首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuronal Cav2.1 (P/Q-type), Cav2.2 (N-type), and Cav2.3 (R-type) calcium channels contribute to synaptic transmission and are modulated through G protein–coupled receptor pathways. The analgesic α-conotoxin Vc1.1 acts through γ-aminobutyric acid type B (GABAB) receptors (GABABRs) to inhibit Cav2.2 channels. We investigated GABABR-mediated modulation by Vc1.1, a cyclized form of Vc1.1 (c-Vc1.1), and the GABABR agonist baclofen of human Cav2.1 or Cav2.3 channels heterologously expressed in human embryonic kidney cells. 50 µM baclofen inhibited Cav2.1 and Cav2.3 channel Ba2+ currents by ∼40%, whereas c-Vc1.1 did not affect Cav2.1 but potently inhibited Cav2.3, with a half-maximal inhibitory concentration of ∼300 pM. Depolarizing paired pulses revealed that ∼75% of the baclofen inhibition of Cav2.1 was voltage dependent and could be relieved by strong depolarization. In contrast, baclofen or Vc1.1 inhibition of Cav2.3 channels was solely mediated through voltage-independent pathways that could be disrupted by pertussis toxin, guanosine 5′-[β-thio]diphosphate trilithium salt, or the GABABR antagonist CGP55845. Overexpression of the kinase c-Src significantly increased inhibition of Cav2.3 by c-Vc1.1. Conversely, coexpression of a catalytically inactive double mutant form of c-Src or pretreatment with a phosphorylated pp60c-Src peptide abolished the effect of c-Vc1.1. Site-directed mutational analyses of Cav2.3 demonstrated that tyrosines 1761 and 1765 within exon 37 are critical for inhibition of Cav2.3 by c-Vc1.1 and are involved in baclofen inhibition of these channels. Remarkably, point mutations introducing specific c-Src phosphorylation sites into human Cav2.1 channels conferred c-Vc1.1 sensitivity. Our findings show that Vc1.1 inhibition of Cav2.3, which defines Cav2.3 channels as potential targets for analgesic α-conotoxins, is caused by specific c-Src phosphorylation sites in the C terminus.  相似文献   

2.
Rem2 belongs to the RGK family of small GTPases whose members are known to interact with the voltage gated calcium channel β subunit, and to inhibit or abolish calcium currents. To identify the underlying functional domains of Rem2, we created several N- or C-terminally truncated Rem2 proteins and examined their abilities to interact with the Cav β subunit and to regulate the activities of Cav2.2 N-type calcium channels. Confocal imaging of Rem2 in tsA-201 cells revealed that it contains a membrane-targeting signal in its C-terminus, consistent with previous studies. Co-precipitation assays showed that Cav β3 interaction depends on Rem2 residues 1-123. Only Rem2 proteins that targeted the cell membrane as well as bound the β subunit were able to reduce whole cell calcium currents.  相似文献   

3.
Low voltage-activated (LVA) T-type Ca2+ channels activate in response to subthreshold membrane depolarizations and therefore represent an important source of Ca2+ influx near the resting membrane potential. In neurons, these proteins significantly contribute to control relevant physiological processes including neuronal excitability, pacemaking and post-inhibitory rebound burst firing. Three subtypes of T-type channels (Cav3.1 to Cav3.3) have been identified, and using functional expression of recombinant channels diverse studies have validated the notion that T-type Ca2+ channels can be modulated by various endogenous ligands as well as by second messenger pathways. In this context, the present study reveals a previously unrecognized role for cyclin-dependent kinase 5 (Cdk5) in the regulation of native T-type channels in N1E-115 neuroblastoma cells, as well as recombinant Cav3.1channels heterologously expressed in HEK-293 cells. Cdk5 and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Our results show that overexpression of Cdk5 causes a significant increase in whole cell patch clamp currents through T-type channels in N1E-115 cells, while siRNA knockdown of Cdk5 greatly reduced these currents. Consistent with this, overexpression of Cdk5 in HEK-293 cells stably expressing Cav3.1channels upregulates macroscopic currents. Furthermore, using site-directed mutagenesis we identified a major phosphorylation site at serine 2234 within the C-terminal region of the Cav3.1subunit. These results highlight a novel role for Cdk5 in the regulation of T-type Ca2+ channels.  相似文献   

