首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 908 毫秒
1.
Infectious salmon anemia virus (ISAV) is the causative agent of infections in farmed Atlantic salmon. ISAV presumably represents a new genus within the Orthomyxoviridae. ISAV has been shown earlier to exhibit a receptor-destroying activity, which was defined as an acetylesterase with unknown specificity. We have analyzed the substrate specificity of the ISAV esterase in detail. Purified ISAV hydrolyzed free 5-N-acetyl-4-O-acetyl neuraminic acid. In addition, the purified 9-O-acetylated sialic acid derivative was also hydrolyzed, but at lower rates. When we used a glycosidically bound substrate, ISAV was unable to hydrolyze 9-O-acetylated sialic acid, which represents the major substrate for the influenza C virus esterase. ISAV completely de-O-acetylated glycoprotein-bound 5-N-acetyl-4-O-acetyl neuraminic acid. Thus, the enzymatic activity of the hemagglutinin-esterase of ISAV is comparable to that of the sialate-4-O-esterases of murine coronaviruses and related group 2 coronaviruses. In addition, we found that ISAV specifically binds to glycoproteins containing 4-O-acetylated sialic acids. Both the ISAV esterase and recombinant rat coronavirus esterase specific for 4-O-acetylated sialic acids hydrolyzed ISAV receptors on horse and rabbit erythrocytes, indicating that this sialic acid represents a receptor determinant for ISAV.  相似文献   

2.
An in situ hybridisation method was developed to detect infectious salmon anaemia virus (ISAV) in fixed tissues from Atlantic salmon Salmo salar L. Three DNA probes detected ISAV in heart, liver, kidney, spleen, caeca, and mid-gut from infected farmed Atlantic salmon obtained from a natural outbreak of ISA. The strongest signals were obtained using Probe S8, from Segment 8 of ISAV. Hybridisation was most prominent in the endothelial cells of heart tissue. The probes reacted specifically with ISAV; no hybridisation was evident in uninfected tissues from Atlantic salmon. Importantly, the probes did not cross react with the pathogens IHNV (haematopoietic necrosis virus), IPNV (infectious pancreatic necrosis virus), SPDV (salmon pancreas disease virus) and VHSV (viral haemorrhagic septicemia virus).  相似文献   

3.
Infectious salmon anaemia (ISA) is a viral disease that was first recorded in 1984 in farmed Atlantic salmon. The infectious salmon anaemia virus (ISAV) is classified as the type species of the genus Isavirus in the Orthomyxoviridae family and is evolutionary remote to the influenza viruses. The genome consists of eight negative single-stranded RNA segments, and it utilises the same mechanisms as influenza viruses to enter and exit cells. Although a common ancestor of ISAV and other genera of Orthomyxoviruses could be dated back several millions of years, there are still many similarities between ISAV and the influenza viruses regarding morphology, replication cycles and interactions with their respective hosts.  相似文献   

4.
Infectious salmon anaemia (ISA) is a serious disease responsible for high morbidity in farmed Atlantic salmon Salmo salar in Norway, Scotland and New Brunswick, Canada. Recent attempts to identify different strains of ISA virus (ISAV) based on nucleotide sequence variation have shown that the Norwegian and Scottish samples are similar to one another but markedly different from New Brunswick samples. These data may suggest the presence of different strains on each side of the Atlantic but no functional difference has been found with either strain. We describe the first identification and characterisation of ISAV in Atlantic salmon from Nova Scotia, Canada. Further, salmon infected with the Nova Scotia ISAV do not show typical ISAV pathology or mortality. Sequencing of this new strain showed it to possess greater similarity to ISAV from Norway and Scotland than to ISAV from New Brunswick. These findings are discussed in terms of a possible origin of the Nova Scotia ISAV strain and the existence of an avirulent ISAV strain. The impact of current strain variation studies on our knowledge of ISAV is also discussed.  相似文献   

