首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Antibody combination therapeutics (ACTs) are polyvalent biopharmaceuticals that are uniquely suited for the control of complex diseases, including antibiotic resistant infectious diseases, autoimmune disorders and cancers. However, ACTs also represent a distinct manufacturing challenge because the independent manufacture and subsequent mixing of monoclonal antibodies quickly becomes cost prohibitive as more complex mixtures are envisioned. We have developed a virus-free recombinant protein expression platform based on adeno-associated viral (AAV) elements that is capable of rapid and consistent production of complex antibody mixtures in a single batch format. Using both multiplexed immunoassays and cation exchange (CIEX) chromatography, cell culture supernatants generated using our system were assessed for stability of expression and ratios of the component antibodies over time. Cultures expressing combinations of three to ten antibodies maintained consistent expression levels and stable ratios of component antibodies for at least 60 days. Cultures showed remarkable reproducibility following cell banking, and AAV-based cultures showed higher stability and productivity than non-AAV based cultures. Therefore, this non-viral AAV-based expression platform represents a predictable, reproducible, quick and cost effective method to manufacture or quickly produce for preclinical testing recombinant antibody combination therapies and other recombinant protein mixtures.  相似文献   

2.
Over the last 3 decades, monoclonal antibodies have become the most important class of therapeutic biologicals on the market. Development of therapeutic antibodies was accelerated by recombinant DNA technologies, which allowed the humanization of murine monoclonal antibodies to make them more similar to those of the human body and suitable for a broad range of chronic diseases like cancer and autoimmune diseases. In the early 1990s in vitro antibody selection technologies were developed that enabled the discovery of “fully” human antibodies with potentially superior clinical efficacy and lowest immunogenicity.

Antibody phage display is the first and most widely used of the in vitro selection technologies. It has proven to be a robust, versatile platform technology for the discovery of human antibodies and a powerful engineering tool to improve antibody properties. As of the beginning of 2016, 6 human antibodies discovered or further developed by phage display were approved for therapy. In 2002, adalimumab (Humira®) became the first phage display-derived antibody granted a marketing approval. Humira® was also the first approved human antibody, and it is currently the best-selling antibody drug on the market. Numerous phage display-derived antibodies are currently under advanced clinical investigation, and, despite the availability of other technologies such as human antibody-producing transgenic mice, phage display has not lost its importance for the discovery and engineering of therapeutic antibodies.

Here, we provide a comprehensive overview about phage display-derived antibodies that are approved for therapy or in clinical development. A selection of these antibodies is described in more detail to demonstrate different aspects of the phage display technology and its development over the last 25 years.  相似文献   


3.
《MABS-AUSTIN》2013,5(4):957-967
Antibody combination therapeutics (ACTs) are polyvalent biopharmaceuticals that are uniquely suited for the control of complex diseases, including antibiotic resistant infectious diseases, autoimmune disorders and cancers. However, ACTs also represent a distinct manufacturing challenge because the independent manufacture and subsequent mixing of monoclonal antibodies quickly becomes cost prohibitive as more complex mixtures are envisioned. We have developed a virus-free recombinant protein expression platform based on adeno-associated viral (AAV) elements that is capable of rapid and consistent production of complex antibody mixtures in a single batch format. Using both multiplexed immunoassays and cation exchange (CIEX) chromatography, cell culture supernatants generated using our system were assessed for stability of expression and ratios of the component antibodies over time. Cultures expressing combinations of three to ten antibodies maintained consistent expression levels and stable ratios of component antibodies for at least 60 days. Cultures showed remarkable reproducibility following cell banking, and AAV-based cultures showed higher stability and productivity than non-AAV based cultures. Therefore, this non-viral AAV-based expression platform represents a predictable, reproducible, quick and cost effective method to manufacture or quickly produce for preclinical testing recombinant antibody combination therapies and other recombinant protein mixtures.  相似文献   

