首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitamin A (also called retinol) and its derivatives, retinoic acids (RAs), are required for postnatal testicular function. Abnormal spermatogenesis is observed in rodents on vitamin A-deficient diets and in retinoic acid receptor alpha (RARalpha) knockout mice. In contrast, RA has an inhibitory effect on the XY gonad development in embryos. To characterize this inhibitory effect of RA, we investigated the cellular events that are required for the XY gonad development, including cell migration from the adjacent mesonephros into the gonad, fetal Sertoli cell differentiation, and survival of gonocytes. In organ cultures of Embryonic Day 13 (E13) XY gonads from rats, all-trans-retinoic acid (tRA) inhibited mesonephric cell migration into the gonad. Moreover, treatment with tRA decreased the expression of Müllerian-inhibiting substance in Sertoli cells and dramatically reduced the number of gonocytes. Increased apoptosis was detected in the XY gonads cultured with tRA, suggesting that the loss of gonocytes could be due to increased apoptosis. In addition, Am580, a synthetic compound that exhibits RARalpha-specific agonistic properties, mimicked the inhibitory effects of tRA on the XY gonad development including mesonephric cell migration and gonocyte survival. Conversely, a RARalpha-selective antagonist, Ro 41-5253, suppressed the inhibitory ability of tRA on the XY gonad development. These results suggest that retinoic acid acting through RARalpha negatively affects fetal Sertoli cell differentiation and gonocyte survival and blocks the migration of mesonephric cells, thereby leading to inhibition of the XY gonad development.  相似文献   

2.
Summary Each setigerous segment of the protandric polychaete Ophryotrocha puerilis contains two primordial germ cells. A ventral furrow in the gut wall together with the peritoneal lining of the gut forms a genital blood vessel. The gonocytes are located within the peritoneum of this genital blood vessel. At sexual maturity the gonocytes undergo a proliferation cycle, the first division of which gives rise to a cell which is extruded into a forming outpocketing of the coelomic lining. The stem cell remains within the peritoneum. Inside the forming gonad the detached cell goes through a series of four mitotic divisions. The resulting 16 cells are interconnected by cytoplasmic bridges. These bridges are arranged in a very regular pattern which allows the mitotic cycles to be followed. While remaining still within the gonad the 16 cells begin to synthesize yolk and to take up exogenous yolk precursors. At this stage a differentiation into oocytes and nurse cells becomes visible. The oocytes deposit yolk platelets of the definitive size whereas the polyploid nurse cells produce only small yolk bodies that are passed to the adjacent oocytes. In a later stage the cell bridges between adjacent nurse cells are cut and pairs of one oocyte and one nurse cell are released to the coelomic cavity during breakdown of the gonadal sac. Oocyte-nurse cell-complexes then freely float in the coelomic fluid. The proliferation of gonadal cells is well synchronized within one segment. In anterior segments, however, gonadal proliferation usually begins earlier than in posterior segments but smaller oocytes in posterior segments catch up within a few days. Finally a batch of oocytes is produced in which all the oocytes are of the same size (120 m). The origin of the primordial germ cells remains unknown.  相似文献   

3.
The single gonad anlage in the first-instar larva of Anthonomus pomorum (L.) (Coleoptera: Curculionidae) has a form of a solid cylinder enclosed by a basal lamina, covered by the peritoneal sheath. The basal lamina lies on the gonad envelope made of a layer of flat somatic cells that surrounds a group of dozen or so germ cells and some inner somatic cells. In the second-instar, the gonad anlage is larger and divided into 2 parts connected with a band of somatic cells. Within this cellular band, the lumen of the future gonadal ducts (lateral oviducts or seminal ducts) appear. As a consequence of numerous mitoses, the gonad grows and splits into 2 parts. Each part will form one ovariole in the female or one testicular follicle in the male. In the third-instar larva, the gonocytes are gathered into several groups that are isolated by thin extensions of the somatic cells. Each part of the freshly divided gonad is connected to a tube of a developing gonadal duct. The tube joins the 2 parts of the gonad and extends towards the end of the abdomen. At the end of the third instar, the mitoses of the gonocytes do not end with complete cytokinesis; as a result, they form clusters of cells connected by the intercellular bridges. The fusomal material that fills up the individual bridges joins into one structure, forming the polyfusome.  相似文献   

