首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Drosophila eye and the wing display specific planar cell polarity. Although Frizzled (Fz) signaling has been implicated in the establishment of ommatidial and wing hair polarity, evidence for the Wnt gene function has been limited. Here we examined the function of a Drosophila homolog of Wnt4 (DWnt4) in the control of planar polarity. We show that DWnt4 mRNA and protein are preferentially expressed in the ventral region of eye disc. DWnt4 mutant eyes show polarity reversals mostly in the ventral domain, consistent with the ventral expression of DWnt4. Ectopic expression of DWnt4 in the dorsoventral (DV) polar margins is insufficient to induce ommatidial polarity but becomes inductive when coexpressed with Four-jointed (Fj). Similarly, DWnt4 and Fj result in synergistic induction of hair polarity toward the source of expression in the wing. Consistent with genetic interaction, we provide evidence for direct interaction of DWnt4 and Fj transmembrane protein. The extracellular domain of Fj is required for direct binding to DWnt4 and for the induction of hair polarity. In contrast to the synergy between DWnt4 and Fj, DWnt4 antagonizes the polarizing effect of Fz. Our results suggest that DWnt4 is involved in ommatidial polarity signaling in the ventral region of the eye and its function is mediated by interacting with Fj.  相似文献   

2.
Planar polarity patterning involves long-range signaling and signal transduction. In Drosophila eye, Dishevelled (Dsh) is not only crucial for cell-autonomous transduction of a polarity signal(s) but is also involved in nonautonomous signaling function. To identify the sites for long-range polarity signaling in eye disc, we examined spatial and temporal conditions for nonautonomous Dsh function. Here we show that Dsh and its downstream factor Armadillo (Arm) are required in the border region of eye disc between the peripodial membrane (PM) and the disc proper (DP) for nonautonomous signaling. Conditional misexpression of Dsh or Arm at the posterior margin of the disc was sufficient to induce nonautonomous polarity reversals. A critical time window for the induction of such changes was approximately coincident with the timing of morphogenetic furrow initiation. Our data suggest that the disc margin is an essential site for organizing planar polarity during the initial stage of retinal morphogenesis.  相似文献   

3.
Abstract

Studies on cell polarity proteins and planar cell polarity (PCP) proteins date back to almost 40?years ago in Drosophila and C. elegans when these proteins were shown to be crucial to support apico-basal polarity and also directional alignment of polarity cells across the plane of an epithelium during morphogenesis. In adult mammals, cell polarity and PCP are most notable in cochlear hair cells. However, the role of these two groups of proteins to support spermatogenesis was not explored until a decade earlier when several proteins that confer cell polarity and PCP proteins were identified in the rat testis. Since then, there are several reports appearing in the literature to examine the role of both cell polarity and PCP in supporting spermatogenesis. Herein, we provide an overview regarding the role of cell polarity and PCP proteins in the testis, evaluating these findings in light of studies in other mammalian epithelial cells/tissues. Our goal is to provide a timely evaluation of these findings, and provide some thought provoking remarks to guide future studies based on an evolving concept in the field.  相似文献   

4.
Almost every cell in the Drosophila pupal wing forms a single, distally pointing cuticular hair. The function of the frizzled (fz) gene is essential for the elaboration of the normal wing hair pattern. In the absence of fz function hairs develop, but they display an abnormal polarity. We have examined the developmental expression of the fi gene at the RNA level via in situ hybridization and at the protein level via Western blotting. We have found that fz is expressed in all regions of the epidermis before, during, and after the fz cold sensitive period. We have also found that fz function is not required for normal fi expression. We have further found that mutations in several other tissue polarity genes do not noticeably alter the expression or the modification state of the Fz protein. © 1994 Wiley-Liss, Inc.  相似文献   

5.
6.
Closure of the neural tube is essential for normal development of the brain and spinal cord. Failure of closure results in neural tube defects (NTDs), common and clinically severe congenital malformations whose molecular mechanisms remain poorly understood. On the other hand, it is increasingly well established that common molecular mechanisms are employed to regulate morphogenesis of multicellular organisms. For example, signaling triggered by polypeptide growth factors is highly conserved among species and utilized in multiple developmental processes. Recent studies have revealed that the Drosophila planar cell polarity (PCP) pathway, which directs position and direction of wing hairs on the surface of the fly wing, is well conserved, and orthologs of several genes encoding components of the pathway are also found in vertebrates. Interestingly, in vertebrates, this signaling pathway appears to be co-opted to regulate "convergent extension" cell movements during gastrulation. Disruption of vertebrate PCP genes in Xenopus laevis or zebrafish causes severe gastrulation defects or the shortening of the trunk, as well as mediolateral expansion of somites. In Xenopus, in which the neural tube closes by elevation and fusion of neural folds, inhibition of convergent extension can also prevent neural tube closure causing a "spina bifida-like" appearance. Furthermore, several of the genes involved in the PCP pathway have recently been shown to be required for neural tube closure in the mouse, since mutation of these genes causes NTDs. Therefore, understanding the mechanisms underlying the establishment of cell polarity in Drosophila may provide important clues to the molecular basis of NTDs.  相似文献   