4.
Proteins are an important class of biologics. Their higher-order structures and therefore their functions are fundamentally determined by the correct formation of disulfide bonds (DSBs), making DSB analysis a central part of their development and production. Mass spectrometry-based bottom-up approaches are most widely used and are further classified according to different methods applied for DSB cleavage. Despite the importance of DSB analysis and the wide range of available methodologies, it is often a challenging and time consuming task. However, due to the current increase in biosimilar development in which animal and clinical trials can be reduced by extensive analytical comparability studies, increased efforts are being made to simplify DSB analysis. As an example of these developments, a matrix-assisted laser desorption/ionization time-of-flight (TOF)/TOF workflow for the automated profiling and identification of DSBs is presented. Furthermore, mass spectrometry based methodologies, which do not identify DSBs directly but measure their influence on the higher-order structure, are also considered.  相似文献   

5.
Despite availability of biologic therapies, limited patient access to many of the most-effective cancer treatments affects overall health outcomes. To address this issue, many governments have enacted legislation for the approval of biosimilars. The term “biosimilar” refers to a biologic product that is developed to be highly similar, as opposed to identical, to a licensed biologic product (the reference or innovator product), such that, per US Food and Drug administration draft guidelines, “no clinically meaningful differences [exist] between the biological product and the reference product in terms of safety, purity, and potency.” This article presents some considerations about the development of biosimilars in cancer treatment through an overview of biosimilars from a clinical perspective. Topics covered include the development requirements and unique regulatory requirements for biosimilars, labeling considerations, potential limitations to the uptake of biosimilars, and review of some biosimilars in development for oncology indications.  相似文献   

6.
《MABS-AUSTIN》2013,5(2):286-293
Despite availability of biologic therapies, limited patient access to many of the most-effective cancer treatments affects overall health outcomes. To address this issue, many governments have enacted legislation for the approval of biosimilars. The term “biosimilar” refers to a biologic product that is developed to be highly similar, as opposed to identical, to a licensed biologic product (the reference or innovator product), such that, per US Food and Drug administration draft guidelines, “no clinically meaningful differences [exist] between the biological product and the reference product in terms of safety, purity, and potency.” This article presents some considerations about the development of biosimilars in cancer treatment through an overview of biosimilars from a clinical perspective. Topics covered include the development requirements and unique regulatory requirements for biosimilars, labeling considerations, potential limitations to the uptake of biosimilars, and review of some biosimilars in development for oncology indications.  相似文献   

7.
Cell cloning and subsequent process development activities are on the critical path directly impacting the timeline for advancement of next generation therapies to patients with unmet medical needs. The use of stable cell pools for early stage material generation and process development activities is an enabling technology to reduce timelines. To successfully use stable pools during development, it is important that bioprocess performance and requisite product quality attributes be comparable to those observed from clonally derived cell lines. To better understand the relationship between pool and clone derived cell lines, we compared data across recent first in human (FIH) programs at Amgen including both mAb and Fc‐fusion modalities. We compared expression and phenotypic stability, bioprocess performance, and product quality attributes between material derived from stable pools and clonally derived cells. Overall, our results indicated the feasibility of matching bioprocess performance and product quality attributes between stable pools and subsequently derived clones. These findings support the use of stable pools to accelerate the advancement of novel biologics to the clinic. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1476–1482, 2017  相似文献   

8.
Monoclonal antibody (mAb)-based therapeutics are playing an increasingly important role in the treatment or prevention of many important diseases such as cancers, autoimmune disorders, and infectious diseases. Multidomain mAbs are far more complex than small molecule drugs with intrinsic heterogeneities. The critical quality attributes of a given mAb, including structure, post-translational modifications, and functions at biomolecular and cellular levels, need to be defined and profiled in details during the developmental phases of a biologics. These critical quality attributes, outlined in this review, serve an important database for defining the drug properties during commercial production phase aswell as post licensure life cycle management. Specially, the molecular characterization, functional assessment, and effector function analysis of mAbs, are reviewed with respect to the critical parameters and the methods used for obtaining them. The three groups of analytical methods are three essential and integral facets making up the whole analytical package for a mAb-based drug.Such a package is critically important for thelicensure andthepost-licensure lifecyclemanagement of a therapeutic or prophylactic biologics. In addition, the basic principles on the evaluation of biosimilarmAbs were discussed briefly based on the recommendations by the World Health Organization.  相似文献   

