首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elm leaf beetle, Xanthogaleruca luteola, is a serious pest of elm trees in urban areas. Partial biochemical characterization of pectinases and cellulases was conducted using the larval digestive system of the pest. Midgut extracts from larvae showed optimum activity for pectinase and cellulase against pectin and carboxymethyl cellulose, respectively, under acidic conditions (pH 6). Pectinases and cellulases were respectively more stable under acidic conditions (pH 4–7) and slightly acidic conditions (pH 5–7) than under highly acidic and alkaline conditions. However, the enzymes were more stable in slightly acidic conditions (pH 6) when incubation time was increased. Maximum activity for the pectinases and cellulases incubated at different temperatures was observed at 45 and 50 °C, respectively. Mg2+ remarkably increased pectinase activity, and cellulase activity increased significantly in the presence of Ca2+ and Mg2+. Sodium dodecyl sulfate significantly decreased pectinase and cellulase activity. The Michaelis–Menten constant (KM) and the maximal reaction velocity (Vmax) values for pectinase were 2 mg·mL? 1 and 0.017 mmol·min? 1·mg? 1 protein toward pectin, respectively. Zymogram analyses revealed the presence of one and five bands of pectinase and cellulase activity, respectively, in the larval midgut extract.  相似文献   

2.
An alkalophilic Streptomyces sp. RCK-SC, which produced a thermostable alkaline pectinase, was isolated from soil samples. Pectinase production at 45 °C in shaking conditions (200 rev min−1) was optimal (76,000 IU l−1) when a combination of glucose (0.25% w/v) and citrus pectin (0.25% w/v) was added along with urea (0.25% w/v) in the basal medium devoid of yeast extract and peptone. All the tested amino acids and vitamins greatly induced pectinase production and increased the specific productivity of pectinase up to 550%. In an immobilized cell system containing polyurethane foam (PUF), the pectinase production was enhanced by 32% (101,000 IU l−1) compared to shake flask cultures. In solid-state cultivation (SSC) conditions, using wheat bran as solid substrate, pectinase yield of 4857 IU g−1 dry substrate was obtained at substrate-to-moisture ratio of 1:5 after 72 h of incubation. The partially purified pectinase was optimally active at 60 °C and retained 80% of its activity at 50 °C after 2 h of incubation. The half life of pectinase was 3 h at 70 °C. Pectinase was stable at alkaline pH ranging from 6.0 to 9.0 for more than 8 h at room temperature retaining more than 50% of its activity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
麦长管蚜唾液中几种酶的鉴定、活力测定与功能分析   总被引:1,自引:1,他引:0  
用Parafilm膜夹营养液法,以两种食料介质饲喂麦长管蚜Macrosiphum avenae 3龄若蚜并收集其唾液,对唾液中的酶类进行了鉴定、活力测定和功能分析。结果表明,在20%蔗糖介质提取液中,鉴定有果胶酶、多酚氧化酶和纤维素酶; 在水介质提取液中鉴定有纤维素酶; 两种介质提取液中都未鉴定出过氧化物酶。酶活力测定结果表明, 在20%蔗糖介质提取液中, 每30头蚜虫分泌的果胶酶、多酚氧化酶和纤维素酶的酶活力分别为2.59×10-3 U/g、7×10-3 U/g和7.89×10-3 U/g; 在水介质提取液中,纤维素酶活力为3.68×10-3 U/g。行为反应试验结果表明,果胶酶处理麦苗的挥发物组分能引起麦长管蚜寄生性天敌燕麦蚜茧蜂Aphidius avenae和捕食性天敌七星瓢虫Coccinella septempunctata 的嗅觉偏好反应,因此,果胶酶在麦长管蚜取食诱导小麦植株的间接防御反应中具有重要作用。  相似文献   