4.
The gross morphology, histology, and ultrastructure of Liolaemus gravenhorsti gonads prior to and after differntiation are described. Special emphasis has been given to characterization and changes of the germ cell line throughout intrauterine development and 3 days postpartum. During the pregonadal stage, the primordial germ cell migrates toward gonadal rudiments by way of the mesenchyme. These cells can easily be identified by their great size, voluminous and lobulated nucleus, great quantities of yolk platelets, microtubules, and numerous lipid inclusions. In the undifferentiated gonad, the germ cells (type 1 gonocytes) have an ovoid or spherical shape and autodigestion of yolk platelets, great development of Golgi complex, and mitochondrial aggregation, though fewer liposomes, pseudopodes, and microtubules were noted. Concomitantly with the beginning of mitosis, a third type of germ cell appears, the type 2 gonocytes, which are smaller, with poorly defined membranous systems in various degrees of involution. The seminiferous cords are organized when somatic cells of the medullar portion of the gonad surround type 1 gonocytes. Germinal cells are centrally localized in the cords. Near birth many gonocytes migrate toward the basal lamina of cords and differentiate into spherical prespermatogonia, with few organoids. Sertoli cells eparate them from the basal lamina. In advanced pregnancy, Leyding cells become numerous with morphology typical of androgen-producing cells.  相似文献   

5.
Li H  Kim KH 《Biology of reproduction》2003,69(6):1964-1972
Di-(2-ethylhexyl) phthalate (DEHP) and its active metabolite, mono-(2-ethylhexyl) phthalate (MEHP), have been shown to cause reproductive toxicity in both developing and adult animals. In this study, we used organ cultures of fetal and neonatal rat testes to assess the in vitro effect of MEHP on seminiferous cord formation in Embryonic Day 13 (E13) testes and on the development of E18 and Postnatal Day 3 (P3) testes. Interestingly, MEHP had no effect on cord formation in the organ cultures of E13 testes, indicating that it has no effect on sexual differentiation of the indifferent gonad to testis. Consistently, the expression of a Sertoli cell-specific protein, mullerian inhibiting substance (MIS), or the number of gonocytes did not change in E13 testes after MEHP treatment. In contrast, MEHP decreased the levels of MIS and GATA-4 proteins in Sertoli cells and impaired Sertoli cell proliferation in the organ cultures of E18 and P3 testes. These results suggest that MEHP negatively influences proliferation and differentiation of Sertoli cells in both fetal and neonatal testes. In addition, MEHP treatment did not alter the number of gonocytes in E18 testes, whereas the number of gonocytes in P3 testes decreased in a dose-dependent manner, apparently due to enhanced apoptosis. These results suggest that MEHP adversely affects the gonocytes, which are mitotically active and undergoing migration and differentiation in neonatal testes, but it has no effect on fetal gonocytes that are mitotically quiescent.  相似文献   

6.
7.
In the mouse embryo, primordial germ cells first appear in the extraembryonic mesoderm and divide rapidly while migrating to the fetal gonad. Shortly after their arrival in the gonad, germ cells sexually differentiate as proliferation ceases. Previous studies have established that primordial germ cells proliferate and migrate in feeder layer culture. To explore cellular regulation of fetal germ cell development, we have used germ cell nuclear antigen 1 (GCNA1), a marker normally expressed only in postmigratory germ cells, to investigate the developmental potency of both pre- and postmigratory cells in this culture system. We found that explanted premigratory germ cells will initiate expression of this marker and are, therefore, capable of undertaking some aspects of gonocyte differentiation without intimate exposure to the fetal gonad. We have also tested whether postmigratory gonocytes are stable in culture. As detected by either alkaline phosphatase or GCNA1, we did not detect long-term survival of either prospermatogonia or oogonia under conditions that support the survival, proliferation, and differentiation of earlier premigratory cells. These observations are consistent with an autonomous cellular mechanism governing the initial stages of gonocyte differentiation, and suggest that differentiation towards gonocytes is accompanied by a change in requirements for cell survival.  相似文献   