5.
6.
Infectious pancreatic necrosis (IPN) virus (IPNV) infection in Atlantic salmon Salmo salar L. post-smolts and its influence on the outcome of secondary infections with infectious salmon anaemia (ISA) virus (ISAV) or Vibrio salmonicida were studied. The infections with ISAV or V salmonicida were performed both in a period of acute IPN and in the following IPNV carrier stage, 3 and 6 to 8 wk after experimental IPNV challenge, respectively. An IPNV carrier condition at low virus titre did not influence the mortality rates after secondary infections. Neither the ISAV infection nor the V. salmonicida infection in experimentally induced IPNV carriers resulted in mortalities different from those observed after challenge of IPNV-free fish. At higher IPNV titres in Atlantic salmon with acute IPN, the outcome of secondary infections was quite different from that observed in IPNV-free fish and in IPNV carriers. In 2 different experiments significantly more fish died when fish with acute IPN were infected with V salmonicida than when fish were infected with V salmonicida alone. Mortality also started earlier in the double-infected group than in the group challenged with V. salmonicida alone, 3 to 4 and 8 d after V salmonicida infection, respectively. Similar results were observed independent of whether mortalities due to IPN alone were registered in the experiments. When Atlantic salmon with acute IPN were infected with ISAV, significantly fewer fish died than when fish were infected with ISAV alone. The ongoing IPNV infection seemed to provide some protection against development of ISA.  相似文献   

7.
In order to investigate the potential role of blue mussels Mytilus edulis as a vector of the fish pathogenic infectious salmon anaemia virus (ISAV), we developed an experimental bioaccumulation system in which mussels can accumulate virus during normal filtration. Detection of virus in mussels was performed by means of real-time RT-PCR. ISAV-RNA was detected in the mussels until 72 h post-challenge. Hepatopancreas homogenate from experimentally challenged mussels was injected into salmon. All the fish injected with homogenate prepared immediately after accumulations were strongly ISAV positive 4 wk post-challenge. In the group injected with homogenate prepared 24 h after the challenge, 1 fish out of 25 was weakly ISAV positive. All of the fish that were challenged with mussel homogenate prepared 96 h after accumulation were ISAV negative. Mussels sampled from a tank with experimentally infected salmon demonstrating clinical signs consistent with ISA (infectious salmon anaemia) and mussels collected on net pen cages during ISA outbreaks in Atlantic salmon were all ISAV negative. The results indicate that the ISAV is rapidly inactivated in mussels and that mussels are not a likely reservoir host or vector for ISAV.  相似文献   

8.
9.
We have investigated the initial steps in the interaction between infectious salmon anemia virus (ISAV) and cultured cells from Atlantic salmon (SHK-1 cell line). Using radioactively or fluorescently labelled viral particles we have studied the binding and fusion kinetics and the effect of pH on binding, uptake, and fusion of ISAV to SHK-1 cells and liposomes. As pH in the medium was reduced from 7.5 to 4.5, the association of virus to the cells was nearly doubled. The same effect of pH was observed when fusion between ISAV and liposomes was analyzed. In addition, the binding of ISAV to intact SHK-1 cells and to cell membrane proteins blotted onto filters was neuraminidase sensitive. However, the increased binding induced by low pH was not neuraminidase sensitive, probably reflecting activation of a fusion peptide at low pH. By using confocal fluorescence microscopy, the increased fusion of fluorescently labelled ISAV with the plasma membrane due to low pH could be demonstrated. When vacuolar pH in the cells was raised during inoculation with chloroquine or ammonium chloride, both electron and confocal microscopy showed accumulation of ISAV in endosomes and lysosomes. Production of infectious virus could be increased by lowering the extracellular pH during infection. Furthermore, chloroquine present during virus inoculation also caused a reduction in the synthesis of viral proteins in ISAV-infected cells as well as in the production of infective virus. These results indicate that ISAV binds to sialic acid residues on the cell surface and that the fusion between virus and cell membrane takes place in the acid environment of endosomes. This provides further evidence for a high degree of similarity between ISAV and influenza virus and extends the basis for the classification of this virus as a member of the Orthomyxoviridae family.  相似文献   