4.
L-type Ca2+ channels (LTCCs, Cav1) open readily during membrane depolarization and allow Ca2+ to enter the cell. In this way, LTCCs regulate cell excitability and trigger a variety of Ca2+-dependent physiological processes such as: excitation–contraction coupling in muscle cells, gene expression, synaptic plasticity, neuronal differentiation, hormone secretion, and pacemaker activity in heart, neurons, and endocrine cells. Among the two major isoforms of LTCCs expressed in excitable tissues (Cav1.2 and Cav1.3), Cav1.3 appears suitable for supporting a pacemaker current in spontaneously firing cells. It has steep voltage dependence and low threshold of activation and inactivates slowly. Using Cav1.3−/− KO mice and membrane current recording techniques such as the dynamic and the action potential clamp, it has been possible to resolve the time course of Cav1.3 pacemaker currents that regulate the spontaneous firing of dopaminergic neurons and adrenal chromaffin cells. In several cell types, Cav1.3 is selectively coupled to BK channels within membrane nanodomains and controls both the firing frequency and the action potential repolarization phase. Here we review the most critical aspects of Cav1.3 channel gating and its coupling to large conductance BK channels recently discovered in spontaneously firing neurons and neuroendocrine cells with the aim of furnishing a converging view of the role that these two channel types play in the regulation of cell excitability.  相似文献   

5.
Cav2.3 containing voltage-activated Ca2 + channels are expressed in excitable cells and trigger neurotransmitter and peptide-hormone release. Their expression remote from the fast release sites leads to the accumulation of presynaptic Ca2 + which can both, facilitate and inhibit the influx of Ca2 + ions through Cav2.3. The facilitated Ca2 + influx was recently related to hippocampal postsynaptic facilitation and long term potentiation. To analyze Ca2 + mediated modulation of cellular processes more in detail, protein partners of the carboxy terminal tail of Cav2.3 were identified by yeast-2-hybrid screening, leading in two human cell lines to the detection of a novel, extended and rarely occurring splice variant of calmodulin-2 (CaM-2), called CaM-2-extended (CaM-2-ext). CaM-2-ext interacts biochemically with the C-terminus of Cav2.3 similar to the classical CaM-2 as shown by co-immunoprecipitation. Functionally, only CaM-2-ext reduces whole cell inward currents significantly. The insertion of the novel 46 nts long exon and the consecutive expression of CaM-2-ext must be dependent on a new upstream translation initiation site which is only rarely used in the tested human cell lines. The structure of the N-terminal extension is predicted to be more hydrophobic than the remaining CaM-2-ext protein, suggesting that it may help to dock it to the lipophilic membrane surrounding.  相似文献   

6.
In many mammalian cells, ClC-3 volume-regulated chloride channels maintain a variety of normal cellular functions during osmotic perturbation. The molecular mechanisms of channel regulation by cell volume, however, are unknown. Since a number of recent studies point to the involvement of protein phosphorylation/dephosphorylation in the control of volume-regulated ionic transport systems, we studied the relationship between channel phosphorylation and volume regulation of ClC-3 channels using site-directed mutagenesis and patch-clamp techniques. In native cardiac cells and when overexpressed in NIH/3T3 cells, ClC-3 channels were opened by cell swelling or inhibition of endogenous PKC, but closed by PKC activation, phosphatase inhibition, or elevation of intracellular Ca2+. Site-specific mutational studies indicate that a serine residue (serine51) within a consensus PKC-phosphorylation site in the intracellular amino terminus of the ClC-3 channel protein represents an important volume sensor of the channel. These results provide direct molecular and pharmacological evidence indicating that channel phosphorylation/dephosphorylation plays a crucial role in the regulation of volume sensitivity of recombinant ClC-3 channels and their native counterpart, ICl.vol.  相似文献   

7.
Contraction of the heart is regulated by a number of mechanisms, such as neurotransmitters, hormones, autacoids, pH, intracellular ATP, and Ca++ ions. These actions are mediated, at least in part, by actions on the sarcolemmal slow (L-type) Ca++ channels, exerted directly or indirectly. The major mechanisms for the regulation of the slow Ca++ channels of myocardial cells includes the following. cAMP/PK-A phosphorylation stimulates the slow Ca` channel activity, whereas cGMP/PK-G phosphorylation inhibits. DAG/PK-C phosphorylation and tyrosine kinase phosphorylation are suggested to stimulate the slow Ca++ channel activity. Intracellular application of Gs protein increases the slow Ca++ currents (ICa(L)). Lowering of intracellular ATP inhibits ICa(L). Acidosis and increase in [Ca]i inhibits ICa(L). A number of changes in the Ca++ channels also occur during development and aging. Thus, it appears that the slow Ca++ channel is a complex structure, including perhaps several associated regulatory proteins, which can be regulated by a number of extrinsic and intrinsic factors, and thereby control can be exercised over the force of contraction of the heart.  相似文献   

