首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The range of biological outcomes generated by many signalling proteins in development and homeostasis is increased by their interactions with glycosaminoglycans, particularly heparan sulfate (HS). This interaction controls the localization and movement of these signalling proteins, but whether such control depends on the specificity of the interactions is not known. We used five fibroblast growth factors with an N-terminal HaloTag (Halo-FGFs) for fluorescent labelling, with well-characterized and distinct HS-binding properties, and measured their binding and diffusion in pericellular matrix of fixed rat mammary 27 fibroblasts. Halo-FGF1, Halo-FGF2 and Halo-FGF6 bound to HS, whereas Halo-FGF10 also interacted with chondroitin sulfate/dermatan sulfate, and FGF20 did not bind detectably. The distribution of bound FGFs in the pericellular matrix was not homogeneous, and for FGF10 exhibited striking clusters. Fluorescence recovery after photobleaching showed that FGF2 and FGF6 diffused faster, whereas FGF1 diffused more slowly, and FGF10 was immobile. The results demonstrate that the specificity of the interactions of proteins with glycosaminoglycans controls their binding and diffusion. Moreover, cells regulate the spatial distribution of different protein-binding sites in glycosaminoglycans independently of each other, implying that the extracellular matrix has long-range structure.  相似文献   

2.
The anti-angiogenic activity of endostatin (ES) depends on interactions with heparan sulfate (HS). In the present study, intact HS chains of >/=15 kDa bound quantitatively to ES whereas N-sulfated HS decasaccharides, with affinity for several fibroblast growth factor (FGF) species, failed to bind. Instead, ES-binding oligosaccharides composed of mixed N-sulfated and N-acetylated disaccharide units were isolated from pig intestinal HS. A 10/12mer ES-binding epitope was identified, with two N-sulfated regions separated by at least one N-acetylated glucosamine unit (SAS-domain). Cleavage at the N-acetylation site disrupted ES binding. These findings point to interaction between discontinuous sulfated domains in HS and arginine clusters at the ES surface. The inhibitory effect of ES on vascular endothelial growth factor-induced endothelial cell migration was blocked by the ES-binding SAS-domains and by heparin oligosaccharides (12mers) similar in length to the ES-binding SAS-domains, but not by 6mers capable of FGF binding. We propose that SAS-domains modulate the biological activities of ES and other protein ligands with extended HS-binding sites. The results provide a rational explanation for the preferential interaction of ES with certain HS proteoglycan species.  相似文献   

3.
Multipotent progenitor stem cells that generate both neurons and glia are components of the hippocampus, subventricular zone and olfactory system of adult mammalian nervous system. The lineage choices any stem cell makes are known to be greatly dependent on the constitution of the extracellular matrix to which they are exposed during their development. Here, the adult rat hippocampus was used as a source of cells for clonal culture in order to investigate the effects of the extracellular glycosaminoglycan heparan sulfate (HS). Neurospheres were readily generated from adult tissue and could be used as a source of cells for further experiments. HS species that promote the actions of fibroblast growth factor-2 (FGF2) for embryonic neural progenitors were found to inhibit the actions of this mitogen for adult progenitors. Only HS fractions that promoted the actions of FGF1 had mitogenic effects on these adult cells. The adult cells proved difficult to clone from single cells. However, when endogenous HS was purified from these cells and added back at high concentration to single cells, the clones were capable of generating plentiful neuronal and glial progeny. The adult hippocampal progenitor (AHP) HS is composed of 32 kDa chains bearing 3 sulfated domains. A proportion of primary osteoblast stem cells exposed to the hippocampal HS adopt neuronal phenotypes. Hence, there appears to be a combination of HS-binding extracellular molecules that predispose cells to particular lineages.  相似文献   

4.
Heparan sulfate (HS) proteoglycans modulate the activity of multiple growth factors on the cell surface and extracellular matrix. However, it remains unclear how the HS chains control the movement and reception of growth factors into targeted receiving cells during mammalian morphogenetic processes. Here, we found that HS-deficient Ext2 null mutant mouse embryos fail to respond to fibroblast growth factor (FGF) signaling. Marker expression analyses revealed that cell surface-tethered HS chains are crucial for local retention of FGF4 and FGF8 ligands in the extraembryonic ectoderm. Fine chimeric studies with single-cell resolution and expression studies with specific inhibitors for HS movement demonstrated that proteolytic cleavage of HS chains can spread FGF signaling to adjacent cells within a short distance. Together, the results show that spatiotemporal expression of cell surface-tethered HS chains regulate the local reception of FGF-signaling activity during mammalian embryogenesis.  相似文献   

