首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prions are the unconventional infectious agents responsible for prion diseases, which are composed mainly by the misfolded prion protein (PrPSc) that replicates by converting the host associated cellular prion protein (PrPC). Several lines of evidence suggest that other cellular components participate in prion conversion, however, the identity or even the chemical nature of such factors are entirely unknown. In this article we study the conversion factor activity by complementation of a PMCA procedure employing purified PrPC and PrPSc. Our results show that the conversion factor is present in all major organs of diverse mammalian species, and is predominantly located in the lipid raft fraction of the cytoplasmic membrane. On the other hand, it is not present in the lower organisms tested (yeast, bacteria and flies). Surprisingly, treatments that eliminate the major classes of chemical molecules do not affect conversion activity, suggesting that various different compounds may act as conversion factor in vitro. This conclusion is further supported by experiments showing that addition of various classes of molecules have a small, but detectable effect on enhancing prion replication in vitro. More research is needed to elucidate the identity of these factors, their detailed mechanism of action and whether or not they are essential component of the infectious particle.  相似文献   

2.
Molecular advances in understanding inherited prion diseases   总被引:1,自引:0,他引:1  
The prion diseases are neurodegenerative disorders that have attracted great interest because of the possible link between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (CTD) in humans. Possible transmission of these diseases has been linked to a single protein termed the prion protein. This protein is an abnormal isoform of a normal synaptic glycoprotein. The majority of prion diseases does not appear to be caused by transmission of an infectious agent but occur spontaneously with no known cause. The strongest supporting evidence that the prion protein is the causative agent in prion disease comes from specific inheritable forms of prion disease which are linked to single point mutations in the prion protein gene. Paradoxically, these point mutations, although autosomal dominant with 100% penetrance do not lead to disease until late in life. Molecular techniques are now being used extensively to determine how these point-mutations alter the prion protein’s normal structure and activity. This review deals with the latest insights into how inherited mutations in the prion protein gene lead to neurodegenerative disease.  相似文献   

3.
朊病毒病是一类具有传染性、不可逆且致命的神经退行性疾病,其致病机制为体内正常编码的细胞型朊蛋白(cellular prion protein,PrP~C)构象发生变化,形成了具有感染性的异常痒病型朊病毒(scrapie prion protein,PrP~(Sc)),但具体机制不清楚,目前为止尚无有效治疗方法。微小RNA(microRNA,miRNA)可在转录水平调控细胞蛋白表达,对神经系统发育及功能起重要作用。近年来,对一些特定miRNA在朊病毒病中相应调控机制、自发免疫、炎症信号转导及靶基因预测方面的研究可为治疗朊病毒病提供新的角度。本文就miRNA在朊病毒病发生中的相关研究进展进行综述,并详细探讨其中研究较为深入的miRNA。  相似文献   

4.
The extremely low incidence of sporadic prion diseases suggests that they may arise as a rare stochastic event in otherwise healthy animals or humans. Current hypotheses for sporadic prion disease include horizontal transmission, spontaneous conversion of PrpC into PrpSc, and somatic mutation of the Prp gene. Here, we suggest RNA mutation as a possible initial event in the etiology of sporadic prion disease. The proposed model is based on (i) the fact that in Prp-expressing cells, mutations are statistically more likely to occur in the Prp mRNA population than in the corresponding two copies of the Prp gene, and (ii) the absence of RNA repair mechanisms analogous to those found for DNA mismatch correction resulting in a relatively higher rate of RNA mutations. Here, we suggest that translation of mutated Prp mRNA could lead to the synthesis of transient Prp(Sc) which results in the conversion of PrpC into PrpSc and the propagation of a disease-associated isoform. This model points to RNA mutation as a possible mechanism for the generation of sporadic prion diseases and other pathological disorders in which infectious proteins other than PrpSc might be implicated.  相似文献   

