首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voltage-gated sodium channel (NaV) trafficking is incompletely understood. Post-translational modifications of NaVs and/or auxiliary subunits and protein-protein interactions have been posited as NaV-trafficking mechanisms. Here, we tested if modification of the axonal collapsin response mediator protein 2 (CRMP2) by a small ubiquitin-like modifier (SUMO) could affect NaV trafficking; CRMP2 alters the extent of NaV slow inactivation conferred by the anti-epileptic (R)-lacosamide, implying NaV-CRMP2 functional coupling. Expression of a CRMP2 SUMOylation-incompetent mutant (CRMP2-K374A) in neuronal model catecholamine A differentiated (CAD) cells did not alter lacosamide-induced NaV slow inactivation compared with CAD cells expressing wild type CRMP2. Like wild type CRMP2, CRMP2-K374A expressed robustly in CAD cells. Neurite outgrowth, a canonical CRMP2 function, was moderately reduced by the mutation but was still significantly higher than enhanced GFP-transfected cortical neurons. Notably, huwentoxin-IV-sensitive NaV1.7 currents, which predominate in CAD cells, were significantly reduced in CAD cells expressing CRMP2-K374A. Increasing deSUMOylation with sentrin/SUMO-specific protease SENP1 or SENP2 in wild type CRMP2-expressing CAD cells decreased NaV1.7 currents. Consistent with a reduction in current density, biotinylation revealed a significant reduction in surface NaV1.7 levels in CAD cells expressing CRMP2-K374A; surface NaV1.7 expression was also decreased by SENP1 + SENP2 overexpression. Currents in HEK293 cells stably expressing NaV1.7 were reduced by CRMP2-K374A in a manner dependent on the E2-conjugating enzyme Ubc9. No decrement in current density was observed in HEK293 cells co-expressing CRMP2-K374A and NaV1.1 or NaV1.3. Diminution of sodium currents, largely NaV1.7, was recapitulated in sensory neurons expressing CRMP2-K374A. Our study elucidates a novel regulatory mechanism that utilizes CRMP2 SUMOylation to choreograph NaV1.7 trafficking.  相似文献   

2.
The neuronal collapsin response mediator protein 2 (CRMP2) undergoes several posttranslational modifications that codify its functions. Most recently, CRMP2 SUMOylation (addition of small ubiquitin like modifier (SUMO)) was identified as a key regulatory step within a modification program that codes for CRMP2 interaction with, and trafficking of, voltage-gated sodium channel NaV1.7. In this paper, we illustrate the utility of combining sequence alignment within protein families with structural analysis to identify, from several putative SUMOylation sites, those that are most likely to be biologically relevant. Co-opting this principle to CRMP2, we demonstrate that, of 3 sites predicted to be SUMOylated in CRMP2, only the lysine 374 site is a SUMOylation client. A reduction in NaV1.7 currents was the corollary of the loss of CRMP2 SUMOylation at this site. A 1.78-Å-resolution crystal structure of mouse CRMP2 was solved using X-ray crystallography, revealing lysine 374 as buried within the CRMP2 tetramer interface but exposed in the monomer. Since CRMP2 SUMOylation is dependent on phosphorylation, we postulate that this state forces CRMP2 toward a monomer, exposing the SUMO site and consequently, resulting in constitutive regulation of NaV1.7.  相似文献   

3.
The axon/dendrite specification collapsin response mediator protein 2 (CRMP2) bidirectionally modulates N-type voltage-gated Ca2+ channels (CaV2.2). Here we demonstrate that small ubiquitin-like modifier (SUMO) protein modifies CRMP2 via the SUMO E2-conjugating enzyme Ubc9 in vivo. Removal of a SUMO conjugation site KMD in CRMP2 (K374A/M375A/D376A; CRMP2AAA) resulted in loss of SUMOylated CRMP2 without compromising neurite branching, a canonical hallmark of CRMP2 function. Increasing SUMOylation levels correlated inversely with calcium influx in sensory neurons. CRMP2 deSUMOylation by SUMO proteases SENP1 and SENP2 normalized calcium influx to those in the CRMP2AAA mutant. Thus, our results identify a novel role for SUMO modification in CRMP2/CaV2.2 signaling pathway.  相似文献   

