共查询到20条相似文献,搜索用时 0 毫秒
1.
Lifei Wang Yunfeng Hu Yanjuan Zhang Songmei Wang Zhihui Cui Yi Bao Wei Jiang Bin Hong 《BMC microbiology》2009,9(1):14-12
Background
C-1027, produced by Streptomyces globisporus C-1027, is one of the most potent antitumoral agents. The biosynthetic gene cluster of C-1027, previously cloned and sequenced, contains at least three putative regulatory genes, i.e. sgcR1, sgcR2 and sgcR3. The predicted gene products of these genes share sequence similarities to StrR, regulators of AraC/XylS family and TylR. The purpose of this study was to investigate the role of sgcR3 in C-1027 biosynthesis. 相似文献2.
The SgcC4 l-tyrosine 2,3-aminomutase (SgTAM) catalyzes the formation of (S)-beta-tyrosine in the biosynthetic pathway of the enediyne antitumor antibiotic C-1027. SgTAM is homologous to the histidine ammonia lyase family of enzymes whose activity is dependent on the methylideneimidazole-5-one (MIO) cofactor. Unlike the lyase enzymes, SgTAM catalyzes additional chemical transformations resulting in an overall stereospecific 1,2-amino shift in the substrate l-tyrosine to generate (S)-beta-tyrosine. Previously, we provided kinetic, spectroscopic, and mutagenesis data supporting the presence of MIO in the active site of SgTAM [Christenson, S. D.; Wu, W.; Spies, A.; Shen, B.; and Toney, M. D. (2003) Biochemistry 42, 12708-12718]. Here we report the first X-ray crystal structure of an MIO-containing aminomutase, SgTAM, and confirm the structural homology of SgTAM to ammonia lyases. Comparison of the structure of SgTAM to the l-tyrosine ammonia lyase from Rhodobacter sphaeroides provides insight into the structural basis for aminomutase activity. The results show that SgTAM has a closed active site well suited to retain ammonia and minimize the formation of lyase elimination products. The amino acid determinants for substrate recognition and catalysis can be predicted from the structure, setting the framework for detailed mechanistic investigations. 相似文献
3.
Kinetic analysis of the 4-methylideneimidazole-5-one-containing tyrosine aminomutase in enediyne antitumor antibiotic C-1027 biosynthesis 总被引:2,自引:0,他引:2
The enediyne antitumor antibiotic C-1027 contains an unusual (S)-3-chloro-4,5-dihydroxy-beta-phenylalanine moiety, which requires an aminomutase for its biosynthesis. Previously, we established that SgcC4 is an aminomutase that catalyzes the conversion of L-tyrosine to (S)-beta-tyrosine and employs 4-methylideneimidazole-5-one (MIO) at its active site [Christenson, S. D., Liu, W., Toney, M. D., and Shen, B. (2003) J. Am. Chem. Soc. 125, 6062-6063]. Here, we present a thorough analysis of the properties of SgcC4. L-Tyrosine is the best substrate among those tested and most likely serves as the in vivo precursor for the (S)-3-chloro-4,5-dihydroxy-beta-phenylalanine moiety. The presence of MIO in the active site is supported by several lines of evidence. (1) Addition of ATP or divalent metal ions has no effect on its aminomutase activity. (2) SgcC4 has optimal activity at pH approximately 8.8, similar to the pH optima of MIO-dependent ammonia lyases. (3) SgcC4 is strongly inhibited by sodium borohydride and potassium cyanide, but preincubation with L-tyrosine or 4-hydroxycinnamate largely prevents this inhibition. (4) The difference spectrum between SgcC4 and its S153A mutant shows a positive peak at approximately 310 nm, indicative of MIO. (5) The S153A mutation lowers k(cat)/K(M) 640-fold. The SgcC4-catalyzed conversion of L-tyrosine to (S)-beta-tyrosine proceeds via 4-hydroxycinnamate as an intermediate. The latter also acts as a competitive inhibitor with respect to L-tyrosine and serves as an alternative substrate for the production of beta-tyrosine in the presence of an amino source. A full time course for the SgcC4-catalyzed interconversion between L-tyrosine, beta-tyrosine, and 4-hydroxycinnamate was measured and analyzed to provide estimates for the rate constants in a minimal mechanism. SgcC4 also exhibits a beta-tyrosine racemase activity, but alpha-tyrosine racemase activity was not detected. 相似文献
4.
Streptomyces griseoaurantiacus M045, isolated from marine sediment, produces manumycin and chinikomycin antibiotics. Here we present a high-quality draft genome sequence of S. griseoaurantiacus M045, the first marine Streptomyces species to be sequenced and annotated. The genome encodes several gene clusters for biosynthesis of secondary metabolites and has provided insight into genomic islands linking secondary metabolism to functional adaptation in marine S. griseoaurantiacus M045. 相似文献
5.
