首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the major alcohol-soluble, low molecular weight carbohydratesof P. purpurea, O--D-galactopyranosyl-(1-2)-glycerol (‘floridoside’)and O--D-galactopyranosyl-(1-1)-glycerol (‘isofloridoside’),have been examined in response to salinity variation. ‘Floridoside’is shown to vary in absolute amount, increasing in hypersalineand decreasing in hyposaline media. ‘Isofloridoside’content per cell does not change in a similar manner. Responsesare almost identical under light or dark conditions, ‘floridoside’changes being complete within 24 h. Decreasing the externalwater potential using ionic and non-ionic solutes has the sameeffect upon galactosyl-glycerol content. The amount of ‘floridoside’synthesized, and degraded under hypersaline and hyposaline conditionsrespectively is shown to be insufficient to restore cell volumeto its original value. It is therefore suggested that the primaryfunction of ‘floridoside’ increases in concentratedsea-waters is that of a compatible solute, serving to protectthe cell during periods when the external salt content is increaseddramatically.  相似文献   

2.
Ion contents and concentrations (K+, Na+, Cl, Ca2+, Mg2+,SO2–4, NO3, HPOJ2–4, amino and organic acids)of P. purpurea have been studied in relation to salinity variation.Cells were shown to accumulate large amounts of K+ and Clagainst their respective gradients of electrochemical potentialin all dilute and concentrated seawater media. Active influxof SOJ2–4, NO3, and HPOJ2–4 is also suggested,while Na+ is actively excluded from cells under hyposaline andhypersaline conditions. The relative proportions of individualcomponents of the internal osmotic potential were found to changeaccording to the external salt concentration. KCL forms themajor fraction of j} in concentrated seawater media while K+-aminoacids form the major fraction in dilute seawaters. Other intracellularsolutes comprise less than 15% oftj, in all media. Unidirectional fluxes of K+ and Cl were studied by radioisotopicmeans. Fluxes of K+ and Cl are reduced in hyposalinemedia, as is absolute KCL content per cell. Intracelhilar KCLcontent was also found to be markedly dependent upon externalK+ concentration, rather than water potential. Changes in KC1levels induced by salinity variation occur over a 6 h period.  相似文献   

3.
Abstract Radioisotope equilibration techniques have been used to determine the intracellular concentration of K+, Na+ and Cl?, together with the unidirectional ion fluxes across the plasmalemma of Porphyra purpurea. Influx and efflux of 42K+, 24Na+ and 36C1? are biphasic, the rapid, initial uptake and loss of tracer from individual thalli being attributable to desorption from extracellular regions. Cellular fluxes are slower and monophasic, cells discriminating in favour of K+ and Cl? and against Na+. A comparison between the equilibrium potential of individual ion species and the measured membrane potential demonstrates that there is an active component of K+ and Cl? influx and Na+ efflux. ‘Active’ uptake and ‘passive’ loss of K+ and Cl? are reduced when plants are kept in darkness, suggesting that a fraction of the transport of K+ and Cl? may be due to ‘exchange diffusion’ (K+/K+ and Cl?/Cl?antiport).  相似文献   

4.
The characteristics of cadmium accumulation by the marine red alga Porphyra umbilicalis L. in culture are reported. The time course of uptake under various light conditions shows that cadmium is concentrated as the result of an on-going anabolic process and not as a consequence of a pH gradient as provided by photo-synthesis. The effect of cycloheximide is in agreement with de novo protein-synthesis being a prerequisite For cadmium accumulation. Autoradiography suggests a specific intracellular location for bound cadmium—apparently the nucleus.  相似文献   

5.
The effects of salinity on the primary processes of photosynthesis were studied in the red alga Porphyra perforata. The results show that there are at least three sites in the photosynthetic apparatus of this alga that were affected by increased salinity. The first site, photoactivation and dark-inactivation of electron flow on the reducing side of photosystem I, was completely inhibited at high salinity. The second site, electron flow on the oxidizing side (water side) of photosystem II, was inhibited as was the re-oxidation of Q in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. The third site affected by high salinity was the transfer of light energy probably from pigment system II to I. High salinity reduced the amount of light energy that reached the reaction centers of photosystem II.