5.
Uncontrolled fibroblast growth factor (FGF) signaling can lead to human malignancies necessitating multiple layers of self-regulatory control mechanisms. Fibroblast growth factor receptor (FGFR) autoinhibition mediated by the alternatively spliced immunoglobulin (Ig) domain 1 (D1) and the acid box (AB)-containing linker between D1 and Ig domain 2 (D2) serves as the first line of defense to minimize inadvertent FGF signaling. In this report, nuclear magnetic resonance and surface plasmon resonance spectroscopy are used to demonstrate that the AB subregion of FGFR electrostatically engages the heparan sulfate (HS)-binding site on the D2 domain in cis to directly suppress HS-binding affinity of FGFR. Furthermore, the cis electrostatic interaction sterically autoinhibits ligand-binding affinity of FGFR because of the close proximity of HS-binding and primary ligand-binding sites on the D2 domain. These data, together with the strong amino acid sequence conservation of the AB subregion among FGFR orthologs, highlight the universal role of the AB subregion in FGFR autoinhibition.  相似文献   

6.
Heparan sulfate (HS) chains bind and modulate the signaling efficiency of many ligands, including members of the fibroblast growth factor (FGF) and platelet-derived growth factor families. We previously reported the structure of HS synthesized by embryonic fibroblasts from mice with a gene trap mutation of Ext1 that encodes a glycosyltransferase involved in HS chain elongation. The gene trap mutation results in low expression of Ext1, and, as a consequence, HS chain length is substantially reduced. In the present study, Ext1 mutant and wild-type mouse embryonic fibroblasts were analyzed for the functional consequences of the Ext1 mutation for growth factor signaling and interaction with the extracellular matrix. Here, we show that the phosphorylation of ERK1/2 in response to FGF2 stimulation was markedly decreased in the Ext1 mutant fibroblasts, whereas neither PDGF-BB nor FGF10 signaling was significantly affected. Furthermore, Ext1 mutants displayed reduced ability to attach to collagen I and to contract collagen lattices, even though no differences in the expression of collagen-binding integrins were observed. Reintroduction of Ext1in the Ext1 mutant fibroblasts rescued HS chain length, FGF2 signaling, and the ability of the fibroblasts to contract collagen. These data suggest that the length of the HS chains is a critical determinant of HS-protein interactions and emphasize the essential role of EXT1 in providing specific binding sites for growth factors and extracellular matrix proteins.  相似文献   

7.
The interaction of a large number of extracellular proteins with heparan sulfate (HS) regulates their transport and effector functions, but the degree of molecular specificity underlying protein–polysaccharide binding is still debated. The 15 paracrine fibroblast growth factors (FGFs) are one of the paradigms for this interaction. Here, we measure the binding preferences of six FGFs (FGF3, FGF4, FGF6, FGF10, FGF17, FGF20) for a library of modified heparins, representing structures in HS, and model glycosaminoglycans, using differential scanning fluorimetry. This is complemented by the identification of the lysine residues in the primary and secondary binding sites of the FGFs by a selective labelling approach. Pooling these data with previous sets provides good coverage of the FGF phylogenetic tree, deduced from amino acid sequence alignment. This demonstrates that the selectivity of the FGFs for binding structures in sulfated polysaccharides and the pattern of secondary binding sites on the surface of FGFs follow the phylogenetic relationship of the FGFs, and so are likely to be the result of the natural selection pressures that led to the expansion of the FGF family in the course of the evolution of more complex animal body plans.  相似文献   

