首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The META1 gene of Leishmania is upregulated in metacyclic promastigotes and encodes a 12 kDa virulence-related protein, conserved in all Leishmania species analysed. In this study, the genomic region adjacent to the Leishmania amazonensis META1 gene was characterised and compared to the Leishmania major META1 locus as well as to syntenic loci identified in Trypanosoma brucei and Trypanosoma cruzi. Three new genes expressed with increased abundance of steady state mRNA in L. amazonensis promastigotes were identified, two of which are upregulated in stationary phase promastigotes, sharing the pattern of expression previously described for the META1 mRNA. One of these new genes, named META2, encodes a polypeptide of 444 amino acid residues with a repetitive structure showing three repeats of the META domain (defined as a small domain family found in the Leishmania META1 protein and in bacterial proteins hypothetically secreted and/or implicated in motility) and a carboxyl-terminal region similar to several putative calpain-like proteins of Trypanosoma and Leishmania.  相似文献   

2.
The interdependence of the sulfane sulfur metabolism and sulfur amino acid metabolism was studied in the fungus Aspergillus nidulans wild type strain and in mutants impaired in genes encoding enzymes involved in the synthesis of cysteine (a precursor of sulfane sulfur) or in regulatory genes of the sulfur metabolite repression system. It was found that a low concentration of cellular cysteine leads to elevation of two sulfane sulfurtransferases, rhodanase and cystathionine γ-lyase, while the level of 3-mercaptopyruvate sulfurtransferase remains largely unaffected. In spite of drastic differences in the levels of biosynthetic enzymes and of sulfur amino acids due to mutations or sulfur supplementation of cultures, the level of total sulfane sulfur is fairly stable. This stability confirms the crucial role of sulfane sulfur as a fine-tuning regulator of cellular metabolism.  相似文献   

3.
B W Swinkels  R Evers    P Borst 《The EMBO journal》1988,7(4):1159-1165
To determine how microbody proteins enter microbodies, we have previously compared the genes for the cytosolic and glycosomal (microbody) phosphoglycerate kinases (PGKs) of Trypanosoma brucei and found the microbody enzyme to differ from other PGKs and the cytosolic form in two respects: a high net positive charge and a C-terminal extension of 20 amino acids (Osinga et al., 1985). Here we present the comparison of the genes for the cytosolic and glycosomal PGKs of Crithidia fasciculata, another kinetoplastid organism. The amino acid sequences of the two Crithidia isoenzymes are virtually identical, except for a C-terminal extension of 38 amino acids. We conclude that this extension must direct the glycosomal PGK to the glycosome. The extensions of the Crithidia and Trypanosoma enzymes are both rich in small hydrophobic and hydroxyl amino acids.  相似文献   

4.
Fructose 2,6-bisphosphate is a potent allosteric activator of trypanosomatid pyruvate kinase and thus represents an important regulator of energy metabolism in these protozoan parasites. A 6-phosphofructo-2-kinase, responsible for the synthesis of this regulator, was highly purified from the bloodstream form of Trypanosoma brucei and kinetically characterized. By searching trypanosomatid genome databases, four genes encoding proteins homologous to the mammalian bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) were found for both T. brucei and the related parasite Leishmania major and four pairs in Trypanosoma cruzi. These genes were predicted to each encode a protein in which, at most, only a single domain would be active. Two of the T. brucei proteins showed most conservation in the PFK-2 domain, although one of them was predicted to be inactive due to substitution of residues responsible for ligating the catalytically essential divalent metal cation; the two other proteins were most conserved in the FBPase-2 domain. The two PFK-2-like proteins were expressed in Escherichia coli. Indeed, the first displayed PFK-2 activity with similar kinetic properties to that of the enzyme purified from T. brucei, whereas no activity was found for the second. Interestingly, several of the predicted trypanosomatid PFK-2/FBPase-2 proteins have long N-terminal extensions. The N-terminal domains of the two polypeptides with most similarity to mammalian PFK-2s contain a series of tandem repeat ankyrin motifs. In other proteins such motifs are known to mediate protein-protein interactions. Phylogenetic analysis suggests that the four different PFK-2/FBPase-2 isoenzymes found in Trypanosoma and Leishmania evolved from a single ancestral bifunctional enzyme within the trypanosomatid lineage. A possible explanation for the evolution of multiple monofunctional enzymes and for the presence of the ankyrin-motif repeats in the PFK-2 isoenzymes is presented.  相似文献   

