首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 476 毫秒
1.
The dark, anaerobic fermentation of pyruvate under growth conditions was examined with the following species of phototrophic purple bacteria: Rhodospirillum rubrum strains Ha and S1, Rhodopseudomonas gelatinosa strain 2150, Rhodopseudomonas acidophila strain 7050, Rhodopseudomonas palustris strain ATCC 17001, Rhodopseudomonas capsulata strains Kb1 and 6950, Rhodopseudomonas sphaeroides strain ATCC 17023, and Chromatium vinosum strain D. Fermentation balances were established for all experiments. Under fermentative conditions cell protein and dry weight increased only slightly, if at all. The species differed considerably in their fermentative activity; R. rubrum and R. gelatinosa exhibited the highest rates (2-8 mumoles pyruvate/mg protein-h). R. acidophila and R. capsulata showed an intermediate fermentation rate (0.4--2.0 mumoles pyruvate/mg protein-h), while the other strains tested fermented at quite low rates (0.2-0.4 mumoles pyruvate/mg protein-h). The extremes of fermentation times were from 30-380 hours. Based on the products of fermentation which were formed in addition to acetate, formate, and CO2, the species can be grouped as follows: a) R. rubrum, R. gelatinosa, and R. sphaeroides additionally form propionate. b) R. gelatinosa, R. palustris, R. capsulata, R. sphaeroides, and C. vinosum additionally form lactate. R. palustris also produces butyrate. c) R. acidophila and R. capsulata additionally form much 2,3-butanediol, acetoin, and diacetyl. Small amounts of acetoin were formed by the rest of the strains. A comparison of the fermentation of pyruvate by normal and starved cells (4 days in the light without a carbon source) of R. rubrum and R. gelatinosa shows that the latter ferment more slowly and produce less acetate and formate, but more propionate or lactate. The fermentation of pyruvate by R. rubrum was also studied in cultures in which the pH fell (7.2--6.6). Compared with the fermentation at neutral pH (7.3, 7.4), the following differences were found: a slower fermentation rate, an increased production of dry weight, an increased formation of propionate, but a reduced formation of acetate and a very low production of formate.  相似文献   

2.
C S Fornari  S Kaplan 《Gene》1983,25(2-3):291-299
The presumptive genes for the ribulose 1,5-bisphosphate carboxylase large subunit and for nitrogenase-specific components from Rhodopseudomonas sphaeroides and several other photosynthetic bacteria were identified and located by interspecific probing. Restriction digests of R. sphaeroides genomic DNA were hybridized under stringent conditions to cloned DNA from Rhodospirillum rubrum (plasmid pRR2119 carrying the carboxylase gene) and Klebsiella pneumoniae (pSA30 carrying the nitrogenase genes). The nitrogenase probe hybridized with different signal intensities to several distinct HindIII, BglII, EcoRI, BamHI and PvuII fragments of R. sphaeroides 2.4.1.DNA. The carboxylase probe hybridized to only single R. sphaeroides 2.4.1.DNA fragments produced with all five restriction enzymes. A 3000-bp EcoRI-BamHI R. sphaeroides 2.4.1.DNA fragment carrying the presumptive gene for the large subunit of ribulose 1,5-bisphosphate carboxylase was cloned into pBR322 and positively identified by probing with a 32P-labeled internal PstI fragment of the Rhodospirillum carboxylase gene.  相似文献   

3.
Antibodies were raised against the succinate dehydrogenase (SDH) present in the chromatophores of phototrophically grown Rhodopseudomonas sphaeroides. Crossed immunoelectrophoresis experiments indicated that the SDH present in the cytoplasmic membranes of heterotrophically grown R. sphaeroides is probably the same enzyme observed in the chromatophores. The enzyme was extracted by Triton X-100 in a form which consisted of only two subunits (molecular weight, 68,000 and 30,000) and was not associated with a cytochrome b. The antibodies directed against SDH from R. sphaeroides showed no immunocross-reactivity with SDH from phylogenetically related bacterial species, including Rhodopseudomonas capsulata, Paracoccus denitrificans, Rhodopseudomonas palustris, Rhodospirillum rubrum, and Rhodospirillum fulvum.  相似文献   