5.
《朊病毒》2013,7(4):244-256
Several fatal, progressive neurodegenerative diseases, including various prion and prion-like disorders, are connected with the misfolding of specific proteins. These proteins misfold into toxic oligomeric species and a spectrum of distinct self-templating amyloid structures, termed strains. Hence, small molecules that prevent or reverse these protein-misfolding events might have therapeutic utility. Yet it is unclear whether a single small molecule can antagonize the complete repertoire of misfolded forms encompassing diverse amyloid polymorphs and soluble oligomers. We have begun to investigate this issue using the yeast prion protein, Sup35, as an experimental paradigm. We have discovered that a polyphenol, (-)epigallocatechin-3-gallate (EGCG), effectively inhibited the formation of infectious amyloid forms (prions) of Sup35 and even remodeled preassembled prions. Surprisingly, EGCG selectively modulated specific prion strains and even selected for EGCG-resistant prion strains with novel structural and biological characteristics. Thus, treatment with a single small molecule antagonist of amyloidogenesis can select for novel, drug-resistant amyloid polymorphs. Importantly, combining EGCG with another small molecule, 4,5-bis-(4-methoxyanilino)phthalimide, synergistically antagonized and remodeled a wide array of Sup35 prion strains without producing any drug-resistant prions. We suggest that minimal drug cocktails, small collections of drugs that collectively antagonize all amyloid polymorphs, should be identified to besiege various neurodegenerative disorders.  相似文献   

6.
Replicating amyloids, called prions, are responsible for transmissible neurodegenerative diseases in mammals and some heritable phenotypes in fungi. The transmission of prions between species is usually inhibited, being highly sensitive to small differences in amino acid sequence of the prion-forming proteins. To understand the molecular basis of this prion interspecies barrier, we studied the transmission of the [PSI(+)] prion state from Sup35 of Saccharomyces cerevisiae to hybrid Sup35 proteins with prion-forming domains from four other closely related Saccharomyces species. Whereas all the hybrid Sup35 proteins could adopt a prion form in S. cerevisiae, they could not readily acquire the prion form from the [PSI(+)] prion of S. cerevisiae. Expression of the hybrid Sup35 proteins in S. cerevisiae [PSI(+)] cells often resulted in frequent loss of the native [PSI(+)] prion. Furthermore, all hybrid Sup35 proteins showed different patterns of interaction with the native [PSI(+)] prion in terms of co-polymerization, acquisition of the prion state, and induced prion loss, all of which were also dependent on the [PSI(+)] variant. The observed loss of S. cerevisiae [PSI(+)] can be related to inhibition of prion polymerization of S. cerevisiae Sup35 and formation of a non-heritable form of amyloid. We have therefore identified two distinct molecular origins of prion transmission barriers between closely sequence-related prion proteins: first, the inability of heterologous proteins to co-aggregate with host prion polymers, and second, acquisition by these proteins of a non-heritable amyloid fold.  相似文献   

7.
Transmissible spongiform encephalopathies form a group of fatal neurodegenerative disorders that have the unique property of being infectious, sporadic, or genetic in origin. Although some doubts remain on the nature of the responsible agent of these diseases, it is clear that a protein called PrP(Sc) (which stands for the scrapie isoform of the prion protein) has a central role in their pathology. PrP(Sc) represents a conformational variant of a normal protein of the host: the cellular isoform of the prion protein, or PrP(C). Compounds such as glycosaminoglycans and Congo red (CR) have been shown to interfere with both in vitro and in vivo PrP(Sc) formation. It was hypothesized that CR acts by overstabilizing the conformation of PrP(Sc) molecules or by modifying trafficking of PrP(C). Using transfected cells expressing 3F4-tagged mouse PrPs, we show here that CR does not interfere with conversion of PrP molecules carrying pathogenic mutations. On the contrary, after incubation with the drug, some of their properties, such as insolubility and protease resistance, are enhanced and are even acquired by the wild-type molecule. This last observation suggests an alternative mechanism of action of CR and leads us to reconsider the relationship between the biochemical properties of PrP and conformational alteration of the protein.  相似文献   

8.
Recently published data show that the prion protein in its cellular form (PrP(C)) is a component of multimolecular complexes. In this report, zero-length cross-linking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) allowed us to identify tubulin as one of the molecules interacting with PrP(C) in complexes observed in porcine brain extracts. We found that porcine brain tubulin added to these extracts can be cross-linked with PrP(C). Moreover, we observed that the 34 kDa species identified previously as full-length diglycosylated prion protein co-purifies with tubulin. Cross-linking of PrP(C) species separated by Cu(2+)-loaded immobilized metal affinity chromatography confirmed that only the full-length protein but not the N-terminally truncated form (C1) binds to tubulin. By means of EDC cross-linking and cosedimentation experiments, we also demonstrated a direct interaction of recombinant human PrP (rPrP) with tubulin. The stoichiometry of cosedimentation implies that rPrP molecules are able to bind both the alpha- and beta-isoforms of tubulin composing microtubule. Furthermore, prion protein exhibits higher affinity for microtubules than for unpolymerized tubulin.  相似文献   