8.
9.
According to a recent model, the cortical tractor model, neural fold and neural crest formation occurs at the boundary between neural plate and epidermis because random cell movements become organized at this site. If this is correct, then a fold should form at any boundary between epidermis and neural plate. To test that proposition, we created new boundaries in axolotl embryos by juxtaposing pieces of neural plate and epidermis that would not normally participate in fold formation. These boundaries were examined superficially and histologically for the presence of folds, permitting the following observations. Folds form at each newly created boundary, and as many folds form as there are boundaries. When two folds meet they fuse into a hollow "tube" of neural tissue covered by epidermis. Sections reveal that these ectopic folds and "tubes" are morphologically similar to their natural counterparts. Transplanting neural plate into epidermis produces nodules of neural tissue with central lumens and peripheral nerve fibers, and transplanting epidermis into neural plate causes the neural tube and the dorsal fin to bifurcate in the region of the graft. Tissue transplanted homotypically as a control integrates into the host tissue without forming folds. When tissue from a pigmented embryo is transplanted into an albino host, the presence of pigment allows the donor cells to be distinguished from those of the host. Mesenchymal cells and melanocytes originating from neural plate transplants indicate that neural crest cells form at these new boundaries. Thus, any boundary between neural plate and epidermis denotes the site of a neural fold, and the behavior of cells at this boundary appears to help fold the epithelium. Since folds can form in ectopic locations on an embryo, local interactions rather than classical neural induction appear to be responsible for the formation of neural folds and neural crest.  相似文献   

10.
Primordial germ cells (PGCs) are the progenitor cells of the vertebrate germ line. These cells originate outside of the embryo and, through separation, migration, and colonization, arrive at the genital ridge, contributing to gonad development. Diverse extracellular matrix molecules are present along the PGC migratory pathway, permitting or inhibiting PGC displacement. Collagens and tenascin form the substratum for in vitro migration of neural crest cells and PGCs. However, little is known about the expression and distribution of these molecules during in situ PGC migration. Using immunohistochemistry, we identified tenascin-C and types I, III, and V collagen along the mouse PGC migration pathway. These molecules were spatiotemporally expressed in basement membranes of hindgut, coelomic epithelia, and mesonephric tubules and mesenchyme throughout the study. Our results complement previous data from our laboratory and contribute to building comprehension of the composition of the mouse PGC migratory pathway extracellular matrix, thereby enhancing understanding of the process.  相似文献   

11.
The neural crest plays a crucial part in cardiac development. Cells of the cardiac subpopulation of cranial neural crest migrate from the hindbrain into the outflow tract of the heart where they contribute to the septum that divides the pulmonary and aortic channels. In Splotch mutant mice, which lack a functional Pax3 gene, migration of cardiac neural crest is deficient and aorticopulmonary septation does not occur. Downstream genes through which Pax3 regulates cardiac neural crest development are unknown. Here, using a combination of genetic and molecular approaches, we show that the deficiency of cardiac neural crest development in the Splotch mutant is caused by upregulation of Msx2, a homeobox gene with a well-documented role as a regulator of BMP signaling. We provide evidence, moreover, that Pax3 represses Msx2 expression via a direct effect on a conserved Pax3 binding site in the Msx2 promoter. These results establish Msx2 as an effector of Pax3 in cardiac neural crest development.  相似文献   

12.
Although the primitive vasculature is identical in XX and XY genital ridges until 11.5 days postcoitum (dpc), by 12.5 dpc the XY gonad develops a distinct vasculature. This male-specific vasculature, which includes the development of a large coelomic vessel, develops coincident with expression of Sry and formation of testis cords. We show that similar levels of proliferation and vasculogenesis expand the primary vasculature in XX and XY gonads. However, soon after Sry expression begins, the XY gonad recruits a large number of endothelial cells from the adjacent mesonephros, a mechanism totally absent in XX gonads. These migrating cells do not contribute to venous or lymphatic development. Instead, these cells contribute to the arterial system, as indicated by expression of ephrinB2 and by elements of the Notch signaling pathway. This newly formed arterial system establishes a new pattern of blood flow in the XY gonad, which we speculate may have an important role in export of testosterone to masculinize the XY embryo.  相似文献   

13.
Based on previous conventional quantitative observations of rat testes, it was proposed that large numbers of gonocytes degenerate after birth and this notion was widely accepted. However, many studies show that neonatal gonocytes display high levels of mitotic activity. In order to resolve the apparent contradiction of increased mitotic activity in gonocytes despite a decrease in their numbers at the neonate stage, quantitative analysis using a marker of suitably higher resolution is required. It has been shown that the vasa protein could be used as a marker of germ cells. In this study, quantitative changes in gonocytes were re-examined using a germ-cell-specific marker in order to delineate more clearly the process of development from gonocytes to spermatogonia after birth. The vasa-positive cells, which correspond to gonocytes and spermatogonia, increased exponentially after birth. This observation suggests that all gonocyte divide actively after birth and do not degenerate as previously believed. Surprisingly, the cell volume of gonocytes decreased during their division. The largest population size was 2000-4000 micro3 at day 2, 1000-2000 micro3 at day 4 and 500-1000 micro3 at day 6. This finding suggests that gonocytes divide in a similar way to cleavage, which can be considered a special mode of fertilized eggs. Judging from the growth of seminiferous tubules and the degree of volume reduction, 60% of the contribution rate is estimated to be due to ordinal cell growth, and 40% due to volume reduction as in cleavage of a fertilized egg. This unique cleavage-like division may contribute to the supply of large numbers of spermatogonia.  相似文献   