4.
Pythium myriotylum, an oomycetous necrotroph is the causal agent of soft rot disease affecting several crops. Successful colonization by necrotrophs depends on their secretion of a diverse array of plant cell wall degrading enzymes (CWDEs). The induction dynamics of CWDEs secreted by P. myriotylum was analysed as little information is available for this pathogen. Activities of CWDEs that included pectinase, cellulase, xylanase and protease were detected using radial diffusion assay and differential staining. In Czapek Dox minimal medium supplemented with respective substrates as carbon source, the increase in CWDE activities was observed till 8 days of incubation after which a gradual decline in enzymatic activities was observed. With sucrose as sole carbon source, all the enzymes studied showed increase in activity with fungal growth while with cell wall material derived from ginger rhizome as sole carbon source, an initial spurt in cellulase, xylanase and pectinase activities was observed 3 days post incubation while protease activity increased from three days of incubation and reached maximum at 13 days of incubation. To further evaluate the role of CWDEs in pathogenicity, UV-induced mutants (pmN14uv1) were generated wherein significant reduction in cellulase, pectinase and protease activities were observed while that of xylanase remained unchanged compared to wild type isolate (RGCBN14). Bioassays indicated changes in infection potential of pmN14uv1 thereby suggesting the crucial role played by P. myriotylum CWDEs in initiating the rotting process. Hence appropriate strategies that target the production/activity of these secretory hydrolytic enzymes will help in reducing disease incidence/pathogen virulence.  相似文献   

5.
Simultaneous production of xylanase and pectinase by Bacillus pumilus AJK under submerged fermentation was investigated in this study. Under optimized conditions, it produced 315?±?16 IU/mL acidic xylanase, 290?±?20 IU/mL alkaline xylanase, and 88?±?9 IU/mL pectinase. The production of xylano-pectinolytic enzymes was the highest after inoculating media (containing 2% each of wheat bran and Citrus limetta peel, 0.5% peptone, 10?mM MgSO4, pH 7.0) with 2% of 21-hr-old culture and incubated at 37°C for 60?hr at 200?rpm. Xylanase retained 100% activity from pH 6.0 to10.0 after 3?hr of incubation, while pectinase showed 100% stability from pH 6.0 to 9.0 even after 6?hr of incubation. Cost-effective and concurrent production of xylanase and pectinase by a bacterial isolate in the same production media suggests its potential for various biotechnological applications. This is the first report of simultaneous production of industrially important extracellular xylano-pectinolytic enzymes by B. pumilus.  相似文献   

6.
An extracellular pectinase (PEC-I) was isolated from the crude extract of Aspergillus oryzae when grown on passion fruit peel (PFP) as the carbon source and partially purified by ultra filtration, gel filtration and ion-exchange chromatography procedures. Pectinase activity was predominantly found in the retentate. The pectinase from retentate (PEC-Ret) was most active at 50?°C and pH 7.0 and stable at 50?°C with a half-life of approximately 8?h. PEC-I showed higher activity at pH 4.5 and 55?°C, 70?°C and 75?°C and was inhibited by cations (Ag+, Fe2+, Fe3+, Co2+, Ca2+ and Hg2+), EDTA, tannic acid and vanillin. On the other hand, PEC-I was activated by Cu2+, ferulic acid, cinnamic acid and 4-hydroxybenzoic acid. The gel under denaturing conditions of PEC-Ret and PEC-I samples showed a protein band of ~45?kDa coincident with that found by staining for pectinase activity. In the bioscouring of cotton fabric the PEC-Ret pectinase preparation led to a better wettability and removed more pectin from the cotton fibers than the commercial enzyme preparation Viscozyme L, but was less effective than a commercial alkaline pectate lyase preparation and alkaline scouring. The incubation of PEC-Ret with guava juice resulted in a 4.15% decrease in juice viscosity.  相似文献   