5.
Leishmania parasites secrete a variety of proteins that are modified by phosphoglycan chains structurally similar to those of the cell surface glycolipid lipophosphoglycan. These proteins are collectively called proteophosphoglycans. We report here the cloning and sequencing of a novel Leishmania major proteophosphoglycan gene, ppg1. It encodes a large polypeptide of approximately 2300 amino acids. The N-terminal domain of approximately 70 kDa exhibits 11 imperfect amino acid repeats that show some homology to promastigote surface glycoproteins of the psa2/gp46 complex. The large central domain apparently consists exclusively of approximately 100 repetitive peptides of the sequence APSASSSSA(P/S)SSSSS(+/-S). Gene fusion experiments demonstrate that these peptide repeats are the targets of phosphoglycosylation in Leishmania and that they form extended filamentous structures reminiscent of mammalian mucins. The C-terminal domain contains a functional glycosylphosphatidylinositol anchor addition signal sequence, which confers cell surface localization to a normally secreted Leishmania acid phosphatase, when fused to its C terminus. Antibody binding studies show that the ppg1 gene product is phosphoglycosylated by phosphoglycan repeats and cap oligosaccharides. In contrast to previously characterized proteophosphoglycans, the ppg1 gene product is predominantly membrane-associated and it is expressed on the promastigote cell surface. Therefore this membrane-bound proteophosphoglycan may be important for direct host-parasite interactions.  相似文献   

6.
Eight amino acid permease genes from the protozoan parasite Leishmania donovani (AAPLDs) were cloned, sequenced, and shown to be expressed in promastigotes. Seven of these belong to the amino acid transporter-1 and one to the amino acid polyamino-choline superfamilies. Using these sequences as well as known and characterized amino acid permease genes from all kingdoms, a training set was established and used to search for motifs, using the MEME motif discovery tool. This study revealed two motifs that are specific to the genus Leishmania, four to the family trypanosomatidae, and a single motif that is common between trypanosomatidae and mammalian systems A1 and N. Interestingly, most of these motifs are clustered in two regions of 50-60 amino acids. Blast search analyses indicated a close relationship between the L. donovani and Trypanosoma brucei amino acid permeases. The results of this work describe the cloning of the first amino acid permease genes in parasitic protozoa and contribute to the understanding of amino acid permease evolution in these organisms. Furthermore, the identification of genus-specific motifs in these proteins might be useful to better understand parasite physiology within its hosts.  相似文献   

7.
This paper describes the synthesis of 4'-substituted and 3',4'-disubstituted 5-benzyl-2,4-diaminopyrimidines as selective inhibitors of leishmanial and trypanosomal dihydrofolate reductase. Compounds were then assayed against the recombinant parasite and human enzymes. Some of the compounds showed good activity. They were also tested against the intact parasites using in vitro assays. Good activity was found against Trypanosoma cruzi, moderate activity against Trypanosoma brucei and Leishmania donovani. Molecular modeling was undertaken to explain the results. The leishmanial enzyme was found to have a more extensive lipophilic binding region in the active site than the human enzyme. Compounds which bound within the pocket showed the highest selectivity.  相似文献   