8.
RalA GTPase has been implicated in the regulated delivery of exocytotic vesicles to the plasma membrane (PM) in mammalian cells. We had reported that RalA regulates biphasic insulin secretion, which we have now determined to be contributed by RalA direct interaction with voltage‐gated calcium (Cav) channels. RalA knockdown (KD) in INS‐1 cells and primary rat β‐cells resulted in a reduction in Ca2+ currents arising specifically from L‐(Cav1.2 and Cav1.3) and R‐type (Cav2.3) Ca2+ channels. Restoration of RalA expression in RalA KD cells rescued these defects in Ca2+ currents. RalA co‐immunoprecipitated with the Cavα2δ‐1 auxiliary subunit known to bind the three Cavs. Moreover, the functional molecular interactions between Cavα2δ‐1 and RalA on the PM shown by total internal reflection fluorescent microscopy/FRET analysis could be induced by glucose stimulation. KD of RalA inhibited trafficking of α2δ‐1 to insulin granules without affecting the localization of the other Cav subunits. Furthermore, we confirmed that RalA and α2δ‐1 functionally interact since RalA KD‐induced inhibition of Cav currents could not be recovered by RalA when α2δ‐1 was simultaneously knocked down. These data provide a mechanism for RalA function in insulin secretion, whereby RalA binds α2δ‐1 on insulin granules to tether these granules to PM Ca2+ channels. This acts as a chaperoning step prior to and in preparation for sequential assembly of exocyst and excitosome complexes that mediate biphasic insulin secretion.  相似文献   

9.
L-type Cav1.2 Ca2+ channel undergoes extensive alternative splicing, generating functionally different channels. Alternatively spliced Cav1.2 Ca2+ channels have been found to be expressed in a tissue-specific manner or under pathological conditions. To provide a more comprehensive understanding of alternative splicing in Cav1.2 channel, we systematically investigated the splicing patterns in the neonatal and adult rat hearts. The neonatal heart expresses a novel 104-bp exon 33L at the IVS3-4 linker that is generated by the use of an alternative acceptor site. Inclusion of exon 33L causes frameshift and C-terminal truncation. Whole-cell electrophysiological recordings of Cav1.233L channels expressed in HEK 293 cells did not detect any current. However, when co-expressed with wild type Cav1.2 channels, Cav1.233L channels reduced the current density and altered the electrophysiological properties of the wild type Cav1.2 channels. Interestingly, the truncated 3.5-domain Cav1.233L channels also yielded a dominant negative effect on Cav1.3 channels, but not on Cav3.2 channels, suggesting that Cavβ subunits is required for Cav1.233L regulation. A biochemical study provided evidence that Cav1.233L channels enhanced protein degradation of wild type channels via the ubiquitin-proteasome system. Although the physiological significance of the Cav1.233L channels in neonatal heart is still unknown, our report demonstrates the ability of this novel truncated channel to modulate the activity of the functional Cav1.2 channels. Moreover, the human Cav1.2 channel also contains exon 33L that is developmentally regulated in heart. Unexpectedly, human exon 33L has a one-nucleotide insertion that allowed in-frame translation of a full Cav1.2 channel. An electrophysiological study showed that human Cav1.233L channel is a functional channel but conducts Ca2+ ions at a much lower level.  相似文献   

10.
11.
Cav3.1 T-type Ca2+ channels play pivotal roles in neuronal low-threshold spikes, visceral pain, and pacemaker activity. Phosphorylation has been reported to potently regulate the activity and gating properties of Cav3.1 channels. However, systematic identification of phosphorylation sites (phosphosites) in Cav3.1 channel has been poorly investigated. In this work, we analyzed rat Cav3.1 protein expressed in HEK-293 cells by mass spectrometry, identified 30 phosphosites located at the cytoplasmic regions, and illustrated them as a Cav3.1 phosphorylation map which includes the reported mouse Cav3.1 phosphosites. Site-directed mutagenesis of the phosphosites to Ala residues and functional analysis of the phospho-silent Cav3.1 mutants expressed in Xenopus oocytes showed that the phospho-silent mutation of the N-terminal Ser18 reduced its current amplitude with accelerated current kinetics and negatively shifted channel availability. Remarkably, the phospho-silent mutations of the C-terminal Ser residues (Ser1924, Ser2001, Ser2163, Ser2166, or Ser2189) greatly reduced their current amplitude without altering the voltage-dependent gating properties. In contrast, the phosphomimetic Asp mutations of Cav3.1 on the N- and C-terminal Ser residues reversed the effects of the phospho-silent mutations. Collectively, these findings demonstrate that the multiple phosphosites of Cav3.1 at the N- and C-terminal regions play crucial roles in the regulation of the channel activity and voltage-dependent gating properties.  相似文献   