Van Lanen SG Lin S Dorrestein PC Kelleher NL Shen B 《The Journal of biological chemistry》2006,281(40):29633-29640
C-1027 is an enediyne antitumor antibiotic composed of a chromophore with four distinct chemical moieties, including an (S)-3-chloro-4,5-dihydroxy-beta-phenylalanine moiety that is derived from l-alpha-tyrosine. SgcC4, a novel aminomutase requiring no added co-factor that catalyzes the formation of the first intermediate (S)-beta-tyrosine and subsequently SgcC1 homologous to adenylation domains of nonribosomal peptide synthetases, was identified as specific for the SgcC4 product and did not recognize any alpha-amino acids. To definitively establish the substrate for SgcC1, a full kinetic characterization of the enzyme was performed using amino acid-dependent ATP-[(32)P]PP(i) exchange assay to monitor amino acid activation and electrospray ionization-Fourier transform mass spectroscopy to follow the loading of the activated beta-amino acid substrate to the peptidyl carrier protein SgcC2. The data establish (S)-beta-tyrosine as the preferred substrate, although SgcC1 shows promiscuous activity toward aromatic beta-amino acids such as beta-phenylalanine, 3-chloro-beta-tyrosine, and 3-hydroxy-beta-tyrosine, but all were <50-fold efficient. A putative active site mutant P571A adjacent to the invariant aspartic acid residue of all alpha-amino acid-specific adenylation domains known to date was prepared as a preliminary attempt to probe the substrate specificity of SgcC1; however the mutation resulted in a loss of activity with all substrates except (S)-beta-tyrosine, which was 142-fold less efficient relative to the wild-type enzyme. In total, SgcC1 is now confirmed to catalyze the second step in the biosynthesis of the (S)-3-chloro-4,5-dihydroxy-beta-phenylalanine moiety of C-1027, presenting downstream enzymes with an (S)-beta-tyrosyl-S-SgcC2 thioester substrate, and represents the first beta-amino acid-specific adenylation enzyme characterized biochemically. 相似文献
6.
A series of angucyclinone antibiotics have been isolated from marine Streptomyces sp. strain W007 and identified. Here, a draft genome sequence of Streptomyces sp. W007 is presented. The genome contains an intact biosynthetic gene cluster for angucyclinone antibiotics, which provides insight into the combinatorial biosynthesis of angucyclinone antibiotics produced by marine streptomycetes. 相似文献
7.
Kim DH Jiang S Lee JH Cho YJ Chun J Choi SH Park HS Hur HG 《Journal of bacteriology》2011,193(18):5039-5040
The dissimilatory metal reducing bacterium Shewanella sp. strain HN-41 was first reported to produce novel photoactive As-S nanotubes via reduction of As(V) and S(2)O(3)(2-) under anaerobic conditions. Here we report the draft genome sequence and annotation of strain HN-41. 相似文献
8.
Steven G. Van Lanen Shuangjun Lin Geoff P. Horsman & Ben Shen 《FEMS microbiology letters》2009,300(2):237-241
The C-1027 enediyne antitumor antibiotic from Streptomyces globisporus possesses an ( S )-3-chloro-5-hydroxy-β-tyrosine moiety, the chloro- and hydroxy-substituents of which are installed by a flavin-dependent halogenase SgcC3 and monooxygenase SgcC, respectively. Interestingly, a single flavin reductase, SgcE6, can provide reduced flavin to both enzymes. Bioinformatics analysis reveals that, similar to other flavin reductases involved in natural product biosynthesis, SgcE6 belongs to the HpaC-like subfamily of the Class I flavin reductases. The present study describes the steady-state kinetic characterization of SgcE6 as a strictly NADH- and FAD-specific enzyme. 相似文献
9.
A draft genome sequence of the plant pathogen Streptomyces acidiscabies 84-104, an emergent plant pathogen, is presented here. The genome is among the largest of streptomycetes, at more than 11 Mb, and encodes a 100-kb pathogenicity island (PAI) shared with other plant-pathogenic streptomycetes. The presence of this conserved PAI, and the remnants of a conserved integrase/recombinase at its 3' end, supports the hypothesis that S. acidiscabies emerged as a plant pathogen as a result of this acquisition. 相似文献
10.
11.
Kirby R Sangal V Tucker NP Zakrzewska-Czerwinska J Wierzbicka K Herron PR Chu CJ Chandra G Fahal AH Goodfellow M Hoskisson PA 《Journal of bacteriology》2012,194(13):3544-3545
We report the draft genome sequence of the human pathogen Streptomyces somaliensis (DSM 40738), a pathogen within a genus of largely saprophytic organisms. S. somaliensis causes severe and debilitating deep tissue and bone infections. The genome sequence is deposited in DDBJ/EMBL/GenBank with the accession number AJJM01000000. 相似文献
12.