14.
In this paper, we are dealing with the study of a case of multiple somatic malformations, with external female genitals and 46 XY caryotype. The anatomical and histological study of the genital organs, allows us to verify the existence of internal genital organs; consisting essentially in tubes, bicornous uterus, a gonadal ligament in a normotopical position, Wolffian remains and the absence of a vagina. The external female genitals are completely normal. When we interpreted these findings, we paid special attention to the relation existing between the abnormal presence of the Wolffian remains, male genotype, and typical female genital structures. Taking account of the latest scientific advances concerning genital development, we considered the possibility of the existence of secretions of a "masculinizing" substance from the gonad, before its morphological differentiation, which was interrupted by an etiological undetermined noxa. When this evolution was arrested, together with the secretions of the masculinizing substance, the genital development continued normally for a female. The terminal teratogenic period for this malformation is situated from the 5th to the 6th week of gestation (human embryos from 11 to 14 mm., Streeter Horizon XVII).  相似文献   

15.
Wnt4 is required for proper male as well as female sexual development   总被引:1,自引:0,他引:1  
Genes previously implicated in mammalian sexual development have either a male- or female-specific role. The signaling molecule WNT4 has been shown to be important in female sexual development. Lack of Wnt4 gives rise to masculinization of the XX gonad and we showed previously that the role of WNT4 was to inhibit endothelial and steroidogenic cell migration into the developing ovary. Here we show that Wnt4 also has a function in the male gonad. We find that Sertoli cell differentiation is compromised in Wnt4 mutant testes and that this defect occurs downstream of the testis-determining gene Sry but upstream of Sox9 and Dhh, two early Sertoli cell markers. Genetic analysis shows that this phenotype is primarily due to the action of WNT4 within the early genital ridge. Analysis of different markers identifies the most striking difference in the genital ridge at early stages of its development between wild-type and Wnt4 mutant embryos to be a significant increase of steroidogenic cells in the Wnt4 -/- gonad. These results identify WNT4 as a new factor involved in the mammalian testis determination pathway and show that genes can have a specific but distinct role in both male and female gonad development.  相似文献   

16.
Identification, isolation, and in vitro culture of porcine gonocytes   总被引:3,自引:0,他引:3  
Gonocytes are primitive germ cells that reside in the seminiferous tubules of neonatal testes and give rise to spermatogonia, thereby initiating spermatogenesis. Due to a lack of specific markers, the isolation and culture of these cells has proven to be difficult in the pig. In the present study, we show that a lectin, Dolichos biflorus agglutinin (DBA), which has specific affinity for primordial germ cells (PCGs) in the genital ridge, binds specifically to gonocytes in neonatal pig testes. The specific affinity of DBA for germ cells was progressively lost with age. This suggests that DBA binds strongly to primitive germ cells, such as gonocytes, weakly to primitive spermatogonia, and not at all to spermatogonia. The presence of alkaline phosphatase (AP) activity in the germ cells of neonatal pig testis confirmed the existence of primitive germ cells. Gonocytes from neonatal pig testis were purified, and a cell population that consisted of approximately 70% gonocytes was obtained, as indicated by the DBA binding assay. Purified gonocytes were cultured in DMEM/F12 supplemented with 10% FBS in the absence of any specific growth factors for 7 days. The cells remained viable and proliferated actively in culture. Initially, the gonocytes grew as focal colonies that transformed to three-dimensional colonies by 7 days of culture. Cultured germ cells expressed SSEA-1, a marker for embryonic stem (ES) cells, and were negative for the expression of somatic cell markers. These results should help to establish a male germ cell line that could be used for studying spermatogenesis in vitro and for genetic modification of pigs.  相似文献   