12.
Undifferentiated P19 embryonal carcinoma cells (ECC P19), the P19-derived clonal cell lines END-2 (visceral endoderm-like), EPI-7 (epithelioid ectoderm-like), MES-1 (mesoderm-like) and a parietal yolk sac cell line (PYS-2) were used as cellular models to examine the functional expression of voltage-dependent Ca channels and other Ca-permeable cation channels at various stages of early embryonic development. Whole-cell currents were recorded by means of the patch clamp technique. Whereas more than 75% of MES-1 cells possessed Ca channel currents, neither P19, END-2, EPI-7 nor PYS-2 cells had detectable voltage-dependent inward currents. Ca channel currents of MES-1 cells were highly sensitive towards 1,4-dihydropyridines and blocked by cadmium. Adrenaline (10 μM) caused Ca channel stimulation in only 14% of MES-1 cells examined. However, in 62% of the cells adrenaline activated a linear current component which under physiological conditions reversed close to 0 mV. Removal of extracellular Na+ suppressed the adrenaline-induced inward current, while reducing extracellular Cl had no significant effect. These findings suggest that the adrenaline-induced current is carried through non-selective cation channels which were found to be permeable for Na+, K+, Cs+ å Ca2+. Remarkably, the intracellular signalling pathway for activation of the non-selective cation current involved the cascade of reactions leading to cAMP-dependent phosphorylation, a regulatory pathway well known for cardiac Ca channels. A possible functional role of adrenaline-induced non-selective cation currents and Ca channels in embryonal development is discussed.  相似文献   

13.
Agonist‐triggered downregulation of β‐adrenergic receptors (ARs) constitutes vital negative feedback to prevent cellular overexcitation. Here, we report a novel downregulation of β2AR signaling highly specific for Cav1.2. We find that β2‐AR binding to Cav1.2 residues 1923–1942 is required for β‐adrenergic regulation of Cav1.2. Despite the prominence of PKA‐mediated phosphorylation of Cav1.2 S1928 within the newly identified β2AR binding site, its physiological function has so far escaped identification. We show that phosphorylation of S1928 displaces the β2AR from Cav1.2 upon β‐adrenergic stimulation rendering Cav1.2 refractory for several minutes from further β‐adrenergic stimulation. This effect is lost in S1928A knock‐in mice. Although AMPARs are clustered at postsynaptic sites like Cav1.2, β2AR association with and regulation of AMPARs do not show such dissociation. Accordingly, displacement of the β2AR from Cav1.2 is a uniquely specific desensitization mechanism of Cav1.2 regulation by highly localized β2AR/cAMP/PKA/S1928 signaling. The physiological implications of this mechanism are underscored by our finding that LTP induced by prolonged theta tetanus (PTT‐LTP) depends on Cav1.2 and its regulation by channel‐associated β2AR.  相似文献   

14.
Syntaxin (Syn)-1A mediates exocytosis of predocked insulin-containing secretory granules (SGs) during first-phase glucose-stimulated insulin secretion (GSIS) in part via its interaction with plasma membrane (PM)-bound L-type voltage-gated calcium channels (Cav). In contrast, Syn-3 mediates exocytosis of newcomer SGs that accounts for second-phase GSIS. We now hypothesize that the newcomer SG Syn-3 preferentially binds and modulates R-type Cav opening, which was postulated to mediate second-phase GSIS. Indeed, glucose-stimulation of pancreatic islet β-cell line INS-1 induced a predominant increase in interaction between Syn-3 and Cavα1 pore-forming subunits of R-type Cav2.3 and to lesser extent L-type Cavs, while confirming the preferential interactions between Syn-1A with L-type (Cav1.2, Cav1.3) Cavs. Consistently, direct binding studies employing heterologous HEK cells confirmed that Syn-3 preferentially binds Cav2.3, whereas Syn-1A prefers L-type Cavs. We then used siRNA knockdown (KD) of Syn-3 in INS-1 to study the endogenous modulatory actions of Syn-3 on Cav channels. Syn-3 KD enhanced Ca2+ currents by 46% attributed mostly to R- and L-type Cavs. Interestingly, while the transmembrane domain of Syn-1A is the putative functional domain modulating Cav activity, it is the cytoplasmic domain of Syn-3 that appears to modulate Cav activity. We conclude that Syn-3 may mimic Syn-1A in the ability to bind and modulate Cavs, but preferring Cav2.3 to perhaps participate in triggering fusion of newcomer insulin SGs during second-phase GSIS.  相似文献   