4.
SUMOylation occurs predominantly in the nucleus, but non-nuclear proteins can also be SUMOylated. It is unclear how intracellular trafficking of the SUMOylation enzymes is regulated to catalyze SUMOylation in different cellular compartments. Here we report that the SAE2 subunit of human SUMO activation enzyme (SAE) underwent rapid nucleocytoplasmic shuttling and its nuclear accumulation depended on SUMO modification at the C terminus. The SUMOylation sites included three Lys residues on the bipartite nuclear localization sequence (NLS) and two Lys residues outside of but adjacent to the NLS, and their SUMOylation was catalyzed by Ubc9. Because SAE2 forms a tight heterodimer with SAE1 and it controls the trafficking of the heterodimer, this study has identified the mechanism used to localize SAE to the nucleus. Similar mechanisms are likely to exist for other proteins that depend on SUMOylation for nuclear localization.  相似文献   

5.
Neurofibromatosis type 1 (NF1) is one of the most common genetic diseases, affecting roughly 1 in 3000 individuals. As a multisystem disorder, it affects cognitive development, as well as bone, nerve and muscle constitution. Peripheral neuropathy in NF1 constitutes a potentially severe clinical complication and is associated with increased morbidity and mortality. The discovery of effective therapies for Neurofibromatosis type 1 (NF1) pain depends on mechanistic understanding that has been limited, in part, by the relative lack of availability of animal models relevant to NF1 pain. We have used intrathecal targeted editing of Nf1 in rats to provide direct evidence of a causal relationship between neurofibromin and pain responses. We demonstrated that editing of neurofibromin results in functional remodeling of peripheral nociceptors characterized by enhancement of interactions of the tetrodotoxin-sensitive (TTX-S) Na+ voltage-gated sodium channel (NaV1.7) and the collapsin response mediator protein 2 (CRMP2). Collectively, these peripheral adaptations increase sensory neuron excitability and release of excitatory transmitters to the spinal dorsal horn to establish and maintain a state of central sensitization reflected by hyperalgesia to mechanical stimulation of the hindpaw. The data presented here shows that CRMP2 inhibition is sufficient to reverse the dysregulations of voltage-gated ion channels and neurotransmitter release observed after Nf1 gene editing. The concordance in normalization of ion channel dysregulation by a CRMP2-directed strategy and of hyperalgesia supports the translational targeting of CRMP2 to curb NF1-related pain.  相似文献   

6.
The nucleoporin RanBP2 has SUMO1 E3 ligase activity.   总被引:35,自引:0,他引:35  
Posttranslational modification with SUMO1 regulates protein/protein interactions, localization, and stability. SUMOylation requires the E1 enzyme Aos1/Uba2 and the E2 enzyme Ubc9. A family of E3-like factors, PIAS proteins, was discovered recently. Here we show that the nucleoporin RanBP2/Nup358 also has SUMO1 E3-like activity. RanBP2 directly interacts with the E2 enzyme Ubc9 and strongly enhances SUMO1-transfer from Ubc9 to the SUMO1 target Sp100. The E3-like activity is contained within a 33 kDa domain of RanBP2 that lacks RING finger motifs and does not resemble PIAS family proteins. Our findings place SUMOylation at the cytoplasmic filaments of the NPC and suggest that, at least for some substrates, modification and nuclear import are linked events.  相似文献   