9.
Background: Prion diseases are fatal and infectious neurodegenerative diseases affecting humans and animals. Rabbits are one of the few mammalian species reported to be resistant to infection from prion diseases isolated from other species (I. Vorberg et al., Journal of Virology 77 (3) (2003) 2003-2009). Thus the study of rabbit prion protein structure to obtain insight into the immunity of rabbits to prion diseases is very important.Findings: The paper is a straight forward molecular dynamics simulation study of wild-type rabbit prion protein (monomer cellular form) which apparently resists the formation of the scrapie form. The comparison analyses with human and mouse prion proteins done so far show that the rabbit prion protein has a stable structure. The main point is that the enhanced stability of the C-terminal ordered region especially helix 2 through the D177-R163 salt-bridge formation renders the rabbit prion protein stable. The salt bridge D201-R155 linking helixes 3 and 1 also contributes to the structural stability of rabbit prion protein. The hydrogen bond H186-R155 partially contributes to the structural stability of rabbit prion protein.Conclusions: Rabbit prion protein was found to own the structural stability, the salt bridges D177-R163, D201-R155 greatly contribute and the hydrogen bond H186-R155 partially contributes to this structural stability. The comparison of the structural stability of prion proteins from the three species rabbit, human and mouse showed that the human and mouse prion protein structures were not affected by the removing these two salt bridges. Dima et al. (Biophysical Journal 83 (2002) 1268-1280 and Proceedings of the National Academy of Sciences of the United States of America 101 (2004) 15335-15340) also confirmed this point and pointed out that “correlated mutations that reduce the frustration in the second half of helix 2 in mammalian prion proteins could inhibit the formation of PrPSc”.  相似文献   

10.
Conversion of the cellular prion protein (PrP(C)) into its pathological isoform (PrP(Sc)), the key molecular event in the pathogenesis of prion diseases, is accompanied by a conformational transition of alpha-helix into beta-sheet structures involving alpha-helix 1 (alpha1) domain from residues 144 to 154 of the protein. Reduction and alkylation of PrP(C) have been found to inhibit the conversion of PrP(C) into PrP(Sc) in vitro. Here we report that while antibody affinity of epitopes in the N- and C-terminal domains remained unchanged, reduction and alkylation of the PrP molecule induced complete concealment of an epitope in alpha1 for anti-PrP antibody 6H4 that is able to cure prion infection in the cell model. Mass spectrometric analysis of recombinant PrP showed that the alkylation reaction takes place at reduced cysteines but no modification was observed in this cryptic epitope. Our study suggests that reduction and alkylation result in local or global rearrangement of PrP tertiary structure that is maintained in both liquid and solid phases. The implications in the conversion of PrP(C) into PrP(Sc) and the therapeutics of prion diseases are discussed.  相似文献   

11.
The phenotype of human prion diseases is influenced by the prion protein (PrP) genotype as determined by the methionine (M)/valine (V) polymorphism at codon 129, the scrapie PrP (PrPSc) type and the etiology. To gain further insight into the mechanisms of phenotype determination, we compared two-dimensional immunoblot profiles of detergent insoluble and proteinase K-resistant PrP species in a type of sporadic Creutzfeldt-Jakob disease (sCJDMM2), variant CJD (vCJD) and sporadic fatal insomnia (sFI). Full-length and truncated PrP forms present in the insoluble fractions were also separately analyzed. These three diseases were selected because they have the same M/M PrP genotype at codon 129 and the same type 2 PrPSc, but different etiologies, also sCJDMM2 and sFI are sporadic, whereas vCJD is acquired by infection. We observed minor differences in the PrP detergent-insoluble fractions between sCJDMM2 and vCJD, although both differ in the corresponding fractions from sFI. We detected more substantial heterogeneity between sCJDMM2 and vCJD in the two-dimensional blots of the proteinase K-resistant PrP fraction suggesting that different PrP species are selected for conversion to proteinase K-resistant PrP in sCJDMM2 and vCJD. These differences are mostly, but not exclusively, due to variations in the type of the N-linked glycans. We also show that the over-representation of the highly glycosylated forms distinctive of the proteinase K-resistant PrPSc of vCJD in one-dimensional blots is due to differences in both the amount and the natures of the glycans. Overall, these findings underline the complexity of phenotypic determination in human prion diseases.  相似文献   