Song JY Jeong H Yu DS Fischbach MA Park HS Kim JJ Seo JS Jensen SE Oh TK Lee KJ Kim JF 《Journal of bacteriology》2010,192(23):6317-6318
Streptomyces clavuligerus is an important industrial strain that produces a number of antibiotics, including clavulanic acid and cephamycin C. A high-quality draft genome sequence of the S. clavuligerus NRRL 3585 strain was produced by employing a hybrid approach that involved Sanger sequencing, Roche/454 pyrosequencing, optical mapping, and partial finishing. Its genome, comprising four linear replicons, one chromosome, and four plasmids, carries numerous sets of genes involved in the biosynthesis of secondary metabolites, including a variety of antibiotics. 相似文献
13.
Seipke RF Crossman L Drou N Heavens D Bibb MJ Caccamo M Hutchings MI 《Journal of bacteriology》2011,193(16):4270-4271
Streptomyces spp. are common symbionts of the leaf-cutting ant species Acromyrmex octospinosus, which feeds on basidiomycete fungus leaf matter and harvests the lipid- and carbohydrate-rich gongylidia as a food source. A. octospinosus and other ant genera use antifungal compounds produced by Streptomyces spp. and other actinomycetes in order to help defend their fungal gardens from parasitic fungi. Herein, we report the draft genome sequence of Streptomyces strain S4, an antifungal-producing symbiont of A. octospinosus. 相似文献
14.
Klassen JL Adams SM Bramhacharya S Giles SS Goodwin LA Woyke T Currie CR 《Journal of bacteriology》2011,193(24):6999-7000
Streptomyces sp. strain Wigar10 was isolated from a surface-sterilized garlic bulb (Allium sativum var. Purple Stripe). Its genome encodes several novel secondary metabolite biosynthetic gene clusters and provides a genetic basis for further investigation of this strain's chemical biology and potential for interaction with its garlic host. 相似文献
15.
The Actinomycete strain KH29 is antagonistic to the multidrug-resistant Acinetobacter baumannii. Based on the diaminopimelic acid (DAP) type, and the morphological and physiological characteristics observed through the use of scanning electron microscopy (SEM), KH29 was confirmed as belonging to the genus Streptomyces. By way of its noted 16S rDNA nucleotide sequences, KH29 was found to have a relationship with Streptomyces cinnamonensis. The production of an antibiotic from this strain was found to be most favorable when cultured with glucose, polypeptone, and yeast extract (PY) medium for 6 days at 27 degrees C. The antibiotic produced was identified, through comparisons with reported spectral data including MS and NMR as a cyclo(L-tryptophanyl-L-tryptophanyl). Cyclo(L-Trp-L-Trp), from the PY cultures of KH29, was seen to be highly effective against 41 of 49 multidrugresistant Acinetobacter baumannii. Furthermore, cyclo(LTrp- L-Trp) had antimicrobial activity against Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Saccharomyces cerevisiae, Aspergillus niger, and Candida albicans, However, it was ineffective against Streptomyces murinus. 相似文献
16.
Here we present the draft genome of Leucobacter chromiiresistens. This is the first genome sequence of an organism belonging to the genus Leucobacter. L. chromiiresistens was sequenced due to its capability to tolerate up to 300 mM Cr(VI) in the medium, which is so far a unique feature for microorganisms. 相似文献
17.
Lee M Roh SW Lee HW Yim KJ Kim KN Bae JW Choi KS Jeon YJ Jung WK Kang H Hyun CG Kim D 《Journal of bacteriology》2012,194(14):3738
Strain PB92(T) of Pedobacter agri, which belongs to the family Sphingobacteriaceae, was isolated from soil in the Republic of Korea. The draft genome of strain PB92(T) contains 5,141,552 bp, with a G+C content of 38.0%. This is the third genome sequencing project of the type strains among the Pedobacter species. 相似文献
18.
Draft genome sequence of Pseudomonas fuscovaginae, a broad-host-range pathogen of plants 总被引:1,自引:0,他引:1
Patel HK da Silva DP Devescovi G Maraite H Paszkiewicz K Studholme DJ Venturi V 《Journal of bacteriology》2012,194(10):2765-2766
Pseudomonas fuscovaginae was first reported as a pathogen of rice causing sheath rot in plants grown at high altitudes. P. fuscovaginae is now considered a broad-host-range plant pathogen causing disease in several economically important plants. We report what is, to our knowledge, the first draft genome sequence of a P. fuscovaginae strain. 相似文献
19.
Here, we report the draft genome sequence of Paenibacillus elgii B69, which was isolated from soil and has broad-spectrum antimicrobial activity. As far as we know, the P. elgii genome is the largest of the Paenibacillus genus for which genome sequences are available. Multiple sets of genes related to antibiotic biosynthetic pathways have been found in the genome. 相似文献
20.
Ge F Li W Chen G Liu Y Zhang G Yong B Wang Q Wang N Huang Z Li W Wang J Wu C Xie Q Liu G 《Journal of bacteriology》2011,193(18):5045-5046
We report a draft sequence of the genome of Gordonia neofelifaecis NRRL B-59395, a cholesterol-degrading actinomycete isolated from fresh feces of a clouded leopard (Neofelis nebulosa). As predicted, the reported genome contains several gene clusters for cholesterol degradation. This is the second available genome sequence of the family Gordoniaceae. 相似文献