首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell Biology     
A selection of interesting papers that were published in the two months before our press date in major journals most likely to report significant results in cell biology.  相似文献   

2.
Cell Biology     
A selection of interesting papers that were published in the two months before our press date in major journals most likely to report significant results in cell biology.  相似文献   

3.
《Cell》2008,134(6):893-895
  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
Mounting evidence in recent years has challenged the dogma that prokaryotes are simple and undefined cells devoid of an organized subcellular architecture. In fact, proteins once thought to be the purely eukaryotic inventions, including relatives of actin and tubulin control prokaryotic cell shape, DNA segregation, and cytokinesis. Similarly, compartmentalization, commonly noted as a distinguishing feature of eukaryotic cells, is also prevalent in the prokaryotic world in the form of protein-bounded and lipid-bounded organelles. In this article we highlight some of these prokaryotic organelles and discuss the current knowledge on their ultrastructure and the molecular mechanisms of their biogenesis and maintenance.The emergence of eukaryotes in a world dominated by prokaryotes is one of the defining moments in the evolution of modern day organisms. Although it is clear that the central metabolic and information processing machineries of eukaryotes and prokaryotes share a common ancestry, the origins of the complex eukaryotic cell plan remain mysterious. Eukaryotic cells are typified by the presence of intracellular organelles that compartmentalize essential biochemical reactions whereas their prokaryotic counterparts generally lack such sophisticated subspecialization of the cytoplasmic space. In most cases, this textbook categorization of eukaryotes and prokaryotes holds true. However, decades of research have shown that a number of unique and diverse organelles can be found in the prokaryotic world raising the possibility that the ability to form organelles may have existed before the divergence of eukaryotes from prokaryotes (Shively 2006).Skeptical readers might wonder if a prokaryotic structure can really be defined as an organelle. Here we categorize any compartment bounded by a biological membrane with a dedicated biochemical function as an organelle. This simple and broad definition presents cells, be they eukaryotes or prokaryotes, with a similar set of challenges that need to be addressed to successfully build an intracellular compartment. First, an organism needs to mold a cellular membrane into a desired shape and size. Next, the compartment must be populated with the proper set of proteins that carry out the activity of the organelle. Finally, the cell must ensure the proper localization, maintenance and segregation of these compartments across the cell cycle. Eukaryotic cells perform these difficult mechanistic steps using dedicated molecular pathways. Thus, if connections exist between prokaryotic and eukaryotic organelles it seems likely that relatives of these molecules may be involved in the biogenesis and maintenance of prokaryotic organelles as well.Prokaryotic organelles can be generally divided into two major groups based on the composition of the membrane layer surrounding them. First are the cellular structures bounded by a nonunit membrane such a protein shell or a lipid monolayer (Shively 2006). Well-known examples of these compartments include lipid bodies, polyhydroxy butyrate granules, carboxysomes, and gas vacuoles. The second class consists of those organelles that are surrounded by a lipid-bilayer membrane, an arrangement that is reminiscent of the canonical organelles of the eukaryotic endomembrane system. Therefore, this article is dedicated to a detailed exploration of three prokaryotic lipid-bilayer bounded organelle systems: the magnetosomes of magnetotactic bacteria, photosynthetic membranes, and the internal membrane structures of the Planctomycetes. In each case, we present the most recent findings on the ultrastructure of these organelles and highlight the molecular mechanisms that control their formation, dynamics, and segregation. We also highlight some protein-bounded compartments to present the reader with a more complete view of prokaryotic compartmentalization.  相似文献   

13.
14.
15.
16.
17.
Quantum dots are semiconductor nanocrystals that have broad excitation spectra, narrow emission spectra, tunable emission peaks, long fluorescence lifetimes, negligible photobleaching, and ability to be conjugated to proteins, making them excellent probes for bioimaging applications. Here the author reviews the advantages and disadvantages of using quantum dots in bioimaging applications, such as single-particle tracking and fluorescence resonance energy transfer, to study receptor-mediated transport.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号