首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
Over 50 investigational monoclonal antibody (mAb) therapeutics are currently undergoing evaluation in late-stage clinical studies, which is expected to drive a trend toward first marketing approvals of at least 6–9 mAbs per year in the near-term. In the United States (US), a total of 6 and 9 mAbs were granted first approvals during 2014 and 2015, respectively; all these products are also approved in the European Union (EU). As of December 1, 2016, 6 mAbs (atezolizumab, olaratumab, reslizumab, ixekizumab, bezlotoxumab, oblitoxaximab) had been granted first approvals during 2016 in either the EU or US. Brodalumab, was granted a first approval in Japan in July 2016. Regulatory actions on marketing applications for brodalumab in the EU and US are not expected until 2017. In 2017, first EU or US approvals may also be granted for at least nine mAbs (ocrelizumab, avelumab, Xilonix, inotuzumab ozogamicin, dupilumab, sirukumab, sarilumab, guselkumab, romosozumab) that are not yet approved in any country. Based on announcements of company plans for regulatory submissions and the estimated completion dates for late-stage clinical studies, and assuming the study results are positive, marketing applications for at least 6 antibody therapeutics (benralizumab, tildrakizumab, emicizumab, galcanezumab, ibalizumab, PRO-140) that are now being evaluated in late-stage clinical studies may be submitted during December 2016* or 2017. Other ‘antibodies to watch' in 2017 include 20 mAbs are undergoing evaluation in pivotal studies that have estimated primary completion dates in late 2016 or during 2017. Of these, 5 mAbs are for cancer (durvalumab, JNJ-56022473, ublituximab, anetumab ravtansine, glembatumumab vedotin) and 15 mAbs are for non-cancer indications (caplacizumab, lanadelumab, roledumab, tralokinumab, risankizumab, SA237, emapalumab, suptavumab, erenumab, eptinezumab, fremanezumab, fasinumab, tanezumab, lampalizumab, brolucizumab). Positive results from these studies may enable submission of marketing applications in 2017 or 2018, or provide justification for additional studies. *See note added in proof for update through December 31, 2016.  相似文献   

2.
The commercial pipeline of recombinant antibody therapeutics is robust and dynamic. As of early December 2014, a total of 6 such products (vedolizumab, siltuximab, ramucirumab, pembrolizumab, nivolumab, blinatumomab) were granted first marketing approvals in 2014. As discussed in this perspective on antibodies in late-stage development, the outlook for additional approvals, potentially still in 2014 and certainly in 2015, is excellent as marketing applications for 6 antibody therapeutics (secukinumab, evolocumab, mepolizumab, dinutuximab, nivolumab, necitumumab) are undergoing a first regulatory review in the EU or US. Of the 39 novel mAbs currently in Phase 3 studies, a marketing application for one (alirocumab) may be submitted in late 2014, and marketing application submissions for at least 4 (reslizumab, ixekizumab, ocrelizumab, obiltoxaximab) are expected in 2015. Other ‘antibodies to watch’ are those in Phase 3 studies with estimated primary completion dates in late 2014 or 2015, which includes 13 for non-cancer indications (brodalumab, bimagrumab, bococizumab, MABp1, gevokizumab, dupilumab, sirukumab, sarilumab, tildrakizumab, guselkumab, epratuzumab, combination of actoxumab + bezlotoxumab, romosozumab) and 2 (racotumomab and clivatuzumab tetraxetan) undergoing evaluation as treatments for cancer. In addition to the novel antibody therapeutics mentioned, biosimilar infliximab and biosimilar trastuzumab are ‘antibodies to watch’ in 2015 because of their potential for entry into the US market and regulatory review, respectively.  相似文献   