15.
cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca2+ currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated CaV1.3L-type Ca2+ channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant CaV1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the CaVα1 ion-conducting subunit of the CaV1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca2+ macroscopic currents and impair insulin release stimulated with high K+. In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for CaV1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the CaVα1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate CaV1.3 channels and contribute to regulate insulin secretion.  相似文献   

16.
L-type Ca2+ currents conducted by Cav1.2 channels initiate excitation–contraction coupling in cardiac myocytes. Intracellular Mg2+ (Mgi) inhibits the ionic current of Cav1.2 channels. Because Mgi is altered in ischemia and heart failure, its regulation of Cav1.2 channels is important in understanding cardiac pathophysiology. Here, we studied the effects of Mgi on voltage-dependent inactivation (VDI) of Cav1.2 channels using Na+ as permeant ion to eliminate the effects of permeant divalent cations that engage the Ca2+-dependent inactivation process. We confirmed that increased Mgi reduces peak ionic currents and increases VDI of Cav1.2 channels in ventricular myocytes and in transfected cells when measured with Na+ as permeant ion. The increased rate and extent of VDI caused by increased Mgi were substantially reduced by mutations of a cation-binding residue in the proximal C-terminal EF-hand, consistent with the conclusion that both reduction of peak currents and enhancement of VDI result from the binding of Mgi to the EF-hand (KD ≈ 0.9 mM) near the resting level of Mgi in ventricular myocytes. VDI was more rapid for L-type Ca2+ currents in ventricular myocytes than for Cav1.2 channels in transfected cells. Coexpression of Cavβ2b subunits and formation of an autoinhibitory complex of truncated Cav1.2 channels with noncovalently bound distal C-terminal domain (DCT) both increased VDI in transfected cells, indicating that the subunit structure of the Cav1.2 channel greatly influences its VDI. The effects of noncovalently bound DCT on peak current amplitude and VDI required Mgi binding to the proximal C-terminal EF-hand and were prevented by mutations of a key divalent cation-binding amino acid residue. Our results demonstrate cooperative regulation of peak current amplitude and VDI of Cav1.2 channels by Mgi, the proximal C-terminal EF-hand, and the DCT, and suggest that conformational changes that regulate VDI are propagated from the DCT through the proximal C-terminal EF-hand to the channel-gating mechanism.  相似文献   

17.
In the WAG/Rij rat, a model for human absence epilepsy, spike‐wave discharges (SWD) and absence epileptic behavior develop after the age of 3 months. The rostral part of the reticular thalamic nucleus (rRTN) is involved in SWD. Ca2+ channels play a central role in the initiation and maintenance of burst firing activity of thalamic cells. We hypothesize that a changed expression of α1‐subunits of one or more high voltage‐activated Ca2+ channel types in the rRTN underlies the development of SWD. To test this hypothesis we compared 3‐ and 6‐month‐old WAG/Rij rats with nonepileptic, age‐matched control rats. By immunocytochemistry, the expressions of α11.3‐, α12.1‐, α12.2‐, and α12.3‐subunits were shown in both strains, demonstrating the presence of Cav1.3, Cav2.1, Cav2.2, and Cav2.3 channels, respectively. Quantification of channel expression indicates that the development of SWD in WAG/Rij rats is concomitant with an increased expression of Cav2.1 channels in the rRTN. These channels are mainly presynaptic, as revealed by double immunofluorescence involving the presynapse marker syntaxin. The mechanism by which this increase could be related to the occurrence of SWD has been discussed. © 2004 Wiley Periodicals, Inc. J Neurobiol 58: 467–478, 2004  相似文献   