These effects are discussed in relation to the mechanisms available to this plant to avoid photoinhibition when it is exposed to stresses such as high light and high salinity which are conditions that are commonly found in the intertidal habitat.

  相似文献   

6.
Isopentenyladenosine and cis-zeatin riboside have been identifiedby GC-MS from the tRNA of a red alga Porphyra perforata. (Received March 12, 1991; Accepted December 7, 1991)  相似文献   

7.
GORI  P. 《Annals of botany》1982,50(4):451-457
Gastroclonium clavatum tetrasporogenesis have been studied usinglight and electron microscopy. They are spherical bodies whichdifferentiate early and 50–70 per branch segment havebeen recorded. The developing sporangia expand into the largethallus cavity. The plastids become dispersed evenly throughthe cytoplasm at this stage. Thylakoids become arranged as parallelarrays and sporadically a single peripheral thylakoid enclosesall the others; the matrices contain globules reaching a maximumdiameter of 270 nm. Plastid multiplication occurs through binaryor multiple fission. The starch occurs in bowl-shaped grains.The mitochondria are always rich in cristae and often providedwith small opaque inclusions. The Golgi apparatus is markedby pleomorphic dictyosome features. Dictyosome-mitochondrionassociations are frequent. The different kinds of cytoplasmicinclusion are described. Gastroclonium clavatum, Rhodophyta, tetrasporogenesis, ultrastructure  相似文献   

8.
Extensive DNA sequencing of the chloroplast genome of the red alga Porphyra purpurea has resulted in the detection of more than 125 genes. Fifty-eight (approximately 46%) of these genes are not found on the chloroplast genomes of land plants. These include genes encoding 17 photosynthetic proteins, three tRNAs, and nine ribosomal proteins. In addition, nine genes encoding proteins related to biosynthetic functions, six genes encoding proteins involved in gene expression, and at least five genes encoding miscellaneous proteins are among those not known to be located on land plant chloroplast genomes. The increased coding capacity of the P. purpurea chloroplast genome, along with other characteristics such as the absence of introns and the conservation of ancestral operons, demonstrate the primitive nature of the P. purpurea chloroplast genome. In addition, evidence for a monophyletic origin of chloroplasts is suggested by the identification of two groups of genes that are clustered in chloroplast genomes but not in cyanobacteria.  相似文献   

9.
Marine microorganisms degrading porphyran (POR) were found on the surface of thalli of Porphyra yezoensis. Fifteen crude microorganism groups softened and liquefied the surface of agar-rich plate medium. Among these, 11 microorganism groups degraded porphyran that consisted of sulfated polysaccharide in Porphyra yezoensis. Following isolation, 7 POR-degradable microorganisms were isolated from the 11 POR-degradable microorganism groups.  相似文献   

10.
To test whether calmodulin is present in the red alga Susabi laver (Porphyra yezoensis), materials was concentrated from this alga, using hydrophobic chromatography. In this case, 0.25 m (NH4)2SO4 should be added to bind the protein to the column in the presence of 5 mm CaCl2. Calmodulin is present in the marine red alga, although at a very low concentration.  相似文献   

11.
The positional distribution of fatty acids in glycerolipidsfrom thalli of Porphyra yezoensis was studied by enzymatic hydrolysis.In monogalactosyl diacylglycerol, icosapentaenoic acid was amajor fatty acid at both the sn-1 and sn-2 positions of theglycerol moiety, whereas palmitic acid was a minor componentat both positions. In digalactosyl diacylglycerol and sulfoquinovosyldiacylglycerol, icosapentaenoic and palmitic acids were almostexclusively distributed at the sn-1 and sn-2 positions, respectively.In phosphatidylglycerol, palmitic and trans--13-hexadecenoicacid were exclusively located at the sn-2 position. In phosphatidylcholine,icosapentaenoic acid occurred in both the sn-l and sn-2 positions,whereas palmitic acid was confined to the sn-1 position. Itis suggested that monogalactosyl diacylglycerol in P. yezoensissynthesized in both the cytoplasmic and chloroplastic pathways,while the diacylglycerol moieties of the other chloroplast lipidsare virtually all derived from the chloroplastic pathway. (Received March 7, 1986; Accepted April 6, 1987)  相似文献   