3.
The commercial pipeline of recombinant antibody therapeutics is robust and dynamic. As of early December 2014, a total of 6 such products (vedolizumab, siltuximab, ramucirumab, pembrolizumab, nivolumab, blinatumomab) were granted first marketing approvals in 2014. As discussed in this perspective on antibodies in late-stage development, the outlook for additional approvals, potentially still in 2014 and certainly in 2015, is excellent as marketing applications for 6 antibody therapeutics (secukinumab, evolocumab, mepolizumab, dinutuximab, nivolumab, necitumumab) are undergoing a first regulatory review in the EU or US. Of the 39 novel mAbs currently in Phase 3 studies, a marketing application for one (alirocumab) may be submitted in late 2014, and marketing application submissions for at least 4 (reslizumab, ixekizumab, ocrelizumab, obiltoxaximab) are expected in 2015. Other ‘antibodies to watch’ are those in Phase 3 studies with estimated primary completion dates in late 2014 or 2015, which includes 13 for non-cancer indications (brodalumab, bimagrumab, bococizumab, MABp1, gevokizumab, dupilumab, sirukumab, sarilumab, tildrakizumab, guselkumab, epratuzumab, combination of actoxumab + bezlotoxumab, romosozumab) and 2 (racotumomab and clivatuzumab tetraxetan) undergoing evaluation as treatments for cancer. In addition to the novel antibody therapeutics mentioned, biosimilar infliximab and biosimilar trastuzumab are ‘antibodies to watch’ in 2015 because of their potential for entry into the US market and regulatory review, respectively.  相似文献   

4.
For the past 10 years, the annual ‘Antibodies to watch’ articles have provided updates on key events in the late-stage development of antibody therapeutics, such as first regulatory review or approval, that occurred in the year before publication or were anticipated to occur during the year of publication. To commemorate the 10th anniversary of the article series and to celebrate the 2018 Nobel Prizes in Chemistry and in Physiology or Medicine, which were given for work that is highly relevant to antibody therapeutics research and development, we expanded the scope of the data presented to include an overview of all commercial clinical development of antibody therapeutics and approval success rates for this class of molecules. Our data indicate that: 1) antibody therapeutics are entering clinical study, and being approved, in record numbers; 2) the commercial pipeline is robust, with over 570 antibody therapeutics at various clinical phases, including 62 in late-stage clinical studies; and 3) Phase 1 to approval success rates are favorable, ranging from 17–25%, depending on the therapeutic area (cancer vs. non-cancer). In 2018, a record number (12) of antibodies (erenumab (Aimovig), fremanezumab (Ajovy), galcanezumab (Emgality), burosumab (Crysvita), lanadelumab (Takhzyro), caplacizumab (Cablivi), mogamulizumab (Poteligeo), moxetumomab pasudodox (Lumoxiti), cemiplimab (Libtayo), ibalizumab (Trogarzo), tildrakizumab (Ilumetri, Ilumya), emapalumab (Gamifant)) that treat a wide variety of diseases were granted a first approval in either the European Union (EU) or United States (US). As of November 2018, 4 antibody therapeutics (sacituzumab govitecan, ravulizumab, risankizumab, romosozumab) were being considered for their first marketing approval in the EU or US, and an additional 3 antibody therapeutics developed by Chinese companies (tislelizumab, sintilimab, camrelizumab) were in regulatory review in China. In addition, our data show that 3 product candidates (leronlimab, brolucizumab, polatuzumab vedotin) may enter regulatory review by the end of 2018, and at least 12 (eptinezumab, teprotumumab, crizanlizumab, satralizumab, tanezumab, isatuximab, spartalizumab, MOR208, oportuzumab monatox, TSR-042, enfortumab vedotin, ublituximab) may enter regulatory review in 2019. Finally, we found that approximately half (18 of 33) of the late-stage pipeline of antibody therapeutics for cancer are immune checkpoint modulators or antibody-drug conjugates. Of these, 7 (tremelimumab, spartalizumab, BCD-100, omburtamab, mirvetuximab soravtansine, trastuzumab duocarmazine, and depatuxizumab mafodotin) are being evaluated in clinical studies with primary completion dates in late 2018 and in 2019, and are thus ‘antibodies to watch’. We look forward to documenting progress made with these and other ‘antibodies to watch’ in the next installment of this article series.  相似文献   