7.
A very high level of alkalophilic and thermostable pectinase and xylanase has been produced from newly isolated strains of Bacillus subtilis and Bacillus pumilus respectively. Enzyme production for pectinase was carried out under SSF using combinations of cheap agricultural residues while xylanase was produced under submerged fermentation using wheat bran as substrate to minimize the cost of production of these enzymes Among the various substrates tested, the highest yield of pectinase production was observed by using combination of WB + CW (6592 U/g of dry substrate) supplemented with 4% yeast extract when incubated at 37 °C for 72 h using deionized water of pH 7.0 as moistening agent. The biobleaching effect of these cellulase free enzymes on kraft pulp was determined. Both xylanase and pectinase showed stability over a broad range of pH from 6 to 10 and temperature from 55 to 70 °C. The bleaching efficiency of the pectinase and xylanase on kraft pulp was maximum after 150 min at 60 °C using enzyme dosage of 5 IU/ml of each enzyme at 10% pulp consistency with about 16% reduction in kappa number and 84% reduction in permanganate number. Enzyme treated pulp when subjected to CDED1D2 steps, 25% reduction in chlorine consumption and upto 19% reduction in consumption of chlorine dioxide was observed for obtaining the same %ISO brightness. Also an increase of 22 and 84% in whiteness and fluorescence respectively and a decrease of approximately 19% in the yellowness of the biotreated pulp were observed by pretreatment of the pulp with our enzymatic mixture.  相似文献   

8.
In this study, the cellulase gene celD from Clostridium thermocellum was cloned into expression vectors pET-20b(+) and pHsh. While high expression can be achieved by means of both these expression systems, only the pHsh expression system gives soluble proteins. By weakening the mRNA secondary structure and replacing the rare codons for the N-terminal amino acids of the target protein, the expression level of CelD was increased from 4.1 ± 0.3 to 6.4 ± 0.4 U ml−1 in LB medium. Recombinant CelD was purified by heat treatment followed by Ni–NTA affinity. The purified CelD exhibited the highest activity at pH 5.4 and 60°C, and retained more than 50% activity after incubation at 70°C for 1 h. The cellulase activity of CelD was significantly enhanced by Ca2+ but inhibited by EDTA. The favorable properties of CelD offer the potential for genetic modification of strains for biomass degradation. Presently, one of the major bottlenecks for industrial cellulase users is the high cost of enzyme production. The high level expression of soluble enzymes from the pHsh expression system offers a novel approach for the production of cellulases to be used in various agro-industrial processes such as chemical, food and textile.  相似文献   

9.
The dynamics of mesophilic and thermophilic bacterial population of compost was studied. The bacteria population in the compost ranged from 109 to 105 CFU g?1 and was found to be maximum during mesophilic phase, and then decreased during the thermophilic, the cooling and maturation phases. Assessment of culturable bacteria by 16S rDNA revealed phylogenetic lineage of different polymorphic class bacilli, γ, β-proteobacteria and actinobacteria. Bacterial isolates produced extracellular enzymes: proteases, cellulase, xylanase, pectinase, tannase and amylase. Among them, mesophilic bacteria exhibited xylanolytic (81.25 %) and cellulolytic (63 %) activity. Thermophilic bacteria showed cellulolytic (75 %) and xylanolytic (66.6 %) activity, but a few isolates also produced tannase and pectinase. All bacterial isolates were observed to cause inhibition of three isolates of Bacillus pumilus and one isolate each of Staphylococcus sciuri and Kocuria sp. The physiological effect of compost on shoot length, leaf size and fruit maturation of tomato have been evaluated; the compost (75 g/pot) improved these parameters as compared to known compost (SOM). The efficacy of compost and SOM on photochemistry of tomato leaves was studied, based on imaging-PAM of the chlorophyll fluorescence parameters. Fv/Fm and electron transport rate (ETR) were increased significantly in compost (75 g) amended pot within 30 days of growth. Likewise, highest Y (II) of photosystem II (PS II) yield was found in compost (75 g) pot in 15 days. The findings of this study proved that the compost comprising of various bacteria involved in degradation of substrates was found to be beneficial for enhancement of tomato growth and development.  相似文献   