8.
Proteoglycans: many forms and many functions.   总被引:34,自引:0,他引:34  
Proteoglycans are produced by most eukaryotic cells and are versatile components of pericellular and extracellular matrices. They belong to many different protein families. Their functions vary from the physical effects of the proteoglycan aggrecan, which binds with link protein to hyaluronan to form multimolecular aggregates in cartilage; to the intercalated membrane protein CD44 that has a proteoglycan form and is a receptor and a cell-binding site for hyaluronan; to heparan sulfate proteoglycans of the syndecan and other families that provide matrix binding sites and cell-surface receptors for growth factors such as fibroblast growth factor (FGF). One feature that recurs in proteoglycan biology is that their structure is open to extensive modulation during cellular expression. Examples of protein changes are known, but a major source of structural variation is in the glycosaminoglycan chains. The number of chains and their length can vary, as well as their pattern of sulfation. This may result in the switching of different chain types with different properties, e.g., chondroitin sulfate and heparan sulfate, and it may also result in the selective expression of sulfated chain sequences that have specific functions. The control of glycosaminoglycan structure is not well understood, but it does appear to be used to change the properties of proteoglycans to suit different biological needs. Proteoglycan forms of proteins are thus important modifiers of the organization of the pericellular and extracellular matrices and modulators of the processes that occur there.  相似文献   

9.
The heparan sulfate (HS) chains of heparan sulfate proteoglycans (HSPG) are “ubiquitous” components of the cell surface and the extracellular matrix (EC) and play important roles in the physiopathology of developmental and homeostatic processes. Most biological properties of HS are mediated by interactions with “heparin-binding proteins” and can be modulated by exogenous heparin species (unmodified heparin, low molecular weight heparins, shorter heparin oligosaccharides and various non-anticoagulant derivatives of different sizes). Heparin species can promote or inhibit HS activities to different extents depending, among other factors, on how closely their structure mimics the biologically active HS sequences. Heparin shares structural similarities with HS, but is richer in “fully sulfated” sequences (S domains) that are usually the strongest binders to heparin/HS-binding proteins. On the other hand, HS is usually richer in less sulfated, N-acetylated sequences (NA domains). Some of the functions of HS chains, such as that of activating proteins by favoring their dimerization, often require short S sequences separated by rather long NA sequences. The biological activities of these species cannot be simulated by heparin, unless this polysaccharide is appropriately chemically/enzymatically modified or biotechnologically engineered. This mini review covers some information and concepts concerning the interactions of HS chains with heparin-binding proteins and some of the approaches for modulating HS interactions relevant to inflammation and cancer. This is approached through a few illustrative examples, including the interaction of HS and heparin-derived species with the chemokine IL-8, the growth factors FGF1 and FGF2, and the modulation of the activity of the enzyme heparanase by these species. Progresses in sequencing HS chains and reproducing them either by chemical synthesis or semi-synthesis, and in the elucidation of the 3D structure of oligosaccharide–protein complexes, are paving the way for rational approaches to the development of HS-inspired drugs in the field of inflammation and cancer, as well in other therapeutic fields.  相似文献   

10.
We examined the effect of fibroblast growth factor (FGF) on proteoglycan synthesis by rabbit costal chondrocyte cultures maintained on plastic tissue culture dishes. Low density rabbit costal chondrocyte cultures grown in the absence of FGF gave rise at confluency to a heterogeneous cell population composed of fibroblastic cells and poorly differentiated chondrocytes. When similar cultures were grown in the presence of FGF, the confluent cultures organized into a homogenous cartilage-like tissue composed of rounded cells surrounded by a refractile matrix. The cell ultrastructure and that of the pericellular matrix were similar to those seen in vivo. The expression of the cartilage phenotype in confluent chondrocyte cultures grown from the sparse stage in the presence vs. absence of FGF was reflected by a fivefold increase in the rate of incorporation of [35S]sulfate into proteoglycans. These FGF effects were only observed when FGF was present during the cell logarithmic growth phase, but not when it was added after chondrocyte cultures became confluent. High molecular weight, chondroitin sulfate proteoglycans synthesized by confluent chondrocyte cultures grown in the presence of FGF were slightly larger in size than that produced by confluent cultures grown in the absence of FGF. The major sulfated glycosaminoglycans associated with low molecular weight proteoglycan in FGF-exposed cultures were chondroitin sulfate, while in cultures not exposed to FGF they were chondroitin sulfate and dermatan sulfate. Regardless of whether or not cells were grown in the presence or absence of FGF, the 6S/4S disaccharide ratio of chondroitin sulfate chains associated with high and low molecular weight proteoglycans synthesized by confluent cultures was the same. These results provide evidence that when low density chondrocyte cultures maintained on plastic tissue culture dishes are grown in the presence of FGF, it results in a stimulation of the expression and stabilization of the chondrocyte phenotype once cultures become confluent.  相似文献   