10.
Antibody detection tests are rarely used for diagnostic purposes in fish diseases. Infectious salmon anaemia (ISA) caused by ISA virus (ISAV) is an emerging disease of Atlantic salmon Salmo salar L. The virus has also been isolated from diseased coho salmon Oncorhynchus kisutch in Chile. An indirect enzyme-linked immunosorbent assay (ELISA) that should facilitate serodiagnosis of ISAV infection, the study of epidemiology, and the control of ISA in farmed fishes has been developed using purified ISAV as the coating antigen, and monoclonal antibodies that detect fish immunoglobulins bound to the antigen on the plate. Application of the test to a random sample of farmed Atlantic salmon from the Bay of Fundy, New Brunswick, Canada, positively identified 5 of the 7 ISAV RT-PCR-positive fish, and all 10 RT-PCR-negative fish were also negative in the ELISA. Some RT-PCR-negative fish had an elevated non-specific antibody reactivity suggestive of chronic infection or resistance to ISAV. This test was also able to detect 11 of the 14 coho salmon pooled serum samples from a clinically affected farm in Chile that were positive by the virus neutralization (VN) test, and 2 of the 4 VN-negative samples. We conclude that this ELISA would be suitable as a routine test for ISAV infection or for assessing ISAV vaccine efficacy before placing smolts in sea cages, and for testing fishes in sea cages to detect level of resistance to ISA. The assay enables vaccination in combination with depopulation control methods.  相似文献   

11.
12.
13.
Infectious salmon anemia (ISA) virus is the cause of infectious salmon anemia in farmed Atlantic salmon. The virus has been shown to contain RNA with structural characteristics similar to those of accepted members of the Orthomyxoviridae. Further biochemical, physiochemical, and morphological characterization of ISA virus was undertaken to clarify its taxonomic position. The virus was found to be sensitive to chloroform, heat, and low pH and agglutinated erythrocytes from fish. Erythrocytes from mammals or birds were not agglutinated. Receptor-destroying enzyme activity was detected, and the nature of this enzyme was suggested to be an acetylesterase. The buoyant density of the virus was 1.18 g/ml in sucrose and CsCl gradients. The maximum rate of virus replication was observed at 15 degrees C, while no virus was produced at 25 degrees C. Actinomycin D inhibited viral replication, and viral antigen was detected in nuclei by immunofluorescence. The addition of trypsin to the culture medium during virus replication had a beneficial effect on virus replication. ISA virus contains four major polypeptides with estimated molecular sizes of 71, 53, 43, and 24 kDa. Electron microscopy revealed structures closely resembling the nucleocapsids of influenza virus. Mushroom-shaped surface projections were a distinctive morphological feature, which differed from the rod-shaped hemagglutinin projections of the influenza viruses. The data reported here support the relationship of ISA virus to the Orthomyxoviridae, although ISA virus differs from influenza viruses in some morphological characteristics and in showing restricted hemagglutination, in different specificity of the receptor-destroying enzyme, in different polypeptide profile, in being unable to replicate at temperatures above 25 degrees C, and in host range.  相似文献   

14.
15.
16.
17.
Infectious salmon anemia (ISA) is a serious disease of marine-farmed Atlantic salmon (Salmo salar) caused by ISA virus (ISAV), belonging to the genus Isavirus, family Orthomyxoviridae. There is an urgent need to understand the virulence factors and pathogenic mechanisms of ISAV and to develop new vaccine approaches. Using a recombinant molecular biology approach, we report the development of a plasmid-based reverse genetic system for ISAV, which includes the use of a novel fish promoter, the Atlantic salmon internal transcribed spacer region 1 (ITS-1). Salmon cells cotransfected with pSS-URG-based vectors expressing the eight viral RNA segments and four cytomegalovirus (CMV)-based vectors that express the four proteins of the ISAV ribonucleoprotein complex allowed the generation of infectious recombinant ISAV (rISAV). We generated three recombinant viruses, wild-type rISAV901_09 and rISAVrS6-NotI-HPR containing a NotI restriction site and rISAVS6/EGFP-HPR harboring the open reading frame of enhanced green fluorescent protein (EGFP), both within the highly polymorphic region (HPR) of segment 6. All rescued viruses showed replication activity and cytopathic effect in Atlantic salmon kidney-infected cells. The fluorescent recombinant viruses also showed a characteristic cytopathic effect in salmon cells, and the viruses replicated to a titer of 6.5 × 105 PFU/ml, similar to that of the wild-type virus. This novel reverse genetics system offers a powerful tool to study the molecular biology of ISAV and to develop a new generation of ISAV vaccines to prevent and mitigate ISAV infection, which has had a profound effect on the salmon industry.  相似文献   