7.
The slope of a supracellular molecular gradient has long been thought to orient and coordinate planar cell polarity (PCP). Here we demonstrate and measure that gradient. Dachsous (Ds) is a conserved and elemental molecule of PCP; Ds forms intercellular bridges with another cadherin molecule, Fat (Ft), an interaction modulated by the Golgi protein Four-jointed (Fj). Using genetic mosaics and tagged Ds, we measure Ds in vivo in membranes of individual cells over a whole metamere of the Drosophila abdomen. We find as follows. (i) A supracellular gradient rises from head to tail in the anterior compartment (A) and then falls in the posterior compartment (P). (ii) There is more Ds in the front than the rear membranes of all cells in the A compartment, except that compartment''s most anterior and most posterior cells. There is more Ds in the rear than in the front membranes of all cells of the P compartment. (iii) The loss of Fj removes intracellular asymmetry anteriorly in the segment and reduces it elsewhere. Additional experiments show that Fj makes PCP more robust. Using Dachs (D) as a molecular indicator of polarity, we confirm that opposing gradients of PCP meet slightly out of register with compartment boundaries.  相似文献   

8.
9.
10.
Neural tube defects (NTDs) are the second most common birth defect in humans. Despite many advances in the understanding of NTDs and the identification of many genes related to NTDs, the fundamental etiology for the majority of cases of NTDs remains unclear. Planar cell polarity (PCP) signaling pathway, which is important for polarized cell movement (such as cell migration) and organ morphogenesis through the activation of cytoskeletal pathways, has been shown to play multiple roles during neural tube closure. The disrupted function of PCP pathway is connected with some NTDs. Here, we summarize our current understanding of how PCP factors affect the pathogenesis of NTDs.  相似文献   

11.
We investigate planar cell polarity (PCP) in the Drosophila larval epidermis. The intricate pattern of denticles depends on only one system of PCP, the Dachsous/Fat system. Dachsous molecules in one cell bind to Fat molecules in a neighbour cell to make intercellular bridges. The disposition and orientation of these Dachsous–Fat bridges allows each cell to compare two neighbours and point its denticles towards the neighbour with the most Dachsous. Measurements of the amount of Dachsous reveal a peak at the back of the anterior compartment of each segment. Localization of Dachs and orientation of ectopic denticles help reveal the polarity of every cell. We discuss whether these findings support our gradient model of Dachsous activity. Several groups have proposed that Dachsous and Fat fix the direction of PCP via oriented microtubules that transport PCP proteins to one side of the cell. We test this proposition in the larval cells and find that most microtubules grow perpendicularly to the axis of PCP. We find no meaningful bias in the polarity of microtubules aligned close to that axis. We also reexamine published data from the pupal abdomen and find no evidence supporting the hypothesis that microtubular orientation draws the arrow of PCP.  相似文献   

12.
13.
《Organogenesis》2013,9(1):86-95
Cystic kidney diseases can cause end stage renal disease, affecting millions of individuals worldwide. They may arise early or later in life, are characterized by a spectrum of symptoms and can be caused by diverse genetic defects. The primary cilium, a microtubule-based organelle that can serve as a signaling antenna, has been demonstrated to have a significant role in ensuring correct kidney development and function. In the kidney, one of the signaling pathways that requires the cilium for normal development is Wnt signaling. In this review, the roles of primary cilia in relation to canonical and non-canonical Wnt/PCP signaling in cystic renal disease are described. The evidence of the associations between cilia, Wnt signaling and cystic renal disease is discussed and the significance of planar cell polarity-related mechanisms in cystic kidney disease is presented. Although defective Wnt signaling is not the only cause of renal disease, research is increasingly highlighting its importance, encouraging the development of Wnt-associated diagnostic and prognostic tools for cystic renal disease.  相似文献   