10.
Streptomyces sp. QG-11-3, which produces a cellulase-free thermostable xylanase (96 IU ml−1) and a pectinase (46 IU ml−1), was isolated on Horikoshi medium supplemented with 1% w/v wheat bran. Carbon sources that favored xylanase production were rice bran (82 IU ml−1) and birch-wood xylan (81 IU ml−1); pectinase production was also stimulated by pectin and cotton seed cake (34 IU ml−1 each). The partially purified xylanase and pectinase were optimally active at 60°C. Both enzymes were 100% stable at 50°C for more than 24 h. The half-lives of xylanase and pectinase at 70, 75 and 80°C were 90, 75 and 9 min, and 90, 53 and 7 min, respectively. The optimum pH values for xylanase and pectinase were 8.6 and 3.0, respectively, at 60°C. Xylanase and pectinase were stable over a broad pH range between 5.4 and 9.4 and 2.0 to 9.0, respectively, retaining more than 85% of their activity. Ca2+ stimulated the activity of both enzymes up to 7%, whereas Cd2+, Co2+, Cr3+, iodoacetic acid and iodoacetamide inhibited xylanase up to 35% and pectinase up to 63%; at 1 mM, Hg2+ inhibited both enzymes completely. Journal of Industrial Microbiology & Biotechnology (2000) 24, 396–402. Received 29 September 1999/ Accepted in revised form 02 February 2000  相似文献   

11.
Agrobacterium -mediated transformation of shoot apices of sunflower (Helianthus annuus L.) was evaluated following wounding by cell-wall-digesting enzymes and sonication. The frequency of explants with regenerated shoots expressing GUS (beta-glucuronidase) or GFP (green fluorescent protein) increased following treatment with the macerating enzymes cellulase Onozuka R-10 and pectinase Boerozym M5, whereas treatment with macerozyme R-10 had a negative effect. When a combination of cellulase (0.1%) and pectinase (0.05%) was used, the rate of explants with uniformly GUS-positive shoots increased at least twofold. The transient expression of reporter genes was also enhanced using sonication (50 MHz; 2, 4 and 6 s), but stable expression in regenerated shoots following 4 weeks of selection did not increase with this treatment. Enzyme treatment alone (0.1% cellulase and 0.05% pectinase) was superior to a combined treatment of sonication and enzymes with respect to stable transformation. Polymerase chain reaction analyses of shoots recovered by grafting from transformation experiments using GFP as the reporter gene demonstrated the stable integration of the transgene. Regenerated plants were fertile and seeds could be harvested.  相似文献   

12.
This experiment was conducted to evaluate the effects of supplementing exogenous enzymes on growth, feed conversion ratio (FCR) and apparent nutrient digestibility in rainbow trout (Oncorhynchus mykiss) fry diets containing 32% canola meal. Five experimental diets (including a control diet containing no enzymes) were prepared as isonitrogenous (44% crude protein) and isocaloric (4000 kcal DE kg1). The four other diets contained either cellulase, phytase, pectinase or an enzyme mix (a mixture of cellulase, phytase and pectinase in the same ratio). The feeding trial was conducted in triplicate for 12 weeks in 15 tanks (100‐L). At the beginning of the experiment 20 rainbow trout fry (initial weight 1.23 g) were stocked into each tank. Mean water temperature in the rearing tanks was 11°C and water flow in each tank was 6 L min?1. At the end of the experiment the growth parameters and FCR displayed no significant differences in enzyme supplementation (P > 0.05). In addition, no differences were observed in dry matter, protein, or lipid digestibility with enzyme supplementation (P > 0.05). The results of this study showed that the addition of pectinase, phytase, cellulase or an enzyme mix to a diet containing 32% canola meal had no effect on growth, feed efficiency or dry matter, protein, or lipid digestibility in rainbow trout fry.  相似文献   

13.
A method is described to measure photochemical activity in intact cells of Euglena under in vivo conditions. The method employs a cell wall digesting enzyme (cellulysin) to induce enough permeability in the cell walls and membranes in order to allow dyes, commonly used to investigate light-dependent electron transport reactions to enter, but without inducing a concomittant efflux of metabolites. Between 1 and 2 h of incubation in 5% (w/v) cellulysin provided conditions which allowed measurement of photosystem I-, II- and I+II-dependent electron transport with rates up to 600% higher than in control cells; whereas other cell wall degrading enzymes (cellulase and pectinase) still did not increase the entry of the dyes. Cellulysin up to 2 h of incubation had little or no effect on whole cell respiration, photosynthetic O2 evolution, or the export of potassium and (14C) labeled compounds out of cells; therefore cellulysin obviously did not change the normal habit or physiology of Euglena. Cellulysin (4 h digestion), cellulase and pectinase (2–4 h of incubation) on the other hand led to a lowering of respiration and light-dependent O2 evolution, and increased the efflux of K+, but apparently decreased that of (14C)labeled fixation products.Abbreviations DBMIB dibromothymoquinone - DCPIP 2,6-dichlorophenol-indophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMMIB 2,3-dimethyl-5,6-methylenedioxy-p-benzoquinone - MV methylviologen - PSI photosystem I - PS II photosystem II  相似文献   