17.
根据2019年冬春季(2—5月)中国灯光罩网渔船在西北印度洋生产调查期间采集的1009尾鸢乌贼样本,分析了其角质颚外部形态变化的影响因素。结果表明: 角质颚外形特征参数在不同性别、不同胴长组和不同性腺成熟度间均存在显著差异。胴长组201~250 mm以及雌性个体性腺成熟度Ⅱ期和雄性个体性腺成熟度Ⅲ期的各特征参数增幅达到峰值。除上翼长与上脊突长比值(UWL/UCL)和下头盖长与下脊突长比值(LHL/LCL)存在性别间显著差异外,其余特征参数与脊突长的比值均无性别间显著差异,各特征参数与脊突长的比值在不同性腺成熟度、不同胴长组间也无显著差异,比值保持稳定,表明角质颚各区域生长保持一致。研究表明,201~250 mm可能是西北印度洋鸢乌贼角质颚外部形态在胴长上的生长拐点,雌性个体性腺成熟度Ⅱ期和雄性个体性腺成熟度Ⅲ期可能对应角质颚外部形态在性腺成熟度上的生长拐点。  相似文献   

18.
Development of the external genitalia in rat fetuses   总被引:1,自引:0,他引:1  
Development of the external genitalia in rat fetuses was studied with special reference to the formation of the labia pudenda and the determination of the stage at which the sex difference could be recognized from changes in the external structures. The urogenital fold located on either side of the external structures. The urogenital fold located on either side of the urogenital groove gradually enlarges and begins to enclose the genital tubercle with its counter fold on day 20 of gestation. Thus, the urogenital folds, which are known to become the labia minora and the prepuce of clitoris in the human, are differentiated only into the prepuce of clitoris in the rat. The genital swellings situated caudally to the urogenital folds are not well developed and come to be inconspicuously flat in situ at the end of gestation. However, the labia majora are formed by the time of puberty when the vagina opens. Therefore, it seems that the genital swellings contribute to the formation of the labia majora after birth. Sex difference in development of the external genitalia is recognized on day 17 of gestation; a small oval urogenital orifice is larger in male than in female and the genital swellings are better developed in male than in female.  相似文献   

19.
The signalling molecule WNT4 has been associated with sex reversal phenotypes in mammals. Here we show that the role of WNT4 in gonad development is to pattern the sex-specific vasculature and to regulate steroidogenic cell recruitment. Vascular formation and steroid production in the mammalian gonad occur in a sex-specific manner. During testis development, endothelial cells migrate from the mesonephros into the gonad to form a coelomic blood vessel. Leydig cells differentiate and produce steroid hormones a day later. Neither of these events occurs in the XX gonad. We show that WNT4 represses mesonephric endothelial and steroidogenic cell migration in the XX gonad, preventing the formation of a male-specific coelomic blood vessel and the production of steroids. In the XY gonad, Wnt4 expression is downregulated after sex determination. Transgenic misexpression of Wnt4 in the embryonic testis did not inhibit coelomic vessel formation but vascular pattern was affected. Leydig cell differentiation was not affected in these transgenic animals and our data implies that Wnt4 does not regulate steroidogenic cell differentiation but represses the migration of steroidogenic adrenal precursors into the gonad. These studies provide a model for understanding how the same signalling molecule can act on two different cell types to coordinate sex development.  相似文献   

20.
In studies of amphibian neurulation, the terms "neural ridge," "neural fold," and "neural crest" are sometimes used as synonyms. This has occasionally led to the misconception that grafting of the neural crest is equivalent to grafting of the neural fold. The neural fold, however, is composed of three parts: the neural crest, prospective neural tube tissue, and epidermis. In order to investigate how these neural fold components move during neurulation, time-lapse photography, electron microscopy, and grafting were performed. Ambystoma mexicanum embryos were photographed during neurulation at regular intervals. The photographs were analyzed to find the position of those cells at beginning of neurulation that end up on the line of fusion as the neural folds close. Posteriorly, these cells are already on the emerging neural fold. In the anterior neural folds, however, these cells are located in the lateral epidermis. Electron microscopy of the neural folds confirms the presence of epidermis. To follow the movement of the cells differentiating into melanophores (neural crest), neural fold parts were grafted into albino hosts. The crest cells differentiating into melanophores following ectopic grafting are located in the flank of the neural fold that is in contact with the neural plate. In grafts from the outside (distal) flank, no melanophores developed. Semithin sections show that the third part of the neural fold consists of apically constricted cells known to differentiate into neural tissue. Because the neural folds consist of epidermis, neural tissue, and neural crest, neural fold and neural crest cannot be used as synonyms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号