12.
PrPSc, an abnormal isoform of PrPC, is the only known component of the prion, an agent causing fatal neurodegenerative disorders such as bovine spongiform encephalopathy (BSE) and Creutzfeldt-Jakob disease (CJD). It has been postulated that prion diseases propagate by the conversion of detergent-soluble and protease-sensitive PrPC molecules into protease-resistant and insoluble PrPSc molecules by a mechanism in which PrPSc serves as a template. We show here that the chemical chaperone dimethyl sulfoxide (Me2SO) can partially inhibit the aggregation of either PrPSc or that of its protease-resistant core PrP27-30. Following Me2SO removal by methanol precipitation, solubilized PrP27-30 molecules aggregated into small and amorphous structures that did not resemble the rod configuration observed when scrapie brain membranes were extracted with Sarkosyl and digested with proteinase K. Interestingly, aggregates derived from Me2SO-solubilized PrP27-30 presented less than 1% of the prion infectivity obtained when the same amount of PrP27-30 in rods was inoculated into hamsters. These results suggest that the conversion of PrPC into protease-resistant and detergent-insoluble PrP molecules is not the only crucial step in prion replication. Whether an additional requirement is the aggregation of newly formed proteinase K-resistant PrP molecules into uniquely structured aggregates remains to be established.  相似文献   

13.
Studies of prion biology and diseases have elucidated several new concepts, but none was more heretical than the proposal that the biological properties that distinguish different prion strains are enciphered in the disease-causing prion protein (PrP(Sc)). To explore this postulate, we examined the properties of PrP(Sc) from eight prion isolates that propagate in Syrian hamster (SHa). Using resistance to protease digestion as a marker for the undenatured protein, we examined the conformational stabilities of these PrP(Sc) molecules. All eight isolates showed sigmoidal patterns of transition from native to denatured PrP(Sc) as a function of increasing guanidine hydrochloride (GdnHCl) concentration. Half-maximal denaturation occurred at a mean value of 1.48 M GdnHCl for the Sc237, HY, SHa(Me7), and MT-C5 isolates, all of which have approximately 75-d incubation periods; a concentration of 1.08 M was found for the DY strain with a approximately 170-d incubation period and approximately 1.25 M for the SHa(RML) and 139H isolates with approximately 180-d incubation periods. A mean value of 1.39 M GdnHCl for the Me7-H strain with a approximately 320-d incubation period was found. Based on these results, the eight prion strains segregated into four distinct groups. Our results support the unorthodox proposal that distinct PrP(Sc) conformers encipher the biological properties of prion strains.  相似文献   

14.
Abnormal protease-resistant prion protein (PrP-res) is the only surrogate biochemical marker for prion diseases, and a sensitive technique to detect PrP-res in blood or tissues is urgently needed. Primary cultured bone marrow stromal cells (MSCs) expressed PrP and were capable of supporting stable human prion infection. Using a mouse-adapted BSE strain, we demonstrated that PrP-res can be detected in expanded MSCs. We then analyzed the bone marrow cells collected at autopsy from two individuals with sporadic Creutzfeldt-Jakob disease (CJD), and, in both cases, cultured MSCs were positive for PrP-res. These data would suggest that ex vivo MSC expansion accompanied by PrP-res analysis could be a helpful tool in the definitive diagnosis of prion disease at an earlier stage in the disease process than is currently possible, and with considerably less distress to the patient.  相似文献   

15.
Binding of prion proteins to lipid membranes   总被引:5,自引:0,他引:5  
A key molecular event in prion diseases is the conversion of the normal cellular form of the prion protein (PrPC) to an aberrant form known as the scrapie isoform, PrPSc. Under normal physiological conditions PrPC is attached to the outer leaflet of the plasma membrane via a GPI-anchor. It has been proposed that a direct interaction between PrP and lipid membranes could be involved in the conversion of PrPC to its disease-associated corrupted conformation, PrPSc. Recombinant PrP can be refolded into an alpha-helical structure, designated alpha-PrP isoform, or into beta-sheet-rich states, designated beta-PrP isoform. The current study investigates the binding of recombinant PrP isoforms to model lipid membranes using surface plasmon resonance spectroscopy. The binding of alpha- and beta-PrP to negatively charged lipid membranes of POPG, zwitterionic membranes of DPPC, and model raft membranes composed of DPPC, cholesterol, and sphingomyelin is compared at pH 7 and 5, to simulate the environment at the plasma membrane and within endosomes, respectively. It is found that PrP binds strongly to lipid membranes. The strength of the association of PrP with lipid membranes depends on the protein conformation and pH, and involves both hydrophobic and electrostatic lipid-protein interactions. Competition binding measurements established that the binding of alpha-PrP to lipid membranes follows a decreasing order of affinity to POPG>DPPC>rafts.  相似文献   