11.
Chu CL  Goerges AL  Nugent MA 《Biochemistry》2005,44(36):12203-12213
The structural complexity within heparan sulfate has suggested that it contains multiple protein-specific binding sites. To evaluate the selectivity of growth factor binding to heparan sulfate, we conducted a detailed study of the intercompetition of fibroblast growth factor-2 (FGF-2) and heparin-binding epidermal growth factor-like growth factor (HB-EGF) binding to heparan sulfate (HS) on bovine aortic smooth muscle cells. Radioligand binding assays were conducted, and an analytical method was developed for determining the apparent binding constants and numbers of specific and shared binding sites within HS. These studies revealed the presence of two general classes of HS-binding sites for FGF-2 and HB-EGF. The major class (approximately 10(6) sites per cell) was able to bind to either growth factor with relatively low affinity (K(d) = 12 and 44 nM for FGF-2 and HB-EGF, respectively) and was termed "common" binding sites. However, both FGF-2 and HB-EGF also showed specific high affinity (0.6 and 6.1 nM for FGF-2 and HB-EGF, respectively) binding to a minor subset (118,000 and 28,000 sites per cell for FGF-2 and HB-EGF, respectively) of "unique" binding sites, which were unable to bind the other growth factor. These studies indicate that growth factor binding to HS involves multiple binding sites of variable affinity, density, and selectivity. The approach outlined in this study could be applied to aid in the evaluation of the relative biological roles of these selective and nonselective growth factor binding domains within HS.  相似文献   

12.
Impaired heparan sulfate (HS) synthesis in vertebrate development causes complex malformations due to the functional disruption of multiple HS-binding growth factors and morphogens. Here, we report developmental heart defects in mice bearing a targeted disruption of the HS-generating enzyme GlcNAc N-deacetylase/GlcN N-sulfotransferase 1 (NDST1), including ventricular septal defects (VSD), persistent truncus arteriosus (PTA), double outlet right ventricle (DORV), and retroesophageal right subclavian artery (RERSC). These defects closely resemble cardiac anomalies observed in mice made deficient in the cardiogenic regulator fibroblast growth factor 8 (FGF8). Consistent with this, we show that HS-dependent FGF8/FGF-receptor2C assembly and FGF8-dependent ERK-phosphorylation are strongly reduced in NDST1−/− embryonic cells and tissues. Moreover, WNT1-Cre/LoxP-mediated conditional targeting of NDST function in neural crest cells (NCCs) revealed that their impaired HS-dependent development contributes strongly to the observed cardiac defects. These findings raise the possibility that defects in HS biosynthesis may contribute to congenital heart defects in humans that represent the most common type of birth defect.  相似文献   

13.
Heparan sulfate, one of the most abundant components of the cell surface and the extracellular matrix, is involved in a variety of biological processes such as growth factor signaling, cell adhesion, and enzymatic catalysis. The heparan sulfate chains have markedly heterogeneous structures in which distinct sequences of sulfate groups determine specific binding properties. Sulfation at each different position of heparan sulfate is catalyzed by distinct enzymes, sulfotransferases. In this study, we identified and characterized Drosophila heparan sulfate 6-O-sulfotransferase (dHS6ST). The deduced primary structure of dHS6ST exhibited several common features found in those of mammalian HS6STs. We confirmed that, when the protein encoded by the cDNA was expressed in COS-7 cells, it showed HS6ST activity. Whole mount in situ hybridization revealed highly specific expression of dHS6ST mRNA in embryonic tracheal cells. The spatial and temporal pattern of dHS6ST expression in these cells clearly resembles that of the Drosophila fibroblast growth factor (FGF) receptor, breathless (btl). RNA interference experiments demonstrated that reduced dHS6ST activity caused embryonic lethality and disruption of the primary branching of the tracheal system. These phenotypes were reminiscent of the defects observed in mutants of FGF signaling components. We also show that FGF-dependent mitogen-activated protein kinase activation is significantly reduced in dHS6ST double-stranded RNA-injected embryos. These findings indicate that dHS6ST is required for tracheal development in Drosophila and suggest the evolutionally conserved roles of 6-O-sulfated heparan sulfate in FGF signaling.  相似文献   