4.
多能硫杆菌RubisCO基因鉴定以及在大肠杆菌中的表达   总被引:5,自引:0,他引:5       下载免费PDF全文
多能硫杆菌(Thiobacillus versutus)是兼性化能自养细菌,在生理学和分类学上具有重要的地位,也是研究硫杆菌生理、生化、遗传学的理想材料。该菌通过卡尔文循环固定CO_2,其关键酶是1,5-二磷酸核酮糖羧化酶/加氧酶(简称RubisCO)。我们从多能硫杆菌中分离得到的RubisCO基因片段能够在大肠杆菌细胞中表达,说明自养细菌与异养细菌在基因表达方面是相似的。  相似文献   

5.
Abstract Both form I and II ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) genes were detected in Thiobacillus intermedius by heterologous hybridization using specific probes from Anacystis nidulans and Rhodobacter sphaeroides , respectively. However, only the previously reported from I enzyme could be demonstrated in cells grown under a number of different conditions. The reason(s) why the form II gene is not expressed in T. intermedius is/are not clear at this time. The form II gene was isolated from a lambda library by screening with the Rb. sphaeroides probe. A Sal I fragment from this clone was ligated into pUC8 and transformed into Escherichia coli DH5α. Subclones pTi20IIA and pTi20IIB representing both orientations relative to the lac promoter were isolated. Low levels of RuBisCO activity were detected in both induced and non-induced pTi20IIA indicating the probable expression from a T. intermedius promoter. Induced pTi20IIB produced much higher levels of enzyme activity. Analysis of cell-free extracts using sucrose density gradients confirmed the expression of a form II RuBisCO similar in size to that found in Rhodobacter capsulatus . Other Calvin cycle genes were not clustered with either the form I or form II genes.  相似文献   

6.
After growth in the absence of nitrogenous oxides under anaerobic phototrophic conditions, several strains of Rhodopseudomonas capsulata were shown to possess a nitrous oxide reductase activity. The enzyme responsible for this activity had a periplasmic location and resembled a nitrous oxide reductase purified from Pseudomonas perfectomarinus. Electron flow to nitrous oxide reductase was coupled to generation of a membrane potential and inhibited by rotenone but not antimycin. It is suggested that electron flow to nitrous oxide reductase branches at the level of ubiquinone from the previously characterized electron transfer components of R. capsulata. This pathway of electron transport could include cytochrome c', a component hitherto without a recognized function. R. capsulata grew under dark anaerobic conditions in the presence of malate as carbon source and nitrous oxide as electron acceptor. This confirms that nitrous oxide respiration is linked to ATP synthesis. Phototrophically and anaerobically grown cultures of nondenitrifying strains of Rhodopseudomonas sphaeroides, Rhodopseudomonas palustris, and Rhodospirillum rubrum also possessed nitrous oxide reductase activity.  相似文献   

7.
J L Gibson  F R Tabita 《Gene》1986,44(2-3):271-278
A library of cloned Rhodopseudomonas sphaeroides DNA was screened by colony hybridization for form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBPC/O) sequences using heterologous RuBPC/O probes. A recombinant plasmid was identified that hybridized to both the Anacystis nidulans and the R. sphaeroides form II RuBPC/O genes. Subcloning of a hybridizing 4-kb SmaI fragment allowed expression of active enzyme in Escherichia coli that was identical to form I RuBPC/O based on polyacrylamide gel electrophoresis and Western immunoblot analysis.  相似文献   

8.
Immunoblots of sodium dodecyl sulfate-polyacrylamide gels derived from outer membrane preparations of various strains of Rhodopseudomonas sphaeroides revealed polypeptides which cross-reacted with antibody directed against the major outer membrane protein of R. sphaeroides 2.4.1. Immunochemical quantitation of the major outer membrane protein of strain 2.4.1 showed approximately 5.5 x 10(4) molecules per cell whether cells were grown chemoheterotrophically or photoheterotrophically. Rhodospirillum rubrum outer membranes contained a cross-reactive protein, whereas the outer membranes derived from Rhodopseudomonas capsulata and Paracoccus denitrificans showed no cross-reaction with the antibody prepared against the major outer membrane protein from R. sphaeroides 2.4.1.  相似文献   

9.
R G Quivey  F R Tabita 《Gene》1984,31(1-3):91-101
The gene encoding the form II ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBPC/O) from Rhodopseudomonas (R.) sphaeroides has been identified on a 3-kb EcoRI fragment and cloned into a broad-host-range, high-copy-number plasmid, using the gene from Rhodospirillum (Rs.) rubrum as a hybridization probe. Subclones of the gene from R. sphaeroides in pBR322 and pUC8 show substantial levels of expression and enzymatic activity in whole cells and crude cell extracts of Escherichia coli. This enzymatic activity has been shown to be similar in many respects to that of the protein purified from R. sphaeroides.  相似文献   