5.
《MABS-AUSTIN》2013,5(4):513-517
The transitions of antibody therapeutics to late-stage clinical development, regulatory review and the market are proceeding at a rapid pace in 2013. Since late 2012, two monoclonal antibody (mAb) therapeutics (itolizumab, trastuzumab emtansine) received their first approvals, first marketing applications for three mAbs (vedolizumab, ramucirumab, obinutuzumab) were submitted to regulatory agencies, and five mAbs (brodalumab, MABp1, moxetumomab pasudotox, tildrakizumab, rilotumumab) entered their first Phase 3 studies. The current total of commercially-sponsored antibody therapeutics undergoing evaluation in late-stage studies is 30. Recently announced study results for farletuzumab, naptumomab estafenatox, and tabalumab indicate that clinical endpoints were not met in some Phase 3 studies of these product candidates.  相似文献   

6.
The number of novel antibody therapeutics that received first marketing approvals in 2015 met expectations, with 6 (alirocumab (Praluent®), evolocumab (Repatha®), daratumumab (Darzalex®), dinutuximab (Unituxin®), idarucizumab (Praxbind®), mepolizumab (Nucala®)) granted first approvals as of mid-November*. Seven novel antibody therapeutics (begelomab, brodalumab, elotuzumab, ixekizumab, necitumumab, obiltoxaximab, reslizumab) are in regulatory review, and thus a similar number, if not more, are projected to gain first approvals in 2016. Commercial late-stage antibody therapeutics development exceeded expectations by increasing from 39 candidates in Phase 3 studies as of late 2014 to 53 as of late 2015. Of the 53 candidates, transitions to regulatory review by the end of 2016 are projected for 8 (atezolizumab, benralizumab, bimagrumab, durvalumab, inotuzumab ozogamicin, lebrikizumab, ocrelizumab, tremelimumab). Other "antibodies to watch" include 15 candidates (bavituximab, bococizumab, dupilumab, fasinumab, fulranumab, gevokizumab, guselkumab, ibalizumab, LY2951742, onartuzumab, REGN2222, roledumab, romosozumab, sirukumab, Xilonix) undergoing evaluation in Phase 3 studies that have estimated primary completion dates in 2016. As evidenced by the antibody therapeutics discussed in this perspective, the biopharmaceutical industry has a highly active late-stage clinical pipeline that may deliver numerous new products to the global market in the near future. *See Note added in proof for updates through December 31, 2015.  相似文献   

7.
《MABS-AUSTIN》2013,5(4):799-802
The commercial pipeline of monoclonal antibodies is highly dynamic, with a multitude of transitions occurring during the year as product candidates advance through the clinical phases and onto the market. The data presented here add to that provided in the extensive “Antibodies to watch in 2014” report published in the January/February 2014 issue of mAbs. Recent phase transition data suggest that 2014 may be a banner year for first approvals of antibody therapeutics. As of May 2014, three products, ramucirumab (Cyramza®), siltuximab (Sylvant®) and vedolizumab (EntyvioTM), had been granted first approvals in the United States, and four additional antibody therapeutics (secukinumab, dinutuximab, nivolumab, pembrolizumab) are undergoing regulatory review in either the US or the European Union. Other notable events include the start of first Phase 3 studies for seven antibody therapeutics (dupilumab, SA237, etrolizumab, MPDL3280A, bavituximab, clivatuzumab tetraxetan, blinatumomab). Relevant data for these product candidates are summarized, and metrics for antibody therapeutics development are discussed.  相似文献   