7.
Song Y  Liao J 《Molecular bioSystems》2012,8(6):1723-1729
Ubiquitination and SUMOylation are multi-step cascade reactions, in which small protein modifiers are activated by E1 activating enzyme, transferred to E2 conjugating enzyme, and conjugated to substrates mediated by the E3 ligase in vivo. The structural and biochemical bases for the cascade reactions have been elucidated by several studies. However, the reaction intermediates and dynamics of these peptide modifiers among the enzymes have not been completely elucidated. Here we report detailed investigations of SUMOylation dynamics and interaction switches of SUMO1 among its ligases using FRET technology. These studies show that, while SUMO1 and the E1 subunit Aos1 or Uba2 have no intrinsic affinity for each other, the adenylation of SUMO1 carried out by Aos1 requires the presence of Uba2, and subsequently conformational changes trigger the interaction of SUMO1 and Uba2 for a thioester bond formation. The reaction intermediates among SUMO1 and its ligases are indirectly revealed by FRET signals generated by each pair. Furthermore, the transfer of SUMO1 from Uba2 to E2 enzyme, Ubc9, depends on the formation of a thioester bond between SUMO1 and Ubc9, and requires non-covalent interaction between Ubc9 and Uba2, but not between Ubc9 and SUMO1. These interaction switches provide the physical and biochemical bases for the SUMO activation and a transfer cascade required for SUMO activation.  相似文献   

8.
Identifying new targets for SUMO and understanding the function of protein SUMOylation are largely limited by low level of SUMOylation. It was found recently that Ubc9, the SUMO E2 conjugating enzyme, is covalently modified by SUMO at a lysine 14 in the N-terminal alpha helix, and that SUMO-modified Ubc9 has enhanced conjugation activity for certain target proteins containing a SUMO-interacting motif (SIM). Here, we show that, compared to intact Ubc9, the SUMO-Ubc9 fusion protein has higher conjugating activity for SIM-containing targets such as Sp100 and human cytomegalovirus IE2. Assays using an IE2 SIM mutant revealed the requirement of SIM for the enhanced IE2 SUMOylation by SUMO-Ubc9. In pull-down assays with cell extracts, the SUMO-Ubc9 fusion protein bound to more diverse cellular proteins and interacted with some SIM-containing proteins with higher affinities than Ubc9. Therefore, the devised SUMO-Ubc9 fusion will be useful for identifying SIM-containing SUMO targets and producing SUMO-modified proteins.  相似文献   

9.
Ding H  Yang Y  Zhang J  Wu J  Liu H  Shi Y 《Proteins》2005,61(4):1050-1058
The interaction between small ubiquitin-related modifier SUMO and its conjugating-enzyme Ubc9 (E2) is an essential step in SUMO conjugation cascade. However, an experimental structure of such a transient complex is still unavailable. Here, a structural model of SUMO-3-Ubc9 complex was obtained with HADDOCK, combining NMR chemical shift mapping information. Docking calculations were performed using SUMO-3 and Ubc9 structures as input. The resulting complex reveals that the complementary surface electrostatic potentials contribute dominantly to the specific interaction. At the interface, similar numbers of oppositely-charged conserved residues are identified on the respective binding partners. Hydrogen bonds are formed in the vicinity of the interface to stabilize the complex. Comparison of the structure of SUMO-3-Ubc9 complex generated by HADDOCK and the experimental structures in free form indicates that SUMO-3 and Ubc9 maintain their respective fold as a whole after docking. However, the N-terminal helix alpha1 and its subsequent L1 loop of Ubc9 experience sizeable changes upon complex formation. They cooperatively move towards the hydrophilic side of the beta-sheet of SUMO-3. Our observations are consistent with the data from previous Ubc9 mutational analysis and conformational flexibility studies. Together, we have proposed that the SUMO-3-Ubc9 interaction is strongly electrostatically driven and the N terminus of Ubc9 shifts to SUMO-3 to facilitate the interaction. The NMR-based structural model, which provides considerable insights into the molecular basis of the specific SUMO-E2 recognition and interaction, implicates the general interaction mode between SUMO-3 and Ubc9 homologues from yeast to humans.  相似文献   