9.
The global pandemic outbreak COVID-19 (SARS-COV-2), has prompted many pharmaceutical companies to develop vaccines and therapeutic biologics for its prevention and treatment. Most of the therapeutic biologics are common human IgG antibodies, which were identified by next-generation sequencing (NGS) with the B cells from the convalescent patients. To fight against pandemic outbreaks like COVID-19, biologics development strategies need to be optimized to speed up the timeline. Since the advent of therapeutic biologics, strategies of transfection and cell line selection have been continuously improved for greater productivity and efficiency. NGS has also been implemented for accelerated cell bank testing. These recent advances enable us to rethink and reshape the chemistry, manufacturing, and controls (CMC) strategy in order to start supplying Good Manufacturing Practices (GMP) materials for clinical trials as soon as possible. We elucidated an accelerated CMC workflow for biologics, including using GMP-compliant pool materials for phase I clinical trials, selecting the final clone with product quality similar to that of phase I materials for late-stage development and commercial production.  相似文献   

10.
Combination therapy is a fast-growing strategy to maximize therapeutic benefits to patients. Co-formulation of two or more therapeutic proteins has advantages over the administration of multiple medications, including reduced medication errors and convenience for patients. Characterization of co-formulated biologics can be challenging due to the high degree of similarity in the physicochemical properties of co-formulated proteins, especially at different concentrations of individual components. We present the results of a deamidation study of one monoclonal antibody component (mAb-B) in co-formulated combination antibodies (referred to as COMBO) that contain various ratios of mAb-A and mAb-B. A single deamidation site in the complementarity-determining region of mAb-B was identified as a critical quality attribute (CQA) due to its impact on biological activity. A conventional charge-based method of monitoring mAb-B deamidation presented specificity and robustness challenges, especially when mAb-B was a minor component in the COMBO, making it unsuitable for lot release and stability testing. We developed and qualified a new, quality-control-friendly, single quadrupole Dalton mass detector (QDa)–based method to monitor site-specific deamidation. Our approach can be also used as a multi-attribute method for monitoring other quality attributes in COMBO. This analytical paradigm is applicable to the identification of CQAs in combination therapeutic molecules, and to the subsequent development of a highly specific, highly sensitive, and sufficiently robust method for routine monitoring CQAs for lot release test and during stability studies.  相似文献   

11.
The emergence of monoclonal antibody (mAb) therapies has created a need for faster and more efficient bioprocess development strategies in order to meet timeline and material demands. In this work, a high‐throughput process development (HTPD) strategy implementing several high‐throughput chromatography purification techniques is described. Namely, batch incubations are used to scout feasible operating conditions, miniature columns are then used to determine separation of impurities, and, finally, a limited number of lab scale columns are tested to confirm the conditions identified using high‐throughput techniques and to provide a path toward large scale processing. This multistep approach builds upon previous HTPD work by combining, in a unique sequential fashion, the flexibility and throughput of batch incubations with the increased separation characteristics for the packed bed format of miniature columns. Additionally, in order to assess the applicability of using miniature columns in this workflow, transport considerations were compared with traditional lab scale columns, and performances were mapped for the two techniques. The high‐throughput strategy was utilized to determine optimal operating conditions with two different types of resins for a difficult separation of a mAb monomer from aggregates. Other more detailed prediction models are cited, but the intent of this work was to use high‐throughput strategies as a general guide for scaling and assessing operating space rather than as a precise model to exactly predict performance. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:626–635, 2014  相似文献   

12.
Introduction: Mass spectrometry (MS) is widely used in the characterization of biomolecules including peptide and protein therapeutics. These biotechnology products have seen rapid growth over the past few decades and continue to dominate the global pharmaceutical market. Advances in MS instrumentation and techniques have enhanced protein characterization capabilities and supported an increased development of biopharmaceutical products.

Areas covered: This review describes recent developments in MS-based biotherapeutic analysis including sequence determination, post-translational modifications (PTMs) and higher order structure (HOS) analysis along with improvements in ionization and dissociation methods. An outlook of emerging applications of MS in the lifecycle of product development such as comparability, biosimilarity and quality control practices is also presented.