12.
The quantitative heteroside distribution in Porphyra columbina Montagne and Bangia atropurpurea (Roth) C. Agardh (Bangiales, Rhodophyta) has been measured using 13C-nuclear magnetic resonance spectroscopy and gas-liquid chromatography. In P. columbina, floridoside and both D- and L-isofloridoside were recorded, with concentrations of L-isofloridoside exceeding those of floridoside. All three compounds were also measured in B. atropurpurea. Marked changes in the relative amounts of the heterosides were recorded throughout the season. The role of L-isofloridoside in the osmotic acclimation of P. columbina has been demonstrated.  相似文献   

13.
14.
Nori, a marine red alga, is one of the most profitable mariculture crops in the world. However, the biological properties of this macroalga are poorly understood at the molecular level. In this study, we determined the draft genome sequence of susabi-nori (Pyropia yezoensis) using next-generation sequencing platforms. For sequencing, thalli of P. yezoensis were washed to remove bacteria attached on the cell surface and enzymatically prepared as purified protoplasts. The assembled contig size of the P. yezoensis nuclear genome was approximately 43 megabases (Mb), which is an order of magnitude smaller than the previously estimated genome size. A total of 10,327 gene models were predicted and about 60% of the genes validated lack introns and the other genes have shorter introns compared to large-genome algae, which is consistent with the compact size of the P. yezoensis genome. A sequence homology search showed that 3,611 genes (35%) are functionally unknown and only 2,069 gene groups are in common with those of the unicellular red alga, Cyanidioschyzon merolae. As color trait determinants of red algae, light-harvesting genes involved in the phycobilisome were predicted from the P. yezoensis nuclear genome. In particular, we found a second homolog of phycobilisome-degradation gene, which is usually chloroplast-encoded, possibly providing a novel target for color fading of susabi-nori in aquaculture. These findings shed light on unexplained features of macroalgal genes and genomes, and suggest that the genome of P. yezoensis is a promising model genome of marine red algae.  相似文献   

15.
Photoinhibition resistance exhibited by the high intertidal red alga Porphyra perforata relative to its subtidal congener Porphyra nereocystis was examined using the protein synthesis inhibitor chloramphenicol to separate the damage and repair components of photoinhibition. Under photoinhibitory conditions, the rates of both damage to and replacement of photoinhibition-sensitive proteins was much higher in P. nereocystis than in P. perforata. Thus, photoinhibition resistance in P. perforata appears to be due to a reduced rate of photoinhibition damage rather than to an accelerated rate of photoinhibition repair. Reduction of photoinhibition damage in P. perforata may be by means of biophysical processes which increase the radiationless decay of excitation to heat in photosystem II. Alternatively, the photoinhibition-sensitive proteins in P. perforata may have slight structural alterations that improve their stability or they may be protected by enzyme systems that quench radicals formed by overexcitation of photosystem II. Reduction of the damage component of photoinhibition is a reasonable way to limit photoinhibition in P. perforata during the severe desiccation and exposure to full sun that occur simultaneously during daily low tides, conditions under which the protein synthesis required for photoinhibition repair could not occur.  相似文献   

16.
Young, A. J., Collins, J. C. and Russell, G. 1987. Solute regulationin the euryhaline marine alga Enteromorpha prolifera (O. F.Mll) J. Ag.—J. exp. Bot. 38: 1298–1308. The physiological basis for salt tolerance has been studiedin the euryhaline alga Enteromorpha prolifera. Levels of inorganicions and organic (compatible) solutes have been measured. K+makes the major contribution towards the internal osmotic potentialof the cell, while Cl and, in particular, Na+ contentsare low. Levels of the organic solute ß-dimethylsulphonio-propionate(DMSP) are high but are fairly insensitive to changes in theexternal salinity. Levels of amino-acids, calcium, phosphateand sulphate contribute relatively little towards the internalosmotic potential of the alga. As salinity is altered there are marked changes in the tissuewater content and volume. These changes directly affect theconcentration of the osmotic solutes within the cell. In diluteseawaters there is an increase in turgor as there is littlechange in the internal solute content of the cell compared tovalues in normal sea water. Inorganic ions, in particular K+,and organic solutes are accumulated in concentrated seawaters,although concentrations greater than 2·00 x seawaterresult in a reduction in the internal osmotic potential of thecell, mainly through loss of K+. Key words: Enteromorpha, salinity, osmoregulation  相似文献   