14.
A cellulase free, alkaline, thermo-tolerant pectinase was produced by a novel yeast strain Pseudozyma sp. SPJ using citrus peel as inexpensive carbon source. The crude enzyme showed good prospects in degumming of flax fibers for textile industry. An optimum pectinase dose of 80 U g−1 resulted in reduction of 15 ± 1.92% dry weight of the fibers, releasing maximum galacturonic acid (10825.5 ± 34.2 μg g−1 dry fiber) after the incubation of 6 h. The yeast culture could grow on the flax fibers (as sole carbon source) without addition of any other nutrient and produce good enzyme yield (9235.5 ± 21.51 U g−1 dry fiber). After 12 h incubation of the fibers with the isolated yeast strain, 4471 ± 19.5 μg g−1 dry fiber galacturonic acid was achieved with maximum weight loss of 11 ± 1.2%. This process reduced the amount of chemicals and energy used in conventional methods. It also contributed to enhance fineness and overall quality of the fiber strands. This study is relevant to the textile industry as it provided a fast, economical and eco-friendly method for degumming of flax fibers.  相似文献   

15.
Abstract

The present work was aimed at studying the production of lignocellulolytic enzymes, namely cellulase, xylanase, pectinase, mannanase, and laccase by a newly isolated bacterium Sphingobacterium sp. ksn-11, utilizing various agro-residues as a substrate under submerged conditions. The production of lignocellulolytic enzymes was found to be maximum at the loading of 10%(w/v) agro-residues. The enzyme secretion was enhanced by two-fold at 2?mM CaCO3, optimum pH 7, and temperature 40°. The Field Emission Gun-Scanning Electron Microscope (FEG-SEM) results have shown the degradative effect of lignocellulases; cellulase, xylanase, mannanase, pectinase, and laccase on corn husk with 3.55?U/ml, 79.22?U/ml, 12.43?U/ml, 64.66?U/ml, and 21.12?U/ml of activity, respectively. The hydrolyzed corn husk found to be good adsorbent for polyphenols released during hydrolysis of corn husk providing suitable conditions for stability of lignocellulases. Sphingobacterium sp. ksn is proved to be a promising candidate for lignocellulolytic enzymes in view of demand for enzymes in the biofuel industry.  相似文献   

16.
Biological pretreatment of rice straw and production of reducing sugars by hydrolysis of bio-pretreated material with Streptomyces griseorubens JSD-1 was investigated. After 10 days of incubation, various chemical compositions of inoculated rice straw were degraded and used for further enzymatic hydrolysis studies. The production of cellulolytic enzyme by S. griseorubens JSD-1 favored the conversion of cellulose to reducing sugars. The culture medium for cellulolytic enzyme production by using agro-industrial wastes was optimized through response surface methodology. According to the response surface analysis, the concentrations of 11.13, 20.34, 4.61, and 2.85 g L?1 for rice straw, wheat bran, peptone, and CaCO3, respectively, were found to be optimum for cellulase and xylanase production. Then the hydrolyzed spent Streptomyces cells were used as a nitrogen source and the maximum filter paper cellulase, carboxymethylcellulase, and xylanase activities of 25.79, 78.91, and 269.53 U mL?1 were achieved. The crude cellulase produced by S. griseorubens JSD-1 was subsequently used for the hydrolysis of bio-pretreated rice straw, and the optimum saccharification efficiency of 88.13% was obtained, indicating that the crude enzyme might be used instead of commercial cellulase during a saccharification process. These results give a basis for further study of bioethanol production from agricultural cellulosic waste.  相似文献   