16.
The scrapie isoform of the prion protein, PrP(Sc), is the only identified component of the infectious prion, an agent causing neurodegenerative diseases such as Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Following proteolysis, PrP(Sc) is trimmed to a fragment designated PrP 27-30. Both PrP(Sc) and PrP 27-30 molecules tend to aggregate and precipitate as amyloid rods when membranes from prion-infected brain are extracted with detergents. Although prion rods were also shown to contain lipids and sugar polymers, no physiological role has yet been attributed to these molecules. In this work, we show that prion infectivity can be reconstituted by combining Me(2)SO-solubilized PrP 27-30, which at best contained low prion infectivity, with nonprotein components of prion rods (heavy fraction after deproteination, originating from a scrapie-infected hamster brain), which did not present any infectivity. Whereas heparanase digestion of the heavy fraction after deproteination (originating from a scrapie-infected hamster brain), before its combination with solubilized PrP 27-30, considerably reduced the reconstitution of infectivity, preliminary results suggest that infectivity can be greatly increased by combining nonaggregated protease-resistant PrP with heparan sulfate, a known component of amyloid plaques in the brain. We submit that whereas PrP 27-30 is probably the obligatory template for the conversion of PrP(C) to PrP(Sc), sulfated sugar polymers may play an important role in the pathogenesis of prion diseases.  相似文献   

17.
A conformational change of the cellular prion protein (PrP(c)) underlies formation of PrP(Sc), which is closely associated with pathogenesis and transmission of prion diseases. The precise conformational prerequisites and the cellular environment necessary for this post-translational process remain to be completely elucidated. At steady state, glycosylated PrP(c) is found primarily at the cell surface, whereas a minor fraction of the population is disposed of by the ER-associated degradation-proteasome pathway. However, chronic ER stress conditions and proteasomal dysfunctions lead to accumulation of aggregation-prone PrP molecules in the cytosol and to neurodegeneration. In this study, we challenged different cell lines by inducing ER stress or inhibiting proteasomal activity and analyzed the subsequent repercussion on PrP metabolism, focusing on PrP in the secretory pathway. Both events led to enhanced detection of PrP aggregates and a significant increase of PrP(Sc) in persistently prion-infected cells, which could be reversed by overexpression of proteins of the cellular quality control. Remarkably, upon proteasomal impairment, an increased fraction of misfolded, fully glycosylated PrP molecules traveled through the secretory pathway and reached the plasma membrane. These findings suggest a novel pathway that possibly provides additional substrate and template necessary for prion formation when protein clearance by the proteasome is impaired.  相似文献   

18.
In this paper we will discuss different modeling approaches for the spread of prion diseases in the brain. Firstly, we will compare reaction-diffusion models with models of epidemic diseases on networks. The solutions of the resulting reaction-diffusion equations exhibit traveling wave behavior on a one-dimensional domain, and the wave speed can be estimated. The models can be tested for diffusion-driven (Turing) instability, which could present a possible mechanism for the formation of plaques. We also show that the reaction-diffusion systems are capable of reproducing experimental data on prion spread in the mouse visual system. Secondly, we study classical epidemic models on networks, and use these models to study the influence of the network topology on the disease progression.  相似文献   

19.
Abnormal isoform of prion proteins (PrP(Sc)), which are infectious agents associated with prion diseases, retain infectivity after undergoing routine sterilization processes. A sensitive method to detect the infectivity is a bioassay, and it has been used for assessing prion inactivation. However, the result is obtained after several hundred days. Here, protein misfolding cyclic amplification (PMCA) in which PrP(Sc) can be amplified in vitro was applied for assessing prion inactivation by dry heating and autoclaving. Scrapie-infected hamster brains were inactivated under various conditions, and residual infectivity and PrP(Sc) were detected by the bioassay and PMCA, respectively. The PMCA results were in good agreement with those of the bioassay. In samples autoclaved at temperatures below 150 degrees C, while infected mice died in the bioassay, protease-resistant PrP (PrP(res)) signals were detected in the second or third round of PMCA. Three rounds of PMCA require only 6 days, which means that the PMCA method is much faster than the bioassay.  相似文献   

20.
The cellular prion protein (PrP(c)) forms complexes with plasminogen. Here, we show that the PrP(c) in this complex is cleaved to yield fragments of PrP(c). The cleavage is accelerated by plasmin but does not appear to be dependent on it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号