8.
A developmentally regulated cysteine proteinase gene of Leishmania mexicana   总被引:1,自引:0,他引:1  
We have isolated a gene encoding a previously unreported class of trypanosomatid cysteine proteinase (CP) from the protozoan parasite Leishmania mexicana. The single-copy gene (lmcpa) [corrected]. has several unusual features that distinguish it from CP genes cloned from the related species Trypanosoma brucei and Trypanosoma cruzi. These include a shorter C-terminal extension of only 10 amino acids and a three-amino-acid insertion, GlyValMet, close to the predicted N-terminus of the mature protein. Northern blot analysis showed that the gene is expressed in all life-cycle stages but at higher levels in the amastigote stage in the mammal and in stationary phase promastigote cultures which contain the infective metacyclic form of the parasite. A precursor protein of 38 kDa was detected in amastigotes and stationary phase promastigotes with antisera specific to the LmCPa pro-region, but was barely detectable in early log-phase promastigotes. Anti-central domain antisera recognized the 38 kDa precursor and 24 and 27 kDa proteins. The major CPs of L. mexicana amastigotes, previously designated types A, B and C, were not detected with the antisera, suggesting that the gene codes for a previously uncharacterized CP in L. mexicana. The 24 kDa protein detected by the antiserum has no activity towards gelatin but apparently hydrolyses the peptide substrate BzPheValArgAMC. The relative levels of the 24 and 27 kDa proteins vary between the different life-cycle stages. The results indicate that expression of this CP is regulated at both the RNA and protein level.  相似文献   

9.
Methylenetetrahydrofolate reductase (MTHFR; EC 1.5.1.20) is the sole enzyme responsible for generation of 5-methyltetrahydrofolate, which is required for methionine synthesis and provision of methyl groups via S-adenosylmethionine. Genome analysis showed that Leishmania species, unlike Trypanosoma brucei and Trypanosoma cruzi, contain genes encoding MTHFR and two distinct methionine synthases. Leishmania MTHFR differed from those in other eukaryotes by the absence of a C-terminal regulatory domain. L. major MTHFR was expressed in yeast and recombinant enzyme was produced in Escherichia coli. MTHFR was not inhibited by S-adenosylmethionine and, uniquely among folate-metabolizing enzymes, showed dual-cofactor specificity with NADH and NADPH under physiological conditions. MTHFR null mutants (mthfr(-)) lacked 5-methyltetrahydrofolate, the most abundant intracellular folate, and could not utilize exogenous homocysteine for growth. Under conditions of methionine limitation mthfr(-) mutant cells grew poorly, whereas their growth was normal in standard culture media. Neither in vitro MTHFR activity nor the growth of mthfr(-) mutants or MTHFR overexpressors were differentially affected by antifolates known to inhibit parasite growth via targets beyond dihydrofolate reductase and pteridine reductase 1. In a mouse model of infection mthfr(-) mutants showed good infectivity and virulence, indicating that sufficient methionine is available within the parasitophorous vacuole to meet the needs of the parasite.  相似文献   

10.
11.
M Wiese  T Ilg  F Lottspeich    P Overath 《The EMBO journal》1995,14(6):1067-1074
The insect stage of the protozoan parasite Leishmania mexicana secretes a phosphomonoesterase in the form of a filamentous complex. The polypeptide subunits of this polymer are modified by phosphoglycans and/or oligomannosyl residues linked to phosphoserine. Based on peptide sequence data of a predominant 100 kDa protein of the filamentous complex, two tandemly arranged, single copy genes, lmsap1 and lmsap2, were cloned and sequenced. lmsap1 predicts a protein with features characteristic of acid phosphatases and a remarkable serine- and threonine-rich region of 32 amino acids close to the C-terminus. In the otherwise identical lmsap2 product, this region is extended to 383 amino acids and is composed of short Ser/Thr-rich repeats. Deletion analysis demonstrates that lmsap1 encodes the major 100 kDa protein of the complex while a minor 200 kDa component is derived from the lmsap2 gene. Null mutants of either gene retain the ability to secrete acid phosphatase filaments, while a deletion of both genes results in Leishmania defective in enzyme formation. The Ser/Thr-rich domains are the targets for phosphoglycan modifications as shown by the expression of secreted fusion proteins composed of these C-terminal regions and the N-terminal domain of a lysosomal acid phosphatase.  相似文献   