10.
Multiple pathways participate in the AMPA receptor trafficking that underlies long-term potentiation (LTP) of synaptic transmission. Here we demonstrate that protein SUMOylation is required for insertion of the GluA1 AMPAR subunit following transient glycine-evoked increase in AMPA receptor surface expression (ChemLTP) in dispersed neuronal cultures. ChemLTP increases co-localisation of SUMO-1 and the SUMO conjugating enzyme Ubc9 and with PSD95 consistent with the recruitment of SUMOylated proteins to dendritic spines. In addition, we show that ChemLTP increases dendritic levels of SUMO-1 and Ubc9 mRNA. Consistent with activity dependent translocation of these mRNAs to sites near synapses, levels of the mRNA binding and dendritic transport protein CPEB are also increased by ChemLTP. Importantly, reducing the extent of substrate protein SUMOylation by overexpressing the deSUMOylating enzyme SENP-1 or inhibiting SUMOylation by expressing dominant negative Ubc9 prevent the ChemLTP-induced increase in both AMPAR surface expression and dendritic SUMO-1 mRNA. Taken together these data demonstrate that SUMOylation of synaptic protein(s) involved in AMPA receptor trafficking is necessary for activity-dependent increases in AMPAR surface expression.  相似文献   

11.
G-protein coupled receptor interacting scaffold protein (GISP) is a multi-domain, brain-specific protein derived from the A-kinase anchoring protein (AKAP)-9 gene. Using yeast two-hybrid screens to identify GISP interacting proteins we isolated the SUMO conjugating enzyme Ubc9. GISP interacts with Ubc9 in vitro, in heterologous cells and in neurons. SUMOylation is a post-translational modification in which the small protein SUMO is covalently conjugated to target proteins, modulating their function. Consistent with its interaction with Ubc9, we show that GISP is SUMOylated by both SUMO-1 and SUMO-2 in both in vitro SUMOylation assays and in mammalian cells. Intriguingly, SUMOylation of GISP in neurons occurs in an activity-dependent manner in response to chemical LTP. These data suggest that GISP is a novel neuronal SUMO substrate whose SUMOylation status is modulated by neuronal activity.  相似文献   

12.
Structural and kinetic studies of a SUMORanGAP1-Ubc9-Nup358/RanBP2 complex (Reverter and Lima, 2005) provide the first high-resolution view of SUMO recognition by a SUMO binding motif and also reveal a novel mechanism for E3 ubiquitin-like protein ligases, with the Nup358/RanBP2 E3 teaming up with both SUMO and the E2 (Ubc9) to stimulate tagging.  相似文献   

13.
Su YF  Yang T  Huang H  Liu LF  Hwang J 《PloS one》2012,7(4):e34250
Increasing evidence has pointed to an important role of SUMOylation in cell cycle regulation, especially for M phase. In the current studies, we have obtained evidence through in vitro studies that the master M phase regulator CDK1/cyclin B kinase phosphorylates the SUMOylation machinery component Ubc9, leading to its enhanced SUMOylation activity. First, we show that CDK1/cyclin B, but not many other cell cycle kinases such as CDK2/cyclin E, ERK1, ERK2, PKA and JNK2/SAPK1, specifically enhances SUMOylation activity. Second, CDK1/cyclin B phosphorylates the SUMOylation machinery component Ubc9, but not SAE1/SAE2 or SUMO1. Third, CDK1/cyclin B-phosphorylated Ubc9 exhibits increased SUMOylation activity and elevated accumulation of the Ubc9-SUMO1 thioester conjugate. Fourth, CDK1/cyclin B enhances SUMOylation activity through phosphorylation of Ubc9 at serine 71. These studies demonstrate for the first time that the cell cycle-specific kinase CDK1/cyclin B phosphorylates a SUMOylation machinery component to increase its overall SUMOylation activity, suggesting that SUMOylation is part of the cell cycle program orchestrated by CDK1 through Ubc9.  相似文献   