8.
《MABS-AUSTIN》2013,5(6):695-700
A wide variety of full-size monoclonal antibodies (mAbs) and therapeutics derived from alternative antibody formats can be produced through genetic and biological engineering techniques. These molecules are now filling the preclinical and clinical pipelines of every major pharmaceutical company and many biotechnology firms. Metrics for the development of antibody therapeutics, including averages for the number of candidates entering clinical study and development phase lengths for mAbs approved in the United States, were derived from analysis of a dataset of over 600 therapeutic mAbs that entered clinical study sponsored, at least in part, by commercial firms. The results presented provide an overview of the field and context for the evaluation of on-going and prospective mAb development programs. The expansion of therapeutic antibody use through supplemental marketing approvals and the increase in the study of therapeutics derived from alternative antibody formats are discussed.  相似文献   

9.
《MABS-AUSTIN》2013,5(3):413-415
Therapeutic monoclonal antibodies (mAbs) are currently being approved for marketing in Europe and the United States, as well as other countries, on a regular basis. As more mAbs become available to physicians and patients, keeping track of the number, types, production cell lines, antigenic targets, and dates and locations of approvals has become challenging. Data are presented here for 34 mAbs that were approved in either Europe or the United States (US) as of March 2012, and nimotuzumab, which is marketed outside Europe and the US. Of the 34 mAbs, 28 (abciximab, rituximab, basiliximab, palivizumab, infliximab, trastuzumab, alemtuzumab, adalimumab, tositumomab-I131, cetuximab, ibrituximab tiuxetan, omalizumab, bevacizumab, natalizumab, ranibizumab, panitumumab, eculizumab, certolizumab pegol, golimumab, canakinumab, catumaxomab, ustekinumab, tocilizumab, ofatumumab, denosumab, belimumab, ipilimumab, brentuximab) are currently marketed in Europe or the US. Data for six therapeutic mAbs (muromonab-CD3, nebacumab, edrecolomab, daclizumab, gemtuzumab ozogamicin, efalizumab) that were approved but have been withdrawn or discontinued from marketing in Europe or the US are also included.  相似文献   

10.
Antibody Engineering & Therapeutics, the largest meeting devoted to antibody science and technology and the annual meeting of The Antibody Society, will be held in San Diego, CA on December 11-15, 2016. Each of 14 sessions will include six presentations by leading industry and academic experts. In this meeting preview, the session chairs discuss the relevance of their topics to current and future antibody therapeutics development. Session topics include bispecifics and designer polyclonal antibodies; antibodies for neurodegenerative diseases; the interface between passive and active immunotherapy; antibodies for non-cancer indications; novel antibody display, selection and screening technologies; novel checkpoint modulators / immuno-oncology; engineering antibodies for T-cell therapy; novel engineering strategies to enhance antibody functions; and the biological Impact of Fc receptor engagement. The meeting will open with keynote speakers Dennis R. Burton (The Scripps Research Institute), who will review progress toward a neutralizing antibody-based HIV vaccine; Olivera J. Finn, (University of Pittsburgh School of Medicine), who will discuss prophylactic cancer vaccines as a source of therapeutic antibodies; and Paul Richardson (Dana-Farber Cancer Institute), who will provide a clinical update on daratumumab for multiple myeloma. In a featured presentation, a representative of the World Health Organization's INN expert group will provide a perspective on antibody naming. “Antibodies to watch in 2017” and progress on The Antibody Society's 2016 initiatives will be presented during the Society's special session. In addition, two pre-conference workshops covering ways to accelerate antibody drugs to the clinic and the applications of next-generation sequencing in antibody discovery and engineering will be held on Sunday December 11, 2016.  相似文献   