18.
The voltage-dependent slow channels in the myocardial cell membrane are the major pathway by which Ca2+ ions enter the cell during excitation for initiation and regulation of the force of contraction of cardiac muscle. The slow channels have some special properties, including functional dependence on metabolic energy, selective blockade by acidosis, and regulation by the intracellular cyclic nucleotide levels. Because of these special properties of the slow channels, Ca2+ influx into the myocardial cell can be controlled by extrinsic factors (such as autonomic nerve stimulation or circulating hormones) and by intrinsic factors (such as cellular pH or ATP level). The slow Ca2+ channels of the heart are regulated by cAMP in a stimulatory fashion. Elevation of cAMP produces a very rapid increase in number of slow channels available for voltage activation during excitation. The probability of a slow channel opening and the mean open time of the channel are increased. Therefore, any agent that increases the cAMP level of the myocardial cell will tend to potentiate Isi, Ca2+ influx, and contraction. The myocardial slow Ca2+ channels are also regulated by cGMP, in a manner that is opposite to that of CAMP. The effect of cGMP is presumably mediated by means of phosphorylation of a protein, as for example, a regulatory protein (inhibitory-type) associated with the slow channel. Preliminary data suggest that calmodulin also may play a role in regulation of the myocardial slow Ca2+ channels, possibly mediated by the Ca2+-calmodulin-protein kinase and phosphorylation of some regulatory-type of protein. Thus, it appears that the slow Ca2+ channel is a complex structure, including perhaps several associated regulatory proteins, which can be regulated by a number of extrinsic and intrinsic factors.VSM cells contain two types of Ca2+ channels: slow (L-type) Ca2+ channels and fast (T-type) Ca2+ channels. Although regulation of voltage-dependent Ca2+ slow channels of VSM cells have not been fully clarified yet, we have made some progress towards answering this question. Slow (L-type, high-threshold) Ca2+ channels may be modified by phosphorylation of the channel protein or an associated regulatory protein. In contrast to cardiac muscle where cAMP and cGMP have antagonistic effects on Ca2+ slow channel activity, in VSM, cAMP and cGMP have similar effects, namely inhibition of the Ca2+ slow channels. Thus, any agent that elevates cAMP or cGMP will inhibit Ca2+ influx, and thereby act to produce vasodilation. The Ca2+ slow channels require ATP for activity, with a K0.5 of about 0.3 mM. C-kinase may stimulate the Ca2+ slow channels by phosphorylation. G-protein may have a direct action on the Ca2+ channels, and may mediate the effects of activation of some receptors. These mechanisms of Ca2+ channel regulation may be invoked during exposure to agonists or drugs, which change second messenger levels, thereby controlling vascular tone.  相似文献   

19.
The process of calcium entry in T cells is a multichannel and multi-step process. We have studied the requirement for L-type calcium channels (Cav1.1) α1S subunits during calcium entry after TCR stimulation. High expression levels of Cav1.1 channels were detected in activated T cells. Sequencing and cloning of Cav1.1 channel cDNA from T cells revealed that a single splice variant is expressed. This variant lacks exon 29, which encodes the linker region adjacent to the voltage sensor, but contains five new N-terminal exons that substitute for exons 1 and 2, which are found in the Cav1.1 muscle counterpart. Overexpression studies using cloned T cell Cav1.1 in 293HEK cells (that lack TCR) suggest that the gating of these channels was altered. Knockdown of Cav1.1 channels in T cells abrogated calcium entry after TCR stimulation, suggesting that Cav1.1 channels are controlled by TCR signaling.  相似文献   

20.
Invertebrate L-type calcium channel, LCav1, isolated from the pond snail Lymnaea stagnalis is nearly indistinguishable from mammalian Cav1.2 (α1C) calcium channel in biophysical characteristics observed in vitro. These L-type channels are likely constrained within a narrow range of biophysical parameters to perform similar functions in the snail and mammalian cardiovascular systems. What distinguishes snail and mammalian L-type channels is a difference in dihydropyridine sensitivity: 100 nM isradipine exhibits a significant block of mammalian Cav1.2 currents without effect on snail LCav1 currents. The native snail channel serves as a valuable surrogate for validating key residue differences identified from previous experimental and molecular modeling work. As predicted, three residue changes in LCav1 (N_3o18, F_3i10, and I_4i12) replaced with DHP-sensing residues in respective positions of Cav1.2, (Q_3o18, Y_3i10, and M_4i12) raises the potency of isradipine block of LCaV1 channels to that of mammalian Cav1.2. Interestingly, the single N_3o18_Q mutation in LCav1 channels lowers DHP sensitivity even further and the triple mutation bearing enhanced isradipine sensitivity, still retains a reduced potency of agonist, (S)-Bay K8644.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号