18.
Type I interferons (IFN) establish an antiviral state in vertebrate cells by inducing expression of Mx and other antiviral proteins. We have studied the effect of Atlantic salmon interferon-like activity (AS-IFN) and poly I:C on the Mx protein expression and antiviral activity against infectious salmon anaemia virus (ISAV) and infectious pancreatic necrosis virus (IPNV) in the Atlantic salmon cell lines SHK-1 and TO. The double-stranded RNA poly I:C is an inducer of type I IFN in vertebrates. A cell cytotoxicity assay and measurements of virus yield were used to measure protection of cells against virus infection. Maximal induction of Mx protein in TO and SHK-1 cells occurred 48 h after poly I:C stimulation and 24 h after AS-IFN stimulation. TO cells pretreated with AS-IFN or poly I:C were protected from infection with IPNV 24 to 96 h after stimulation. Poly I:C or AS-IFN induced a minor protection against ISAV infection in SHK-1 cells, but no protection was induced against ISAV in TO cells. Western blot analysis showed that ISAV induced expression of Mx protein in TO and SHK-1 cells whereas IPNV did not induce Mx protein expression. These results suggest that ISAV and IPNV have very different sensitivities to IFN-induced antiviral activity and have developed different strategies to avoid the IFN-system of Atlantic salmon. Moreover, Atlantic salmon Mx protein appears not to inhibit replication of ISAV.  相似文献   

19.
Wild-caught saithe Pollachius virens were experimentally exposed to an isolate of infectious salmon anaemia virus (ISAV) of Norwegian origin. Mortality attributable to ISAV did not occur following exposure by intra-peritoneal (i.p.) injection of virus or by cohabitation with ISAV-infected Atlantic salmon Salmo salar. Despite the individual testing of 120 ISAV-exposed saithe, ISAV was not detectable using RT-PCR, the most sensitive ISAV diagnostic tool demonstrated to date. Furthermore, saithe exposed to ISAV-infected salmon were not capable of transmitting virus when transferred to tanks containing na?ve salmon. Thus saithe appear to be resistant to this Norwegian isolate of ISAV and incapable of supporting its replication. Saithe which co-exist with salmon in and around aqua-culture facilities are considered unlikely to have a significant impact on the epizootiology of ISAV.  相似文献   

20.
Infectious salmon anemia (ISA) has been described as the hoof and mouth disease of salmon farming. ISA is caused by a lethal and highly communicable virus, which can have a major impact on salmon aquaculture, as demonstrated by an outbreak in Chile in 2007. A quantitative trait locus (QTL) for ISA resistance has been mapped to three microsatellite markers on linkage group (LG) 8 (Chr 15) on the Atlantic salmon genetic map. We identified bacterial artificial chromosome (BAC) clones and three fingerprint contigs from the Atlantic salmon physical map that contains these markers. We made use of the extensive BAC end sequence database to extend these contigs by chromosome walking and identified additional two markers in this region. The BAC end sequences were used to search for conserved synteny between this segment of LG8 and the fish genomes that have been sequenced. An examination of the genes in the syntenic segments of the tetraodon and medaka genomes identified candidates for association with ISA resistance in Atlantic salmon based on differential expression profiles from ISA challenges or on the putative biological functions of the proteins they encode. One gene in particular, HIV-EP2/MBP-2, caught our attention as it may influence the expression of several genes that have been implicated in the response to infection by infectious salmon anemia virus (ISAV). Therefore, we suggest that HIV-EP2/MBP-2 is a very strong candidate for the gene associated with the ISAV resistance QTL in Atlantic salmon and is worthy of further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号