11.
Since 2010, mAbs has documented the biopharmaceutical industry’s progress in transitioning antibody therapeutics to first Phase 3 clinical studies and regulatory review, and its success at gaining first marketing approvals for antibody-based products. This installment of the “Antibodies to watch” series outlines events anticipated to occur between December 2013 and the end of 2014, including first regulatory actions on marketing applications for vedolizumab, siltuximab, and ramucirumab, as well as the Fc fusion proteins Factor IX-Fc and Factor VIII-Fc; and the submission of first marketing applications for up to five therapeutics (secukinumab, ch14.18, onartuzumab, necitumumab, gevokizumab). Antibody therapeutics in Phase 3 studies are described, with an emphasis on those with study completion dates in 2014, including antibodies targeting interleukin-17a or the interleukin-17a receptor (secukinumab, ixekizumab, brodalumab), proprotein convertase subtilisin/kexin type 9 (alirocumab, evolocumab, bococizumab), and programmed death 1 receptor (lambrolizumab, nivolumab). Five antibodies with US Food and Drug Administration’s Breakthrough Therapy designation (obinutuzumab, ofatumumab, lambrolizumab, bimagrumab, daratumumab) are also discussed.  相似文献   

12.
The field of monoclonal antibody (mAb) development seems poised to undergo rapid change. The current circumstances recall an extraordinary 10 month period between November 1997 and September 1998 when six mAbs, rituximab, trastuzumab, infliximab, daclizumab, basiliximab, and palivizumab, were approved by the US Food and Drug Administration (FDA). At the time, these therapeutics represented important advances in the treatment of serious or life-threatening diseases including lymphoma, breast cancer, Crohn disease, prevention of kidney transplant rejection, and prevention of respiratory syncytial viral infection. We are in similar circumstances with regard to the numbers, with five mAbs currently undergoing FDA review for anticancer, immunological and antiviral indications, and one under review for treatment of bone disorders. The candidates in review are ofatumumab, tocilizumab, ustekinumab, golimumab, motavizumab and denosumab. Brief reviews of the clinical development of several of these candidates are included in this issue of mAbs.  相似文献   

13.
The 26th Antibody Engineering & Therapeutics meeting, the annual meeting of The Antibody Society united over 800 participants from all over the world in San Diego from 6–10 December 2015. The latest innovations and advances in antibody research and development were discussed, covering a myriad of antibody-related topics by more than 100 speakers, who were carefully selected by The Antibody Society. As a prelude, attendees could join the pre-conference training course focusing, among others, on the engineering and enhancement of antibodies and antibody-like scaffolds, bispecific antibody engineering and adaptation to generate chimeric antigen receptor constructs. The main event covered 4 d of scientific sessions that included antibody effector functions, reproducibility of research and diagnostic antibodies, new developments in antibody-drug conjugates (ADCs), preclinical and clinical ADC data, new technologies and applications for bispecific antibodies, antibody therapeutics for non-cancer and orphan indications, antibodies to harness the cellular immune system, building comprehensive IgVH-gene repertoires through discovering, confirming and cataloging new germline IgVH genes, and overcoming resistance to clinical immunotherapy. The Antibody Society's special session focused on “Antibodies to watch” in 2016. Another special session put the spotlight on the limitations of the new definitions for the assignment of antibody international nonproprietary names introduced by the World Health Organization. The convention concluded with workshops on computational antibody design and on the promise and challenges of using next-generation sequencing for antibody discovery and engineering from synthetic and in vivo libraries.  相似文献   

14.
Few monoclonal antibodies are currently approved for treating infectious diseases, but multiple products are in development against a broad range of infectious diseases, including Ebola, influenza, hepatitis B, HIV, dengue, and COVID-19. The maturity of mAb technologies now allow us to identify and advance neutralizing mAb products to the clinic at “pandemic pace”, as the pipeline of mAbs targeting SARS-CoV-2 has demonstrated. Ensuring global access to these products for passive immunization, however, will require both low manufacturing cost and multi-ton production capacity—particularly for those infectious diseases where the geographic burden falls mostly in low- and middle-income countries or those with pandemic potential. Analysis of process economics and manufacturing technologies for antibody and other parenteral protein therapeutics demonstrates the importance of economies of scale to reducing the cost of goods for drug substance manufacturing. There are major benefits to convergence on a standardized platform process for antibody production that is portable to most existing very large-scale facilities, carries low risk for complications during process transfer and scale-up, and has a predictable timeline and probability of technical and regulatory success. In the case of an infectious disease with pandemic potential which could be treated with an antibody, such as COVID-19 or influenza, these advantages are paramount.  相似文献   