10.
The acyl lipids and their constituent fatty acids were studied in the photosynthetic bacteria Rhodospirillum rubrum, Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides, which were grown under photosynthetic and non-photosynthetic conditions. The major lipids were found to be phosphatidylethanolamine, phosphatidylglycerol and cardiolipin in each bacterium. The two Rhodopseudomonas species also contained significant quantities of phosphatidylcholine. Other acyl lipids accounted for less than 10% of the total. On changing growth conditions from non-photosynthetic to photosynthetic a large increase in the relative proportion of phosphatidylglycerol was seen at the expense of phosphatidyl-ethanolamine. In Rhodospirillum rubrum the fatty acids of the major phospholipids showed an increase in the proportion of palmitate and stearate and a decrease in palmitoleate and vaccenate on changing growth conditions to photosynthetic. In contrast, the exceptionally high levels (>80%) of vaccenate in individual phospholipids of Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides were unaffected by changing growth conditions to photosynthetic. Analysis of the lipids of chromatophores, isolated from the three bacteria, showed that these preparations were enriched in phosphatidylglycerol. The large increase in this phospholipid, seen during growth under photosynthetic conditions, appeared, therefore, to be due to a proliferation of chromatophore membranes. Possible roles for acyl lipids in the formation and function of the photosynthetic apparatus of bacteria are discussed.  相似文献   

11.
The presence of two distinct forms of ribulose 1,5-bisphosphate carboxylase has been demonstrated in extracts of Rhodopseudomonas capsulata, similar to the form I (peak I) and form II (peak II) carboxylases previously described from R. sphaeroides (J. Gibson and F. R. Tabita, J. Biol. Chem 252:943-949, 1977). The two activities, separated by diethylaminoethyl-cellulose chromatography, were shown to be of different molecular size after assay on polyacrylamide gels. The higher-molecular-weight carboxylase from R. capsulata was designated form I-C, whereas the smaller enzyme was designated form II-C. Catalytic studies revealed significant differences between the two enzymes in response to pH and the effector 6-phosphogluconate. Immunological studies with antisera directed against the carboxylases from R. sphaeroides demonstrated antigenic differences between the two R. capsulata enzymes; cross-reactivity was observed only between R. sphaeroides anti-form II serum and the corresponding R. capsulata enzyme, form II-C.  相似文献   

12.
Rhodopseudomonas palustris cells grown on limiting nitrogen produced four- to eightfold higher nitrogenase specific activity relative to cells sparged with N2. The high activity of N-limited cells was the result of overproduction of the nitrogenase proteins. This was shown by four independent techniques: (i) titration of the Mo-Fe protein in cell-free extracts with Fe protein from Azotobacter vinelandii; (ii) direct detection of the subunits of Mo-Fe protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; (iii) monitoring of the electron paramagnetic resonance spectrum of Mo-Fe protein in whole cells; and (iv) immunological assay of the Fe protein level with an antiserum against the homologous protein of Rhodospirillum rubrum. The derepressed level of nitrogenase found in N2-grown cells was not due to an increased turnover of nitrogenase. The apparent half-lives of nitrogenase in N2-grown and N-limited cells were 58 and 98 h, respectively, but were too long to account for the difference in enzyme level. Half-lives were determined by measuring nitrogenase after repression of de novo synthesis by ammonia and subsequent release of nitrogenase switch-off by methionine sulfoximine. Observations were extended to R. rubrum, Rhodopseudomonas capsulata, and Rhodomicrobium vannielii and indicated that overproduction of nitrogenase under nitrogen limitation is not an exceptional property of R. palustris, but rather a general property of phototrophic bacteria.  相似文献   