14.
Cystic kidney diseases can cause end stage renal disease, affecting millions of individuals worldwide. They may arise early or later in life, are characterized by a spectrum of symptoms and can be caused by diverse genetic defects. The primary cilium, a microtubule-based organelle that can serve as a signaling antenna, has been demonstrated to have a significant role in ensuring correct kidney development and function. In the kidney, one of the signaling pathways that requires the cilium for normal development is Wnt signaling. In this review, the roles of primary cilia in relation to canonical and non-canonical Wnt/PCP signaling in cystic renal disease are described. The evidence of the associations between cilia, Wnt signaling and cystic renal disease is discussed and the significance of planar cell polarity-related mechanisms in cystic kidney disease is presented. Although defective Wnt signaling is not the only cause of renal disease, research is increasingly highlighting its importance, encouraging the development of Wnt-associated diagnostic and prognostic tools for cystic renal disease.  相似文献   

15.
16.
Convergent extension movements occur ubiquitously in animal development. This special type of cell movement is controlled by the Wnt/planar cell polarity (PCP) pathway. Here we show that Xenopus paraxial protocadherin (XPAPC) functionally interacts with the Wnt/PCP pathway in the control of convergence and extension (CE) movements in Xenopus laevis. XPAPC functions as a signalling molecule that coordinates cell polarity of the involuting mesoderm in mediolateral orientation and thus selectively promotes convergence in CE movements. XPAPC signals through the small GTPases Rho A and Rac 1 and c-jun N-terminal kinase (JNK). Loss of XPAPC function blocks Rho A-mediated JNK activation. Despite common downstream components, XPAPC and Wnt/PCP signalling are not redundant, and the activity of both, XPAPC and PCP signalling, is required to coordinate CE movements.  相似文献   

17.
18.
Planar cell polarity (PCP) controls the orientation of cells within tissues and the polarized outgrowth of cellular appendages. So far, six PCP core proteins including the transmembrane proteins Frizzled (Fz), Strabismus (Stbm) and Flamingo (Fmi) have been identified. These proteins form asymmetric PCP domains at apical junctions of epithelial cells. Here, we demonstrate that VhaPRR, an accessory subunit of the proton pump V‐ATPase, directly interacts with the protocadherin Fmi through its extracellular domain. It also shows a striking co‐localization with PCP proteins during all pupal wing stages in Drosophila. This localization depends on intact PCP domains. Reversely, VhaPRR is required for stable PCP domains, identifying it as a novel PCP core protein. VhaPRR performs an additional role in vesicular acidification as well as endolysosomal sorting and degradation. Membrane proteins, such as E‐Cadherin and the Notch receptor, accumulate at the surface and in intracellular vesicles of cells mutant for VhaPRR. This trafficking defect is shared by other V‐ATPase subunits. By contrast, the V‐ATPase does not seem to have a direct role in PCP regulation. Together, our results suggest two roles for VhaPRR, one for PCP and another in endosomal trafficking. This dual function establishes VhaPRR as a key factor in epithelial morphogenesis.  相似文献   

19.
20.
Cell migration is essential during development, regeneration, homeostasis, and disease. Depending on the microenvironment, cells use different mechanisms to migrate. Yet, all modes of migration require the establishment of an intracellular front–rear polarity axis for directional movement. Although front–rear polarity can be easily identified in in vitro conditions, its assessment in vivo by live‐imaging is challenging due to tissue complexity and lack of reliable markers. Here, we describe a novel and unique double fluorescent reporter mouse line to study front–rear cell polarity in living tissues, called GNrep. This mouse line simultaneously labels Golgi complexes and nuclei allowing the assignment of a nucleus‐to‐Golgi axis to each cell, which functions as a readout for cell front–rear polarity. As a proof‐of‐principle, we validated the efficiency of the GNrep line using an endothelial‐specific Cre mouse line. We show that the GNrep labels the nucleus and the Golgi apparatus of endothelial cells with very high efficiency and high specificity. Importantly, the features of fluorescent intensity and localization for both mCherry and eGFP fluorescent intensity and localization allow automated segmentation and assignment of polarity vectors in complex tissues, making GNrep a great tool to study cell behavior in large‐scale automated analyses. Altogether, the GNrep mouse line, in combination with different Cre recombinase lines, is a novel and unique tool to study of front–rear polarity in mice, both in fixed tissues or in intravital live imaging. This new line will be instrumental to understand cell migration and polarity in development, homeostasis, and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号