15.
There is a widely held expectation of clinical advance with the development of gene and cell-based therapies (GCTs). Yet, establishing benefits and risks is highly uncertain. We examine differences in decision-making for GCT approval between jurisdictions by comparing regulatory assessment procedures in the United States (US), European Union (EU) and Japan. A cohort of 18 assessment procedures was analyzed by comparing product characteristics, evidentiary and non-evidentiary factors considered for approval and post-marketing risk management. Product characteristics are very heterogeneous and only three products are marketed in multiple jurisdictions. Almost half of all approved GCTs received an orphan designation. Overall, confirmatory evidence or indications of clinical benefit were evident in US and EU applications, whereas in Japan approval was solely granted based on non-confirmatory evidence. Due to scientific uncertainties and safety risks, substantial post-marketing risk management activities were requested in the EU and Japan. EU and Japanese authorities often took unmet medical needs into consideration in decision-making for approval. These observations underline the effects of implemented legislation in these two jurisdictions that facilitate an adaptive approach to licensing. In the US, the recent assessments of two chimeric antigen receptor-T cell (CAR-T) products are suggestive of a trend toward a more permissive approach for GCT approval under recent reforms, in contrast to a more binary decision-making approach for previous approvals. It indicates that all three regulatory agencies are currently willing to take risks by approving GCTs with scientific uncertainties and safety risks, urging them to pay accurate attention to post-marketing risk management.  相似文献   

16.
《MABS-AUSTIN》2013,5(6):539-547
With 23 approvals in the US and other countries and 4 approvals outside US, antibodies are now widely recognized as therapeutic molecules. The therapeutic and commercial successes met by rituximab, trastuzumab, cetuximab and other mAbs have inspired antibody engineers to improve the efficacy of these molecules. Consequently, a new wave of antibodies with engineered Fc leading to much higher effector functions such as antibody-dependent cell-mediated cytotoxicity or complement-dependent cytotoxicity is being evaluated in the clinic, and several approvals are expected soon. In addition, research on a different class of antibody therapeutics, bispecific antibodies, has recently led to outstanding clinical results, and the first approval of the bispecific antibody catumaxomab, a T cell retargeting agent that was approved in the European Union in April 2009. This review describes the most recent advances and clinical study results in the field of bispecific antibodies, a new class of molecules that might outshine conventional mAbs as cancer immunotherapeutics in a near future.  相似文献   

17.
《MABS-AUSTIN》2013,5(3):310-318
Humanized monoclonal antibodies (mAbs) are the fastest growing class of biological therapeutics that are being developed for various medical indications, and more than 30 mAbs are already approved and in the market place. Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important biological function attributed to the mechanism of action of several therapeutic antibodies, particularly oncology targeting mAbs. The ADCC assay is a complicated and highly variable assay. Thus, the use of an ADCC assay as a lot release test or a stability test for clinical trial batches of mAbs has been a substantial challenge to install in quality control laboratories. We describe here the development and validation of an alternate approach, an ADCC-reporter gene assay that is based on the key attributes of the PBMC-based ADCC assay. We tested the biological relevance of this assay using an anti-CD20 based model and demonstrated that this ADCC-reporter assay correlated well with standard ADCC assays when induced with the drugable human isotypes [IgG1, IgG2, IgG4, IgG4S > P (S228P) and IgG4PAA (S228P, F234A, L235A)] and with IgG1 isotype variants with varying amounts of fucosylation. This data demonstrates that the ADCC-reporter gene assay has performance characteristics (accuracy, precision and robustness) to be used not only as a potency assay for lot release and stability testing for antibody therapeutics, but also as a key assay for the characterization and process development of therapeutic molecules.  相似文献   