13.
In some Rhodospirillaceae, the primary light-harvesting (LH I) antenna absorbs near-infrared light around 870 nm, whereas LH II (holochrome B800-860) has a major absorption band between 850 and 860 nm (B860) and a minor absorbancy around 800 nm (B800). Results show that, unlike LH I, holochrome B800-860 (LH II) exhibits unstable light absorption properties in whole cells. This was observed in Rhodopseudomonas capsulata grown anaerobically in light in weakly buffered carbohydrate medium; cultures lost both carotenoid-dependent brown-yellow pigmentation and LH II absorbancy. The whole cell spectrophotometric changes were attributed to mild acid conditions generated during sugar metabolism. LH II absorbancy was also destroyed in both R. capsulata and Rhodopseudomonas gelatinosa when cultures growing at neutral pH were acidified to a pH value around 5.0 with HCl. In contrast, during the same time period of exposure to pH 5.0, only a 50% decrease in Rhodopseudomonas sphaeroides LH II B800 absorbancy was measured. At neutral pH, LH II absorbancy in suspensions of nongrowing Rhodopseudomonas spp. was also sensitive to O2 exposure and to incubation at 30 to 40 degrees C. During treatment with O2, the rate of LH II B800 absorption decrease in R. gelatinosa and R. sphaeroides was 60 and 40% per h, respectively, compared with their absorbancy maximum around 860 nm. Both 860-nm absorbancy and the total bacteriochlorophyll content of the cells remained unchanged. On the other hand, no significant decrease in B800 if LH II in R. capsulata occurred during O2 exposure, but a 20% absorption decay rate per h of B800 was observed in cells incubated anaerobically at 40 degrees C. These B800 LH II spectral changes Rhodopseudomonas spp. were prevented by maintaining cells at neutral pH and at 10 degrees C. The near-infrared absorption spectrum of Rhodospirillum rubrum, which does not form LH II, was not significantly influenced by these different pH, aerobic, or temperature conditions.  相似文献   

14.
多能硫杆菌RubisCO基因同源性分析   总被引:2,自引:0,他引:2       下载免费PDF全文
以氧化亚铁硫杆菌1,5—二磷酸核酮糖羧化酶/加氧酶(RubisCO)基因为探针,与氧化硫硫杆菌和多能硫杆菌的染色体DNA杂交。结果表明,氧化硫硫杆菌的染色体DNA能够与氧化亚铁硫杆菌RubisCO基因探针杂交。而多能硫杆菌不能与其杂交,然而却能够与球形红杆菌RubisCO基因探针杂交,同源性高。由于RubisCO在进化上的高度保守性,因此认为它们在RubisCO进化关系上应属于不同的类群。  相似文献   

15.
A 3.4-kb cryptic plasmid was obtained from a new isolate of Rhodobacter blasticus. This plasmid, designated pMG160, was mobilizable by the conjugative strain Escherichia coli S17.1 into Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas palustris. It replicated in the latter strains but not in Rhodospirillum rubrum, Rhodocyclus gelatinosus, or Bradyrhizobium species. Plasmid pMG160 was stably maintained in R. sphaeroides for more than 100 generations in the absence of selection but showed segregational instability in R. palustris. Instability in R. palustris correlated with a decrease in plasmid copy number compared to the copy number in R. sphaeroides. The complete nucleotide sequence of plasmid pMG160 contained three open reading frames (ORFs). The deduced amino acid sequences encoded by ORF1 and ORF2 showed high degrees of homology to the MobS and MobL proteins that are involved in plasmid mobilization of certain plasmids. Based on homology with the Rep protein of several other plasmids, ORF3 encodes a putative rep gene initiator of plasmid replication. The functions of these sequences were demonstrated by deletion mapping, frameshift analysis, and analysis of point mutations. Two 6.1-kb pMG160-based E. coli-R. sphaeroides shuttle cloning vectors were constructed and designated pMG170 and pMG171. These two novel shuttle vectors were segregationally stable in R. sphaeroides growing under nonselective conditions.  相似文献   

16.
Detailed comparison of the 'Rhodopseudomonas sphaeroides GA' strain used by Gabellini et al. (1985) with genuine R. sphaeroides and R. capsulata strains indicated that the previously reported fbc operon of R. sphaeroides (Gabellini and Sebald, 1986) encoding the structural genes for the Rieske Fe-S protein, cytochrome b and cytochrome c1 subunits of the ubiquinol:cytochrome c2 oxidoreductase, is not from R. sphaeroides, but is rather from a strain of R. capsulata. Consequently, the genuine bc1 genes from R. sphaeroides were cloned using corresponding R. capsulata genes as probes, and a partial nucleotide sequence for the Rieske Fe-S protein of R. sphaeroides was determined and compared with that of R. capsulata.  相似文献   