12.
13.
Structure-function analysis of yeast tRNA ligase   总被引:2,自引:1,他引:1  
Trl 1 is an essential 827-amino-acid enzyme that executes the end-healing and end-sealing steps of tRNA splicing in Saccharomyces cerevisiae. Trl1 consists of two catalytic domains--an N-terminal adenylyltransferase/ligase component (amino acids 1-388) and a C-terminal 5'-kinase/cyclic phosphodiesterase component (amino acids 389-827)--that can function in tRNA splicing in vivo when expressed as separate polypeptides. Sedimentation analysis indicates that the ligase and kinase/CPD domains are monomeric proteins that do not form a stable complex in trans. To understand the structural requirements for the RNA ligase component, we performed a mutational analysis of amino acids that are conserved in Trl1 homologs from other fungi. Alanine scanning identified 23 new residues as essential for Trl1-(1-388) activity in vivo. Structure-activity relationships at these positions, and four essential residues defined previously, were clarified by introducing 50 different conservative substitutions. Lethal mutations of Lys114, Glu184, Glu266, and Lys284 abolished Trl1 adenylyltransferase activity in vitro. The essential elements embrace (1) putative equivalents of nucleotidyltransferase motifs I, Ia, III, IV, and V found in DNA ligases, T4 RNA ligase 2, and mRNA capping enzymes; (2) an N-terminal segment shared with the T4 RNA ligase 1 subfamily only; and (3) a constellation of conserved residues specific to fungal tRNA splicing enzymes. We identify yeastlike tRNA ligases in the proteomes of Leishmania and Trypanosoma. These findings recommend tRNA ligase as a target for antifungal and antiprotozoal drug discovery.  相似文献   

14.
Leishmania major 3-mercaptopyruvate sulfurtransferase is a crescent-shaped molecule comprising three domains. The N-terminal and central domains are similar to the thiosulfate sulfurtransferase rhodanese and create the active site containing a persulfurated catalytic cysteine (Cys-253) and an inhibitory sulfite coordinated by Arg-74 and Arg-185. A serine protease-like triad, comprising Asp-61, His-75, and Ser-255, is near Cys-253 and represents a conserved feature that distinguishes 3-mercaptopyruvate sulfurtransferases from thiosulfate sulfurtransferases. During catalysis, Ser-255 may polarize the carbonyl group of 3-mercaptopyruvate to assist thiophilic attack, whereas Arg-74 and Arg-185 bind the carboxylate group. The enzyme hydrolyzes benzoyl-Arg-p-nitroanilide, an activity that is sensitive to the presence of the serine protease inhibitor N alpha-p-tosyl-L-lysine chloromethyl ketone, which also lowers 3-mercaptopyruvate sulfurtransferase activity, presumably by interference with the contribution of Ser-255. The L. major 3-mercaptopyruvate sulfurtransferase is unusual with an 80-amino acid C-terminal domain, bearing remarkable structural similarity to the FK506-binding protein class of peptidylprolyl cis/trans-isomerase. This domain may be involved in mediating protein folding and sulfurtransferase-protein interactions.  相似文献   

15.
Eight nucleotide sequences containing a single rhodanese domain were found in the Acidithiobacillus ferrooxidans ATCC 23270 genome: p11, p14, p14.3, p15, p16, p16.2, p21, and p28. Amino acids sequence comparisons allowed us to identify the potentially catalytic Cys residues and other highly conserved rhodanese family features in all eight proteins. The genomic contexts of some of the rhodanese-like genes and the determination of their expression at the mRNA level by using macroarrays suggested their implication in sulfur oxidation and metabolism, formation of Fe-S clusters or detoxification mechanisms. Several of the putative rhodanese genes were successfully isolated, cloned and overexpressed in E. coli and their thiosulfate:cyanide sulfurtransferase (TST) and 3-mercaptopyruvate/cyanide sulfurtransferase (MST) activities were determined. Based on their sulfurtransferase activities and on structural comparisons of catalytic sites and electrostatic potentials between homology- modeled A. ferrooxidans rhodaneses and the reported crystal structures of E. coli GlpE (TST) and SseA (MST) proteins, two of the rhodanese-like proteins (P15 and P16.2) could clearly be defined as TSTs, and P14 and P16 could possibly correspond to MSTs. Nevertheless, several of the eight A. ferrooxidans rhodanese-like proteins may have some different functional activities yet to be discovered.  相似文献   