Expert commentary: MS-based methods have established their utility in the analysis of new biotechnology products and their lifecycle appropriate implementation. In the future, MS will likely continue to grow as one of the leading protein identification and characterization techniques in the biopharmaceutical industry landscape.  相似文献   


13.
In today’s biopharmaceutical industries, the lead time to develop and produce a new monoclonal antibody takes years before it can be launched commercially. The reasons lie in the complexity of the monoclonal antibodies and the need for high product quality to ensure clinical safety which has a significant impact on the process development time. Frameworks such as quality by design are becoming widely used by the pharmaceutical industries as they introduce a systematic approach for building quality into the product. However, full implementation of quality by design has still not been achieved due to attrition mainly from limited risk assessment of product properties as well as the large number of process factors affecting product quality that needs to be investigated during the process development. This has introduced a need for better methods and tools that can be used for early risk assessment and predictions of critical product properties and process factors to enhance process development and reduce costs. In this review, we investigate how the quantitative structure–activity relationships framework can be applied to an existing process development framework such as quality by design in order to increase product understanding based on the protein structure of monoclonal antibodies. Compared to quality by design, where the effect of process parameters on the drug product are explored, quantitative structure–activity relationships gives a reversed perspective which investigates how the protein structure can affect the performance in different unit operations. This provides valuable information that can be used during the early process development of new drug products where limited process understanding is available. Thus, quantitative structure–activity relationships methodology is explored and explained in detail and we investigate the means of directly linking the structural properties of monoclonal antibodies to process data. The resulting information as a decision tool can help to enhance the risk assessment to better aid process development and thereby overcome some of the limitations and challenges present in QbD implementation today.  相似文献   

14.
Clinical photography is an important tool for teaching practitioners and field workers about the clinical manifestations of famine and undernutrition, particularly with respect to the Global South. Current international guidelines for clinical photography are not consistently applied or enforced, which has led to violations of privacy and rights, particularly for patients and victims of disaster in the Global South. Combining existing clinical photography guidelines from the North with ongoing clinical ethics debates in the South, this paper explores approaches to establishing photography guidelines throughout the world that will be sensitive to the privacy and dignities of all patients and victims of emergencies.  相似文献   

15.
The levels of tubulin protein in developing cotton ( Gossypium hirsutum L. cv. Stoneville 825) fibers were measured from 8 to 28 days post-anthesis using commercially available monoclonal antibodies against alpha- and beta-tubulin. As the monoclonal antibodies against alpha- and beta-tubulin were prepared from yeast tubulin and chick brain tubulin, respectively, indirect immunofluorescence microscopy was used to establish that the two monoclonal antibodies recognized microtubule structures in cotton fibers. Western blots of electrophoretically separated proteins in crude extracts of cotton roots and fibers showed that single polypeptides with the expected apparent molecular weight for tubulin subunits were recognized by the antisera. An enzyme-linked immunosorbent assay was used to quantify tubulin levels. From 10 to 20 days post-anthesis the level of tubulin protein increases approximately three-fold. After 20 days post-anthesis, the amount of tubulin relative to total fiber protein reaches a plateau or decreases slightly. The rapid rise in tubulin is correlated with the elongation of the fiber and an increase in cellulose synthesis.  相似文献   

16.
黄景西  覃吉高 《蛇志》2013,(4):372-374
目的探讨梅毒血清抗体检测与临床的相关性。方法对我院10710例进行梅毒血清抗体检测者,根据性别、年龄的不同比较它们之间的关系,并进行分析结果判断与临床的相关性。结果不同性别患者梅毒血清抗体检测无显著性差异(P〉0.05),而不同年龄患者梅毒血清抗体检测有显著性差异(P〈0.01)。结论由于患者自身原因、试剂原因及HIV感染等因素,造成梅毒血清抗体试验有一定的假阳性和假阴性,因此对梅毒血清抗体试验结果应结合病史及临床情况进行综合分析判断。  相似文献   