17.
The cytoplasmic pyrophosphatase from Rhodobacter sphaeroides was purified and characterized. The enzyme is a homodimer of 64 kDa. The N-terminus was sequenced and used to obtain the complete pyrophosphatase sequence from the preliminary genome sequence of Rba. sphaeroides, showing extensive sequence similarity to family II or class C pyrophosphatases. The enzyme hydrolyzes only Mg-PP(i) and Mn-PP(i) with a K(m) of 0.35 mM for both substrates. It is not activated by free Mg (2+), in contrast to the cytoplasmic pyrophosphatase from Rhodospirillum rubrum, and it is not inhibited by NaF, methylendiphosphate, or imidodiphosphate. This work shows that Rba. sphaeroides and Rhodobacter capsulatus cytoplasmic pyrophosphatases belong to family II, in contrast to Rsp. rubrum, Rhodopseudomonas palustris, Rhodopseudomonas gelatinosa, and Rhodomicrobium vannielii cytoplasmic pyrophosphatases which should be classified as members of family I. This is the first report of family II cytoplasmic pyrophosphatases in photosynthetic bacteria and in a gram-negative organism.  相似文献   

18.
The technique of DNA--DNA hybridization was used to study relations offween purple nonsulfur bacteria (the family Rhodospirillaceae). The level of homologies with Rhodopseudomonas sphaeroides 8259 was nearly the same for different species (8-17%) in the genus Rhodopseudomonas under the conditions optimal for hybridization. The same level of homologies was found for the DNA of Rhodospirillum rubrum, a species belonging to another genus of purple nonsulfur bacteria (13%). Rhodomicrobium vannielli was most remote from R. sphaeroides 8259 (3%). Similar results were obtained under other conditions of hybridization. The intraspecial heterogeneity of R. sphaeroides was studied in this work. The thermal stability of hybrid duplexes was analysed. The results are indicative of a considerable divergence of different R. sphaeroides strains (delta T50 = 2.1-11.6).  相似文献   

19.
From genomic libraries of the purple non-sulfur bacteria Rhodospirillum rubrum Ha and Rhodobacter sphaeroides ATCC 17023 in the broad-host range cosmid pVK100, we cloned a 15- and a 14-kbp HindIII restriction fragment, respectively. Each of these fragments restored the ability to accumulate poly(3-hydroxybutyrate) (PHB), in the PHB-negative mutant Alcaligenes eutrophus PHB-4. These hybrid cosmids also complemented PHB-negative mutants derived from wild-type R. rubrum or R. sphaeroides. Both fragments hybridized with the PHB synthase structural gene of A. eutrophus H16 and conferred the ability to express PHB synthase activity. Only the 15-kbp HindIII fragment from R. rubrum conferred on the mutant PHB-4 the ability to form large PHB granules (length up to 3.5 microns).  相似文献   

20.
A paralyzed Rhodobacter sphaeroides mutant strain (PARA1) was isolated by a motility screening procedure following mutagenesis of wild-type R. sphaeroides WS8-N with the transposable element TnphoA (Tn5 IS50L::phoA). PARA1 synthesized a wild-type level of flagellin, as detected by Western immunoblotting with antiflagellar antiserum. Flagellar staining showed that flagellin was assembled into apparently normal external flagellar filaments. Electron micrographs of basal body structures from PARA1 showed that some ring structures that were present were similar to those in wild-type R. sphaeroides WS8-N. PARA1 cells were nonmotile under all growth conditions. No pseudorevertants to motility were seen when PARA1 was grown in the presence of kanamycin to select for the presence of the transposon. The presence of the single copy of TnphoA in the PARA1 chromosome was demonstrated by Southern blotting. Western blotting of cytoplasmic, periplasmic, and membrane fractions of PARA1 with anti-alkaline phosphatase antiserum showed that the transposon had been inserted in-frame into a gene encoding a membrane protein. A SalI restriction endonuclease fragment was cloned from the chromosome of PARA1; this fragment contained a portion of the transposon and R. sphaeroides DNA sequence 5' of the site of insertion. This flanking R. sphaeroides DNA sequence was used to probe an R. sphaeroides WS8 cosmid library. A cosmid designated c19 hybridized to the probe, and a SalI restriction endonuclease fragment derived from this cosmid restored wild-type motility to PARA1 when introduced into this mutant strain by conjugation. The significance of this finding in a bacterium with unidirectionally rotating flagella is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号