17.
Abstract

To prepare a smart biocatalyst, cellulase was immobilized on the reversibly soluble matrix Eudragit L-100 by non-covalent and covalent methods. Covalent immobilization using carbodiimide coupling exhibited superior enzyme loading and reusability compared with non-covalent immobilization, and the covalent loading was increased by almost 20% through the addition of N-hydroxysuccinimide. The temperature optimum of the cellulase was not improved apparently by immobilization but the pH optimum increased from 4.75 to 5.25. Immobilized cellulase was more active than free cellulase above pH 5.0. Immobilized cellulase was more stable than free cellulase during storage at 4°C, room temperature and 50°C. Km values of immobilized and free cellulase were 85.55 and 73.84 g L?1, respectively. About 50% productivity was retained after five cycles for hydrolysis of steam-exploded straw.  相似文献   

18.
A thorough investigation into conditions appropriate for effecting combined eco-friendly bioscouring and/or bleaching of cotton-based fabrics was undertaken. Fabrics used include cotton, grey mercerized cotton, cotton/polyester blend 50/50 and cotton/polyester blend 35/65. The four cotton-based fabric were subjected to bioscouring by single use of alkaline pectinase enzymes or by using binary mixtures of alkaline pectinase and cellulase enzymes under a variety of conditions. Results of bioscouring show that, the bioscoured substrates exhibit fabrics performances which are comparable with these of the conventional alkali scouring. It has been also found that, incorporation of ethylenediaminetetraacetic acid (EDTA) in the bioscouring with mixture from alkaline pectinase and cellulase improves the performance of the bioscoured fabrics. Addition of β-cyclodextrin to the bioscouring solution using alkaline pectinase in admixtures with cellulase acts in favor of technical properties and performance of the bioscoured fabrics. Concurrent bioscouring and bleaching by in situ formed peracetic acid using tetraacetylethylenediamine (TAED) and H2O2 was also investigated. The results reveal unequivocally that the environmentally sound technology brought about by current development is by far the best. The new development involves a single-stage process for full purification/preparation of cotton textiles. The new development at its optimal comprises treatment of the fabric with an aqueous formulation consisting of alkaline pectinase enzyme (2 g/L), TAED (15 g/L), H2O2 (5 g/L), nonionic wetting agent (0.5 g/L) and sodium silicate (2 g/L). The treatment is carried out at 60 °C for 60 min. Beside the advantages of the new development with respect to major technical fabric properties, it is eco-friendly and reproducible. This advocates the new development for mill trials.  相似文献   

19.
Penicillium species were analyzed with molecular markers and for pectinase and cellulase production. RAPD and PCR-RFLP analysis indicated high polymorphism among at least 5 of 10 Penicillium species. Five species were chosen for pectinase and cellulase production in liquid medium and four of which appeared similar based on molecular analyses. P. brevicompactum and P. griseoroseum gave the highest pectinase production and were highly divergent by molecular techniques.  相似文献   

20.
 This report describes a protocol for the regeneration of plants from protoplasts isolated from proembryogenic masses (PEMs) in a suspension culture derived from the nucellar callus of mango (Mangifera indica L. cv 'Amrapali'). The maximum yield (24.6±1.1×106), with 81.04±4.1% viable protoplasts per gram PEMs, was obtained with an enzyme mixture containing 1.2% cellulase, 1.0% hemicellulase and 0.6% pectinase. An optimum density of 5×104 cultured protoplasts per milliliter culture medium was required for the highest frequency (88.89±5.40%) of division. Dividing protoplasts developed into microcalli that proliferated on medium supplemented with growth regulators (auxins or kinetin alone, or auxins with kinetin) and produced somatic embryos after transfer to a growth regulator-free medium. The protocallus on 2,4-D-containing medium produced the maximum number (102.50±6.93) of somatic embryos. Maturation of somatic embryos depended upon the presence, and the nature and combination of growth regulators in the medium during proliferation of the callus. The mature somatic embryos germinated and developed into plants that were transferred to soil. Received: 1 April 1999 / Revision received: 27 July 1999 / Accepted: 23 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号