首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《MABS-AUSTIN》2013,5(5):1201-1210
The IgG1 Fc is a dimeric protein that mediates important antibody effector functions by interacting with Fcγ receptors (FcγRs) and the neonatal Fc receptor (FcRn). Here, we report the discovery of a monomeric IgG1 Fc (mFc) that bound to FcγRI with very high affinity, but not to FcγRIIIa, in contrast to wild-type (dimeric) Fc. The binding of mFc to FcRn was the same as that of dimeric Fc. To test whether the high-affinity binding to FcγRI can be used for targeting of toxins, a fusion protein of mFc with a 38 kDa Pseudomonas exotoxin A fragment (PE38), was generated. This fusion protein killed FcγRI-positive macrophage-like U937 cells but not FcγRI-negative cells, and mFc or PE38 alone had no killing activity. The lack of binding to FcγRIIIa resulted in the absence of Fc-mediated cytotoxicity of a scFv-mFc fusion protein targeting mesothelin. The pharmacokinetics of mFc in mice was very similar to that of dimeric Fc. The mFc's unique FcγRs binding pattern and related functionality, combined with its small size, monovalency and the preservation of FcRn binding which results in relatively long half-life in vivo, suggests that mFc has great potential as a component of therapeutics targeting inflammation mediated by activated macrophages overexpressing FcγRI and related diseases, including cancer.  相似文献   

2.
Immunostimulatory receptors belonging to the tumor necrosis factor receptor (TNFR) superfamily are emerging as promising targets for cancer immunotherapies. To optimize the agonism of therapeutic antibodies to these receptors, Fc engineering of antibodies was applied to facilitate the clustering of cell surface TNFRs to activate downstream signaling pathways. One engineering strategy is to identify Fc mutations that facilitate antibody multimerization on the cell surface directly. From the analyses of the crystal packing of IgG1 structures, we identified a novel set of Fc mutations, T437R and K248E, that facilitated antibody multimerization upon binding to antigens on cell surface. In a NF-κB reporter assay, the engineered T437R/K248E mutations could facilitate enhanced agonism of an anti-OX40 antibody without the dependence on FcγRIIB crosslinking. Nonetheless, the presence of cells expressing FcγRIIB could facilitate a boost of the agonism of the engineered antibody with mutations on IgG1 Fc, but not on the silent IgG2σ Fc. The Fc engineered antibody also showed enhanced effector functions, including antibody-dependent cell-meditated cytotoxicity, antibody-dependent cellular phagocytosis, and complement-dependent cytotoxicity, depending on the IgG subtypes. Also, the engineered antibodies showed normal FcRn binding and pharmacokinetic profiles in mice. In summary, this study elucidated a novel Fc engineering approach to promote antibody multimerization on a cell surface, which could enhance agonism and improve effector function for anti-TNFR antibodies as well as other therapeutic antibodies.  相似文献   

3.
Monoclonal antibodies (mAbs) have become an important class of therapeutics, particularly in the realm of anticancer immunotherapy. While the two antigen-binding fragments (Fabs) of an mAb allow for high-avidity binding to molecular targets, the crystallizable fragment (Fc) engages immune effector elements. mAbs of the IgG class are used for the treatment of autoimmune diseases and can elicit antitumor immune functions not only by several mechanisms including direct antigen engagement via their Fab arms but also by Fab binding to tumors combined with Fc engagement of complement component C1q and Fcγ receptors. Additionally, IgG binding to the neonatal Fc receptor (FcRn) allows for endosomal recycling and prolonged serum half-life. To augment the effector functions or half-life of an IgG1 mAb, we constructed a novel “2Fc” mAb containing two Fc domains in addition to the normal two Fab domains. Structural and functional characterization of this 2Fc mAb demonstrated that it exists in a tetrahedral-like geometry and retains binding capacity via the Fab domains. Furthermore, duplication of the Fc region significantly enhanced avidity for Fc receptors FcγRI, FcγRIIIa, and FcRn, which manifested as a decrease in complex dissociation rate that was more pronounced at higher densities of receptor. At intermediate receptor density, the dissociation rate for Fc receptors was decreased 6- to 130-fold, resulting in apparent affinity increases of 7- to 42-fold. Stoichiometric analysis confirmed that each 2Fc mAb may simultaneously bind two molecules of FcγRI or four molecules of FcRn, which is double the stoichiometry of a wild-type mAb. In summary, duplication of the IgG Fc region allows for increased avidity to Fc receptors that could translate into clinically relevant enhancement of effector functions or pharmacokinetics.  相似文献   

