase based on RNA interference. The results suggest that the mammalian mutarotase is functional in facilitated incorporation of fucose through the salvage pathway.  相似文献   

17.
The protein expression pattern in the cytosol fraction of the adriamycin resistant MCF-7 cell line (MCF-7/ADR) was compared to that of the parental MCF-7 cell line using two-dimensional gel electrophoresis and mass spectrometry. Twenty proteins with altered abundances were identified and studied in MCF-7/ADR. Both up regulation and down regulation are characterized. The most striking differences were found for proteins that were uniquely expressed in this cell line and not detectable in the parental MCF-7 cell line. These proteins include annexin I, the neuronal ubiquitin carboxyl hydrolase isoenzyme L-1 (also known as PGP9.5), glutathione-S-transferase pi class, nicotinamide N-methyltransferase, and interleukin-18 precursor. On the other hand, catechol-O-methyltransferase was expressed in the parental cell line, but was not detected in the adriamycin resistant cell line. This protein expression pattern was unique to MCF-7/ADR and not observed in MCF-7 cell lines selected for resistant to etoposide, mitoxantrone or melphalan.  相似文献   

18.
Most naturally occurring mammalian cancers and immortalized tissue culture cell lines share a common characteristic, the overexpression of full-length HMGA1 (high mobility group A1) proteins. The HMGA1 protooncogene codes for two closely related isoform proteins, HMGA1a and HMGA1b, and causes cancerous cellular transformation when overexpressed in either transgenic mice or "normal" cultured cell lines. Previous work has suggested that the in vivo types and patterns of the HMGA1 post-translational modifications (PTMs) differ between normal and malignant cells. The present study focuses on the important question of whether HMGA1a and HMGA1b proteins isolated from the same cell type have identical or different PTM patterns and also whether these isoform patterns differ between non-malignant and malignant cells. Two independent mass spectrometry methods were used to identify the types of PTMs found on specific amino acid residues on the endogenous HMGA1a and HMGA1b proteins isolated from a non-metastatic human mammary epithelial cell line, MCF-7, and a malignant metastatic cell line derived from MCF-7 cells that overexpressed the transgenic HMGA1a protein. Although some of the PTMs were the same on both the HMGA1a and HMGA1b proteins isolated from a given cell type, many other modifications were present on one but not the other isoform. Furthermore, we demonstrate that both HMGA1 isoforms are di-methylated on arginine and lysine residues. Most importantly, however, the PTM patterns on the endogenous HMGA1a and HMGA1b proteins isolated from non-metastatic and metastatic cells were consistently different, suggesting that the isoforms likely exhibit differences in their biological functions/activities in these cell types.  相似文献   

19.
The leukocyte adhesion molecule L-selectin, which mediates the initial steps of leukocyte attachment to vascular endothelium, is intensely glycosylated. Different glycoforms of L-selectin are expressed on different leukocyte subsets and differences in L-selectin glycosylation appear to be correlated with the leukocyte's ability to attach to different endothelial targets. In the present study we addressed the question whether glycosylation of L-selectin influences L-selectin-ligand interactions. To obtain different glycoforms of L-selectin, recombinant proteins were expressed both in the baby hamster kidney (BHK) cell line and in the human myelogenous cell line K562, resulting in sL-sel[BHK] or sL-sel[K562], respectively. The glycosylation characteristics of the purified proteins were determined. The most striking differences in glycosylation were seen in the terminal sialylation. Each of the two proteins carried sialic acids in the alpha 2-3 position, while alpha 2-6-bound sialic acids were found exclusively on sL-sel[K562]. To investigate their adhesive properties, both recombinant sL-selectins were used in cell adhesion assays and interactions with the ligands present on various hematopoietic cell lines or activated human cardiac microvascular endothelial cells were examined. The binding capacity of sL-sel[K562] was about 1.6 fold higher compared to sL-sel[BHK] under static as well as under flow conditions. These findings indicate that the terminal sialylation pattern of L-selectin modulates its binding characteristics.  相似文献   

20.
Abstract Human cell lines are often different in their features and present variations in the glycosylation patterns of cell membrane proteins. Protein glycosylation is the most common posttranslational modification and plays a particular role in functionality and bioactivity. The key approach of this study is the comparative analysis of five hematopoietic cell lines for their N-glycosylation pattern. The N-glycans of membrane proteins were elucidated by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and MALDI-TOF/TOF-MS analyses. Furthermore, the expression of a set of glycosyltransferases was determined via RT-PCR. The B-lymphoma BJA-B and promyelocytic HL-60 cell lines distinguish in levels and linkages of glycan-bound sialic acids. Furthermore, subclones of BJA-B and HL-60 cells, which completely lack UDP-N-acetylglucosamine 2-ēpimerase/N-acetylmannosamine kinase (GNE), the key enzyme of sialic acid biosynthesis, contained almost no sialylated N-glycans. Compared to wild-type cells, the GNE-deficient cells pres\xadented a similar cell surface N-glycosylation pattern in terms of antennarity and fucosylation. The Jurkat T-cell line revealed only partially sialylated N-glycans. Additionally, the different hematopoietic cell lines vary in their level of bisecting GlcNAcylation and antennary fucosylation with the quantities of bisecting N-acetylglucosamine (GlcNAc) and core fucose coinciding with the expression of GnT-III and FucT-VIII. Of note is the occurrence of N-acetyllactosamine (LacNAc) extensions on tetraantennary structures in GNE-deficient cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号