16.
We report the isolation, cloning and recombinant expression of a Trypanosoma brucei homolog of the La RNA-binding protein. Based on peptide sequence information we have isolated a cDNA clone which encodes a protein of 335 amino acids with a predicted molecular weight of 37.7 kDa. The amino acid sequence fits the domain structure of known La proteins and contains a putative ATP-binding site located in the COOH-terminal domain. The cDNA was expressed as a glutathione S-transferase fusion protein in Escherichia coli, and the recombinant protein displayed RNA-binding activity in an electrophoretic mobility shift assay.  相似文献   

17.
6-Phosphogluconate dehydrogenase (6PGDH) is a key enzyme of the oxidative branch involved in the generation of NADPH and ribulose 5-phosphate. In the present work, we describe the cloning, sequencing and characterization of a 6PGDH gene from Leishmania (Leishmania) mexicana. The gene encodes a polypeptide chain of 479 amino acid residues with a predicted molecular mass of 52 kDa and a pI of 5.77. The recombinant protein possesses a dimeric quaternary structure and displays kinetic parameter values intermediate between those reported for Trypanosoma brucei and T. cruzi with apparent K(m) values of 6.93 and 5.2 μM for 6PG and NADP(+), respectively. The three-dimensional structure of the enzymes of Leishmania and T. cruzi were modelled from their amino acid sequence using the crystal structure of the enzyme of T. brucei as template. The amino acid residues located in the 6PGDH C-terminal region, which are known to participate in the salt bridges maintaining the protein dimeric structure, differed significantly among the enzymes of Leishmania, T. cruzi, and T. brucei. Our results strongly suggest that 6PGDH can be selected as a potential target for the development of new therapeutic drugs in order to improve existing chemotherapeutic treatments against these parasites.  相似文献   

18.
Employing whole-genome analysis we have characterized a large family of genes coding for calpain-related proteins in three kinetoplastid parasites. We have defined a total of 18 calpain-like sequences in Trypanosoma brucei, 27 in Leishmania major, and 24 in Trypanosoma cruzi. Sequence characterization revealed a well-conserved protease domain in most proteins, although residues critical for catalytic activity were frequently altered. Many of the proteins contain a novel N-terminal sequence motif unique to kinetoplastids. Furthermore, 24 of the sequences contain N-terminal fatty acid acylation motifs indicating association of these proteins with intracellular membranes. This extended family of proteins also includes a group of sequences that completely lack a protease domain but is specifically related to other kinetoplastid calpain-related proteins by a highly conserved N-terminal domain and by genomic organization. All sequences lack the C-terminal calmodulin-related calcium-binding domain typical of most mammalian calpains. Our analysis emphasizes the highly modular structure of calpains and calpain-like proteins, suggesting that they are involved in diverse cellular functions. The discovery of this surprisingly large family of calpain-like proteins in lower eukaryotes that combines novel and conserved sequence modules contributes to our understanding of the evolution of this abundant protein family. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor : Dr. John Oakeshott]  相似文献   

19.
Serine hydroxymethyltransferase (SHMT) was studied in several American trypanosomatids, Trypanosoma cruzi epimastigotes displaying, in contrast with T. rangeli, high enzymatic activity. Several Leishmania spp. members, including L. braziliensis, L. mexicana and L. garnhami promastigotes, under identical assay conditions, showed low enzymatic activity. The T. cruzi and leishmanial enzymes presented several different kinetic properties, and thus apparent Km for THF was 0.30 mM for the trypanosomal SHMT vs 0.60 mM for the leishmanial enzyme, while the apparent Km for serine was 0.40 mM for trypanosomal SHMT vs 0.15 mM for leishmanial enzyme. There were significant variations in the specific activity of SHMT between the several different trypanosomatids strains studied, but the meaning of these results is not clear because they showed no correlation either with taxonomy or infectivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号