18.
Humanized monoclonal antibodies (mAbs) are the fastest growing class of biological therapeutics that are being developed for various medical indications, and more than 30 mAbs are already approved and in the market place. Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important biological function attributed to the mechanism of action of several therapeutic antibodies, particularly oncology targeting mAbs. The ADCC assay is a complicated and highly variable assay. Thus, the use of an ADCC assay as a lot release test or a stability test for clinical trial batches of mAbs has been a substantial challenge to install in quality control laboratories. We describe here the development and validation of an alternate approach, an ADCC-reporter gene assay that is based on the key attributes of the PBMC-based ADCC assay. We tested the biological relevance of this assay using an anti-CD20 based model and demonstrated that this ADCC-reporter assay correlated well with standard ADCC assays when induced with the drugable human isotypes [IgG1, IgG2, IgG4, IgG4S > P (S228P) and IgG4PAA (S228P, F234A, L235A)] and with IgG1 isotype variants with varying amounts of fucosylation. This data demonstrates that the ADCC-reporter gene assay has performance characteristics (accuracy, precision and robustness) to be used not only as a potency assay for lot release and stability testing for antibody therapeutics, but also as a key assay for the characterization and process development of therapeutic molecules.  相似文献   

19.
mAbs’ September/October 2009 issue highlights the promise and challenges of antibody therapeutics development. Representing promise, our mini-review series on novel antibodies currently undergoing regulatory review or recently approved continues in this issue. Previously published articles include mini-reviews of denosumab and ustekinumab (May/June 2009 issue) and ofatumumab (July/August 2009 issue). The September/October issue features articles on golimumab, tocilizumab and motavizumab. The mini-reviews present overviews of the completed and on-going clinical studies of these molecules. Anti-TNFα golimumab was approved in April 2009 by both the US Food and Drug Administration (FDA) and Health Canada as a treatment for rheumatoid arthritis (RA), psoriatic arthritis, and ankylosing spondylitis; anti-IL6R tocilizumab is approved in Japan and the European Union (EU), and is currently undergoing FDA review as a treatment for RA. The juxtaposition of these two mini-reviews provides an opportunity to easily compare summaries of the available clinical results. Future issues of mAbs will include mini-reviews of catumaxomab, canakinumab and raxibacumab, as well as any additional antibodies that enter regulatory review in 2009 and beyond.  相似文献   

20.
《Cytotherapy》2022,24(7):686-690
Hospital exemption (HE) is a regulated pathway that allows the use of advanced therapy medicinal products (ATMPs) within the European Union (EU) under restrictive conditions overseen by national medicine agencies. In some EU countries, HE is granted for ATMPs with no demonstrated safety and efficacy; therefore, they are equivalent to investigational drugs. In other countries, HE is granted for ATMPs with demonstrated quality, safety and efficacy and for which centralized marketing authorization has not been requested. The Committee on the Ethics of Cell and Gene Therapy of the International Society for Cell & Gene Therapy reflects here on the ethical issues concerning HE application from the perspective of the patient, including risk–benefit balance, accessibility and transparency, while providing evidence that HE must not be regarded as a conduit for unproven and unethical ATMP-based interventions. Indeed, HE represents a legal instrument under which a patient's need for access to novel ATMPs is reconciled with ethics. Moreover, for some unmet medical needs, HE is the only pathway for accessing innovative ATMPs. Nonetheless, HE harmonization across EU Member States and limitations of ATMP use under the HE rule when similar products have already been granted centralized marketing authorization to avoid a parallel regulatory pathway are controversial issues whose political and economic consequences are beyond the scope of this review. Finally, the institution of an EU registry of HE applications and outcomes represents a priority to improve transparency, reduce patient risks, increase efficiency of health systems, facilitate company awareness of business opportunities and boost progressive entry of ATMPs into the therapeutic repertoire of health systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号