17.
To evaluate the reproductive status of the female brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), an indirect sandwich enzyme‐linked immunosorbent assay (ELISA) for monitoring vitellogenin (Vg) and vitellin (Vt) was developed by using monoclonal antibodies and polyclonal antiserum made specifically against BPH Vt. The ovarian development of BPH was divided into five stages according to ovariole development and morphological characteristics. Stages I–III, IV, and V represented the pre‐oviposition, peak oviposition, and post‐oviposition stages, respectively. Levels of Vt in the ovary and Vg/Vt in the whole female body during the five ovary stages appeared to relate well with the corresponding ovarian stages, suggesting that ovarian development can be evaluated by measuring ovarian Vt or whole body Vg/Vt in BPH. With this ELISA protocol, the reproductive status of macropterous BPH captured in rice fields during immigration, dwelling, and emigration was determined based on the levels of Vg/Vt in individual females. The females were mainly in stages I and II, as was confirmed by ovarian dissection. Therefore, this study presented an alternative method for evaluating the reproductive status of BPH in rice fields, which is more precise, convenient, and efficient than conventional techniques, such as dissection and classification of ovaries.  相似文献   

18.
The development of a solid-phase immunosorbent assay, suitable for use with enzyme antigens, is described. Acid sphingomyelinase and a mouse monoclonal anti-sphingomyelinase antibody have been used to determine optimal conditions for the assay. The assay involves immobilization of a second antibody (anti-mouse IgG) in the wells of a polyvinyl microtiter plate. Soluble immune complexes of first antibody (monoclonal anti-sphingomyelinase) and antigen (sphingomyelinase), incubated in separate vials, are then reacted in the anti-mouse IgG-coated assay wells, and the extent of the cross-reaction between antibody and antigen is measured by direct assay of enzyme retained in the well. A necessary condition of the assay is that antibody must not inhibit enzyme activity, which makes it especially suitable for monoclonal antibodies. The assay finds useful application in hybridoma fluid screening, equivalence point determination, and demonstration of cross-reacting enzyme from various tissue sources.  相似文献   

19.
The practical application of aqueous two-phase systems (ATPS) to process development has been exploited for several years for the recovery of biological products. Unfortunately, this has not resulted in an extensive presence of the technique in commercial processes. Some of the main identified reasons for such situation involve the full understanding of the mechanism governing phase formation and the behaviour of solute partitioning in ATPS processes, the cost of phase forming polymers and the necessary extended time to understand the technique for process development. In this review paper, some of the practical disadvantages attributed to ATPS are addressed. The practical approach exploited to design ATPS processes, the application to achieve process integration, the increasing use for the recovery of high-value products and the recent development of alternative low cost ATPS, are discussed. It is proposed that the potential trend in the application of ATPS processes for the recovery of biological products will involve the recovery of high-value bio-particulate products with medical applications. This proposed trend in the application of ATPS will address the urgent need to rapidly and economically bring new biopharmaceutical products to market using scaleable and efficient bioprocess technology.  相似文献   

20.
The intrinsic complexity and heterogeneity of therapeutic monoclonal antibodies is built into the biosimilarity paradigm where critical quality attributes are controlled in exhaustive comparability studies with the reference medicinal product. The long-term success of biosimilars will depend on reassuring healthcare professionals and patients of consistent product quality, safety and efficacy. With this aim, the World Health Organization has endorsed the need for public bioactivity standards for therapeutic monoclonal antibodies in support of current controls. We have developed a candidate international potency standard for rituximab that was evaluated in a multi-center collaborative study using participants' own qualified Fc-effector function and cell-based binding bioassays. Dose-response curve model parameters were shown to reflect similar behavior amongst rituximab preparations, albeit with some differences in potency. In the absence of a common reference standard, potency estimates were in poor agreement amongst laboratories, but the use of the candidate preparation significantly reduced this variability. Our results suggest that the candidate rituximab standard can support bioassay performance and improve data harmonization, which when implemented will promote consistency of rituximab products over their life-cycles. This data provides the first scientific evidence that a classical standardization exercise allowing traceability of bioassay data to an international standard is also applicable to rituximab. However, we submit that this new type of international standard needs to be used appropriately and its role not to be mistaken with that of the reference medicinal product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号