17.
The marine red alga, Porphyra sanjuanensis is found mainly in the high intertidal zone and at low tide subject to frequent and extreme water stress, often accompanied by high temperatures and light intensities. Such exposures can lead to severe desiccation which is accompanied by the progressive loss of photosynthetic activity. Even following the loss of more than 90% of the thallus water content the alga recovers rapidly when returned to seawater. This stress-induced, reversible inactivation of photosynthesis is believed to be a protective adaptation which prevents photodamage to the exposed alga. Effects of light, inhibitors of water splitting, and electron donors to PSI on variable fluorescence and water splitting suggest that activity of the oxygen evolving complex is regulated by the PSI-driven reduction of a component of intersystem electron transport.  相似文献   

18.
Tetraspore development has been studied in Chondria tenuissimausing light and electron microscopy. The transformation of tetrasporangialmother cells into mature tetrasporangia involves a series ofstructural changes, especially of dictyosomes and of the nucleus.The youngest stage of tetrasporogenesis consists of a uninucleatetetraspore mother cell with synaptonemal complexes present duringearly prophase of meiosis I. Mitochondria are aggregated aroundthe nucleus, dictyosome activity is low, and proplastids occurin the peripheral cytoplasm. The cleavage furrows are initiatedalmost concomitantly with commencement of meiosis. When thecleavage furrows are initiated, spherical bodies bounded bytwo membranes are found within the cytoplasm; they develop intovacuoles with fibrillar contents (fv1), which increase in sizeduring tetraspore development by fusing with each other andwith Golgi vesicles. The Golgi vesicles and the vacuoles withfibrillar contents (fv1) contribute material to the developingtetraspore wall. During the middle stage of tetraspore formationthe vacuoles with fibrillar contents (fv1) are dominant, dictyosomeactivity increases, as well as the number of plastids and mitochondria;starch formation also increases. Stacked cisternae of the endoplasmicreticulum are found within the peripheral part of the nucleus.The same nuclear structures are also observed in tetrasporangiaof the marine red alga Gastroclonium clavalum. The final stageis characterized by the disappearance of vacuoles with fibrillarcontents (fv1) and of the stacked ER within the nucleus, presenceof straight, large dictyosomes which produce cored vesicles,an abundance of starch grains and by the formation of fullydeveloped chlorqplasts. The cored vesicles contain Thiéry-positivematerial and contribute to the formation of vacuoles with fibrouscontents (fv2) as they are dominant in the tetraspores beforetheir liberation. Rhodophlyla, Chondria, tetrasporogenesis, ultrastructure, Golgi apparatus  相似文献   

19.
Twenty-two monoclonal antibodies were raised against the nativeform of nitrate reductase (NR) from Porphyra yezoensis, a marinered alga. All the antibodies were able to bind to NR from P.yezoensis, with resultant inhibition of full (NADH:NR) and/orpartial (NADH:FR, NADH:CR, FMNH2:NR, and MV:NR) enzymatic activity.Fifteen of the antibodies recognized the denatured form of theenzyme. Size-exclusion gel nitration and immunoblotting of theproducts of the limited proteolysis of NR from P. yezoensisby trypsin or Staphylococcus aureus V8 protease revealed that2 out of the 15 subunit-recognizing antibodies bound to theFAD domain, 6 bound to the heme domain, and 7 bound to the Mo-pterindomain. The products of limited proteolysis of NR from P. yezoensisalso revealed that the sites of proteolytic cleavage that encompassedthe heme domain were inverted as compared to the analogous sitesin NRs of higher plants. Some of the monoclonal antibodies cross-reactedwith NRs from plants belonged to different phyla. From threeto five of the antibodies bound subunits of NR from multicellularred algae, but failed to bind NRs from unicellular red algae.Three or four of the antibodies crossreacted with NRs from higherplants, such as tobacco and spinach. One of the antibodies boundNRs from several types of plant, namely, members of Cryptophyta,Chromophyta, and Chlorophyta. All of the monoclonal antibodiesthat cross-reacted with NRs from plants other than the red algaewere specific for the Mo-pterin domain of NR from P. yezoensis. (Received May 10, 1994; Accepted September 7, 1994)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号