4.
Analysis of the strength and stoichiometry of immunoglobulin G (IgG) binding to neonatal Fc receptor (FcRn) and Fcγ receptor (FcγR) is important for evaluating the pharmacokinetics and effector functions of therapeutic monoclonal antibody (mAb) products, respectively. The current standard for assessing FcγR and FcRn binding is composed of cell-based and surface plasmon resonance (SPR) assays. In this work, asymmetrical flow field flow fractionation (AF4) was evaluated to establish the true stoichiometry of IgG binding in solution. AF4 and liquid chromatography–mass spectrometry (LC–MS) were applied to directly observe IgG/FcγR and IgG/FcRn complexes, which were not observed using nonequilibrium size exclusion chromatography (SEC) analysis. Human serum albumin (HSA), an abundant component of human blood and capable of binding FcRn, was studied in combination with FcRn and IgG. AF4 demonstrated that the majority of large complexes of IgG/FcRn/HSA were at an approximate 1:2:1 molar ratio. In addition, affinity measurements of the complex were performed in the sub-micromolar affinity range. A significant decrease in binding was detected for IgG molecules with increased oxidation in the Fc region. AF4 was useful in detecting weak binding between full-length IgG/Fc fragments and Fc receptors and the effect of chemical modifications on binding. AF4 is a useful technique in the assessment of mAb product quality attributes.  相似文献   

5.
《MABS-AUSTIN》2013,5(7):1276-1288
ABSTRACT

The neonatal Fc receptor (FcRn) promotes antibody recycling through rescue from normal lysosomal degradation. The binding interaction is pH-dependent with high affinity at low pH, but not under physiological pH conditions. Here, we combined rational design and saturation mutagenesis to generate novel antibody variants with prolonged half-life and acceptable development profiles. First, a panel of saturation point mutations was created at 11 key FcRn-interacting sites on the Fc region of an antibody. Multiple variants with slower FcRn dissociation kinetics than the wildtype (WT) antibody at pH 6.0 were successfully identified. The mutations were further combined and characterized for pH-dependent FcRn binding properties, thermal stability and the FcγRIIIa and rheumatoid factor binding. The most promising variants, YD (M252Y/T256D), DQ (T256D/T307Q) and DW (T256D/T307W), exhibited significantly improved binding to FcRn at pH 6.0 and retained similar binding properties as WT at pH 7.4. The pharmacokinetics in human FcRn transgenic mice and cynomolgus monkeys demonstrated that these properties translated to significantly prolonged plasma elimination half-life compared to the WT control. The novel variants exhibited thermal stability and binding to FcγRIIIa in the range comparable to clinically validated YTE and LS variants, and showed no enhanced binding to rheumatoid factor compared to the WT control. These engineered Fc mutants are promising new variants that are widely applicable to therapeutic antibodies, to extend their circulation half-life with obvious benefits of increased efficacy, and reduced dose and administration frequency.  相似文献   

6.
Glycosylation of the conserved asparagine residue in each heavy chain of IgG in the CH2 domain is known as N-glycosylation. It is one of the most common post-translational modifications and important critical quality attributes of monoclonal antibody (mAb) therapeutics. Various studies have demonstrated the effects of the Fc N-glycosylation on safety, Fc effector functions, and pharmacokinetics, both dependent and independent of neonatal Fc receptor (FcRn) pathway. However, separation of various glycoforms to investigate the biological and functional relevance of glycosylation is a major challenge, and existing studies often discuss the overall impact of N-glycans, without considering the individual contributions of each glycoform when evaluating mAbs with highly heterogeneous distributions. In this study, chemoenzymatic glycoengineering incorporating an endo-β-N-acetylglucosaminidase (ENGase) EndoS2 and its mutant with transglycosylation activity was used to generate mAb glycoforms with highly homogeneous and well-defined N-glycans to better understand and precisely evaluate the effect of each N-glycan structure on Fc effector functions and protein stability. We demonstrated that the core fucosylation, non-reducing terminal galactosylation, sialylation, and mannosylation of IgG1 mAb N-glycans impact not only on FcγRIIIa binding, antibody-dependent cell-mediated cytotoxicity, and C1q binding, but also FcRn binding, thermal stability and propensity for protein aggregation.  相似文献   