14.
Nguyen TK  Raman K  Tran VM  Kuberan B 《FEBS letters》2011,585(17):2698-2702
Heparan sulfate (HS) chains play crucial biological roles by binding to various signaling molecules including fibroblast growth factors (FGFs). Distinct sulfation patterns of HS chains are required for their binding to FGFs/FGF receptors (FGFRs). These sulfation patterns are putatively regulated by biosynthetic enzyme complexes, called GAGOSOMES, in the Golgi. While the structural requirements of HS-FGF interactions have been described previously, it is still unclear how the FGF-binding motif is assembled in vivo. In this study, we generated HS structures using biosynthetic enzymes in a sequential or concurrent manner to elucidate the potential mechanism by which the FGF1-binding HS motif is assembled. Our results indicate that the HS chains form ternary complexes with FGF1/FGFR when enzymes carry out modifications in a specific manner.  相似文献   

15.
Heparan sulfate-FGF10 interactions during lung morphogenesis   总被引:3,自引:0,他引:3  
Signaling by fibroblast growth factor 10 (FGF10) through FGFR2b is essential for lung development. Heparan sulfates (HS) are major modulators of growth factor binding and signaling present on cell surfaces and extracellular matrices of all tissues. Although recent studies provide evidence that HS are required for FGF-directed tracheal morphogenesis in Drosophila, little is known about the HS role in FGF10-mediated bud formation in the vertebrate lung. Here, we mapped HS expression in the early lung and we investigated how HS interactions with FGF10-FGFR2b influence lung morphogenesis. Our data show that a specific set of HS low in O-sulfates is dynamically expressed in the lung mesenchyme at the sites of prospective budding near Fgf10-expressing areas. In turn, highly sulfated HS are present in basement membranes of branching epithelial tubules. We show that disrupting endogenous gradients of HS or altering HS sulfation in embryonic lung culture systems prevents FGF10 from inducing local responses and markedly alters lung pattern formation and gene expression. Experiments with selectively sulfated heparins indicate that O-sulfated groups in HS are critical for FGF10 signaling activation in the epithelium during lung bud formation, and that the effect of FGF10 in pattern is in part determined by regional distribution of O-sulfated HS. Moreover, we describe expression of a HS 6-O-sulfotransferase preferentially at the tips of branching tubules. Our data suggest that the ability of FGF10 to induce local budding is critically influenced by developmentally regulated regional patterns of HS sulfation.  相似文献   

16.
Human fibroblast growth factor-2 (FGF2) regulates cellular processes including proliferation, adhesion, motility, and angiogenesis. FGF2 exerts its biological function by binding and dimerizing its receptor (FGFR), which activates signal transduction cascades. Effective binding of FGF2 to its receptor requires the presence of heparan sulfate (HS), a linear polysaccharide with N-sulfated domains (NS) localized at the cell surface and extracellular matrix. HS acts as a platform facilitating the formation of a functional FGF-FGFR-HS ternary complex. Crystal structures of the signaling ternary complex revealed two conflicting architectures. In the asymmetrical model, two FGFs and two FGFRs bind a single HS chain. In contrast, the symmetrical model postulates that one FGF and one FGFR bind to the free end of the HS chain and dimerization require these ends to join, bringing the two half-complexes together. In this study, we screened a hexasaccharide HS library for compositions that are able to bind FGF2. The library was composed primarily of NS domains internal to the HS chain with minor presence of non-reducing end (NRE) NS. The binders were categorized into low versus high affinity binders. The low affinity fraction contained primarily hexasaccharides with low degree of sulfation that were internal to the HS chains. In contrast, the high affinity bound fraction was enriched in NRE oligosaccharides that were considerably more sulfated and had the ability to promote FGFR-mediated cell proliferation. The results suggest a role of the NRE of HS in FGF2 signaling and favor the formation of the symmetrical architecture on short NS domains.  相似文献   