14.
The ubiquitin-related modifier SUMO regulates a wide range of cellular processes by post-translational modification with one, or a chain of SUMO molecules. Sumoylation is achieved by the sequential action of several enzymes in which the E2, Ubc9, transfers SUMO from the E1 to the target mostly with the help of an E3 enzyme. In this process, Ubc9 not only forms a thioester bond with SUMO, but also interacts with SUMO noncovalently. Here, we show that this noncovalent interaction promotes the formation of short SUMO chains on targets such as Sp100 and HDAC4. We present a crystal structure of the noncovalent Ubc9-SUMO1 complex, showing that SUMO is located far from the E2 active site and resembles the noncovalent interaction site for ubiquitin on UbcH5c and Mms2. Structural comparison suggests a model for poly-sumoylation involving a mechanism analogous to Mms2-Ubc13-mediated ubiquitin chain formation.  相似文献   

15.
16.
Although small ubiquitin-like modifier (SUMO) is conjugated to proteins involved in diverse cellular processes, the functional analysis of SUMOylated proteins is often hampered by low levels of specific SUMOylated proteins in the cell. Here we describe a SUMO-conjugating enzyme (Ubc9) fusion-directed SUMOylation (UFDS) system, which allows efficient and selective in vivo SUMOylation of proteins. Although SUMOylation of overexpressed p53 and STAT1 was difficult to detect in HEK293 cells, up to 40% of p53 and STAT1 were conjugated with endogenous SUMO when fused to Ubc9. We verified the specificity of UFDS using SUMOylation-site mutants and showed that the method is not dependent on SUMO ligases. Using UFDS we demonstrated that SUMOylation of STAT1 inhibits its phosphorylation at Tyr701 and discovered p53 multi-SUMOylation in vivo. We propose that UFDS will be useful for the analysis of function of SUMOylation in protein interactions, subcellular localization as well as enzymatic activity.  相似文献   

17.
The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type   总被引:2,自引:0,他引:2  
Post-translational modification with the ubiquitin-related protein SUMO1 requires the E1 enzyme Aos1-Uba2 and the E2 enzyme Ubc9. Distinct E3 ligases strongly enhance modification of specific targets. The SUMO E3 ligase RanBP2 (also known as Nup358) has no obvious similarity to RING- or HECT-type enzymes. Here we show that RanBP2's 30-kDa catalytic fragment is a largely unstructured protein. Despite two distinct but partially overlapping 79-residue catalytic domains, one of which is sufficient for maximal activity, RanBP2 binds to Ubc9 in a 1:1 stoichiometry. The identification of nine RanBP2 and three Ubc9 side chains that are important for RanBP2-dependent SUMOylation indicates largely hydrophobic interactions. These properties distinguish RanBP2 from all other known E3 ligases, and we speculate that RanBP2 exerts its catalytic effect by altering Ubc9's properties rather than by mediating target interactions.  相似文献   

18.
19.
20.
Covalent modification with SUMO alters protein function, intracellular localization, or protein-protein interactions. Target recognition is determined, in part, by the SUMO E2 enzyme, Ubc9, while Siz/Pias E3 ligases may facilitate select interactions by acting as substrate adaptors. A yeast conditional Ubc9P(123)L mutant was viable at 36 degrees C yet exhibited enhanced sensitivity to DNA damage. To define functional domains in Ubc9 that dictate cellular responses to genotoxic stress versus those necessary for cell viability, a 1.75-A structure of yeast Ubc9 that demonstrated considerable conservation of backbone architecture with human Ubc9 was solved. Nevertheless, differences in side chain geometry/charge guided the design of human/yeast chimeras, where swapping domains implicated in (i) binding residues within substrates that flank canonical SUMOylation sites, (ii) interactions with the RanBP2 E3 ligase, and (iii) binding of the heterodimeric E1 and SUMO had distinct effects on cell growth and resistance to DNA-damaging agents. Our findings establish a functional interaction between N-terminal and substrate-binding domains of Ubc9 and distinguish the activities of E3 ligases Siz1 and Siz2 in regulating cellular responses to genotoxic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号