17.
Heparan sulfates (HSs) modulate various developmental and homeostatic processes by binding to protein ligands. We have evaluated the structural characteristics of porcine HS in cellular signaling induced by basic fibroblast growth factor (FGF2), using CHO745 cells devoid of endogenous glycosaminoglycans as target. Markedly enhanced stimulation of cell signaling, measured as phosphorylation of ERK1/2 and protein kinase B, was only observed with the shortest HS chains isolated from liver, whereas the longer chains from either liver or intestine essentially prolonged duration of signals induced by FGF2 in the absence of polysaccharide. Structural analysis showed that contiguous sulfated domains were most abundant in the shortest HS chains and were more heavily sulfated in HS from liver than in HS from intestine. Moreover, the shortest chains from either source entered into ternary complexes with FGF2 and FGF receptor-1c more efficiently than the corresponding longer chains. In addition to authentic HSs, decasaccharide libraries generated by chemo-enzymatic modification of heparin were probed for effect on FGF2 signaling. Only the most highly sulfated decamers, previously found most efficient in ternary complex formation (Jastrebova, N., Vanwildemeersch, M., Rapraeger, A. C., Giménez-Gallego, G., Lindahl, U., and Spillmann, D. (2006) J. Biol. Chem. 281, 26884–26892), promoted FGF2 cellular signaling as efficiently as short HS chains from liver. Together these results suggest that the effects of HS on FGF2 signaling are determined by both the structure of the highly sulfated domains and by the organization/availability of such domains within the HS chain. These findings underpin the need for regulation of HS biosynthesis in relation to control of growth factor-induced signaling pathways.  相似文献   

18.
Heparan sulfate (HS) is an essential and dynamic regulator of fibroblast growth factor (FGF) signaling. Two fundamentally different crystallographic models have been proposed to explain, at the molecular level, how HS/heparin enables FGF and FGF receptor (FGFR) to assemble into a functional dimer on the cell surface. In the symmetric 'two-end' model, the heparin-binding sites of FGF and FGFR merge to form a basic canyon that recruits two HS for binding. Within this canyon, the HS molecules primarily act to orchestrate and fortify multivalent and cooperative protein-protein contacts within the dimer that are the foundations of dimerization. In contrast, in the asymmetric model, which mechanistically resembles the previously proposed trans FGF dimer model, a single heparin molecule facilitates dimerization by cross-linking two FGFs into a trans dimer that brings together the two FGFRs. Interestingly, the crystal structure upon which the asymmetric model is based contains a symmetric dimer reminiscent of the symmetric two-end model, suggesting that a different interpretation of the crystal structure has led to the postulation of the asymmetric model. Importantly, the symmetric two-end model provides an intriguing solution to the problem of how HS selectivity is achieved in FGF signaling. The model reveals that, within the canyon, FGF and FGFR no longer adhere to their individual HS binding specificities, but instead act in unison to search for a unique HS motif from a plethora of HS epitopes that are expressed in a tissue-specific and developmentally regulated fashion. Primary sequence differences within the heparin-binding sites of FGFs and FGFRs, together with ligand-induced changes in FGFR conformation, lead to the formation of distinct canyons with unique HS specificity for individual FGF-FGFR complexes.  相似文献   

19.
Objectives: Fractones are extracellular matrix structures that form a niche for neural stem cells and their immediate progeny in the subventricular zone of the lateral ventricle (SVZa), the primary neurogenic zone in the adult brain. We have previously shown that heparan sulphates (HS) associated with fractones bind fibroblast growth factor‐2 (FGF‐2), a powerful mitotic growth factor in the SVZa. Here, our objective was to determine whether the binding of FGF‐2 to fractone‐HS is implicated in the mechanism leading to cell proliferation in the SVZa. Materials and methods: Heparitinase‐1 was intracerebroventricularly injected with FGF‐2 to N‐desulfate HS proteoglycans and determine whether the loss of HS and of FGF‐2 binding to fractones modifies FGF‐2 effect on cell proliferation. We also examined in vivo the binding of Alexa‐Fluor‐FGF‐2 in relationship with the location of HS immunoreactivity in the SVZa. Results: Heparatinase‐1 drastically reduced the stimulatory effect of FGF‐2 on cell proliferation in the SVZa. Alexa‐Fluor‐FGF‐2 binding was strictly co‐localized with HS immunoreactivity in fractones and adjacent vascular basement membranes in the SVZa. Conclusions: Our results demonstrate that FGF‐2 requires HS to stimulate cell proliferation in the SVZa and suggest that HS associated with fractones and vascular basement membranes are responsible for activating FGF‐2. Therefore, fractones and vascular basement membranes may function as a HS niche to drive cell proliferation in the adult neurogenic zone.  相似文献   

20.
The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号