7.
Plants can provide a cost‐effective and scalable technology for production of therapeutic monoclonal antibodies, with the potential for precise engineering of glycosylation. Glycan structures in the antibody Fc region influence binding properties to Fc receptors, which opens opportunities for modulation of antibody effector functions. To test the impact of glycosylation in detail, on binding to human Fc receptors, different glycovariants of VRC01, a broadly neutralizing HIV monoclonal antibody, were generated in Nicotiana benthamiana and characterized. These include glycovariants lacking plant characteristic α1,3‐fucose and β1,2‐xylose residues and glycans extended with terminal β1,4‐galactose. Surface plasmon resonance‐based assays were established for kinetic/affinity evaluation of antibody–FcγR interactions, and revealed that antibodies with typical plant glycosylation have a limited capacity to engage FcγRI, FcγRIIa, FcγRIIb and FcγRIIIa; however, the binding characteristics can be restored and even improved with targeted glycoengineering. All plant‐made glycovariants had a slightly reduced affinity to the neonatal Fc receptor (FcRn) compared with HEK cell‐derived antibody. However, this was independent of plant glycosylation, but related to the oxidation status of two methionine residues in the Fc region. This points towards a need for process optimization to control oxidation levels and improve the quality of plant‐produced antibodies.  相似文献   

8.
The clinical use of therapeutic antibodies has increased sharply because of their many advantages over conventional small molecule drugs, particularly with respect to their affinity, specificity, and serum stability. Tumor or infected cells are removed by the binding of antibody Fc regions to Fc gamma receptors (FcγRs), which stimulate the activation of immune effector cells. Aglycosylated full-length IgG antibodies expressed in bacteria have different Fc conformations compared to their glycosylated counterparts produced in mammalian cells. As a result, they are unable to bind FcγRs, resulting in little to no activation of immune effector cells. In this study, we created a combinatorial library randomized at the upper CH2 loops of an aglycosylated Fc variant (Fc5: E382V/M428) and used a high-throughput flow cytometry library screening method, combined with bacterial display of homodimeric Fc domains for enhanced FcγR binding affinity. The trastuzumab Fc variant containing the identified mutations (Q295R, L328W, A330V, P331A, I332Y, E382V, M428I) not only exhibited over 120 fold higher affinity of specific binding to FcγRI than wild type aglycosylated Fc, but also retained pH-dependent FcRn binding. These results show that an aglycosylated antibody expressed in bacteria can be evolved for novel FcγR affinity and specificity.  相似文献   

9.
While glyco-engineered monoclonal antibodies (mAbs) with improved antibody-dependent cell-mediated cytotoxicity (ADCC) are reaching the market, extensive efforts have also been made to improve their pharmacokinetic properties to generate biologically superior molecules. Most therapeutic mAbs are human or humanized IgG molecules whose half-life is dependent on the neonatal Fc receptor FcRn. FcRn reduces IgG catabolism by binding to the Fc domain of endocytosed IgG in acidic lysosomal compartments, allowing them to be recycled into the blood. Fc-engineered mAbs with increased FcRn affinity resulted in longer in vivo half-life in animal models, but also in healthy humans. These Fc-engineered mAbs were obtained by alanine scanning, directed mutagenesis or in silico approach of the FcRn binding site. In our approach, we applied a random mutagenesis technology (MutaGenTM) to generate mutations evenly distributed over the whole Fc sequence of human IgG1. IgG variants with improved FcRn-binding were then isolated from these Fc-libraries using a pH-dependent phage display selection process. Two successive rounds of mutagenesis and selection were performed to identify several mutations that dramatically improve FcRn binding. Notably, many of these mutations were unpredictable by rational design as they were located distantly from the FcRn binding site, validating our random molecular approach. When produced on the EMABling® platform allowing effector function increase, our IgG variants retained both higher ADCC and higher FcRn binding. Moreover, these IgG variants exhibited longer half-life in human FcRn transgenic mice. These results clearly demonstrate that glyco-engineering to improve cytotoxicity and protein-engineering to increase half-life can be combined to further optimize therapeutic mAbs.  相似文献   

10.
《MABS-AUSTIN》2013,5(2):422-436
While glyco-engineered monoclonal antibodies (mAbs) with improved antibody-dependent cell-mediated cytotoxicity (ADCC) are reaching the market, extensive efforts have also been made to improve their pharmacokinetic properties to generate biologically superior molecules. Most therapeutic mAbs are human or humanized IgG molecules whose half-life is dependent on the neonatal Fc receptor FcRn. FcRn reduces IgG catabolism by binding to the Fc domain of endocytosed IgG in acidic lysosomal compartments, allowing them to be recycled into the blood. Fc-engineered mAbs with increased FcRn affinity resulted in longer in vivo half-life in animal models, but also in healthy humans. These Fc-engineered mAbs were obtained by alanine scanning, directed mutagenesis or in silico approach of the FcRn binding site. In our approach, we applied a random mutagenesis technology (MutaGenTM) to generate mutations evenly distributed over the whole Fc sequence of human IgG1. IgG variants with improved FcRn-binding were then isolated from these Fc-libraries using a pH-dependent phage display selection process. Two successive rounds of mutagenesis and selection were performed to identify several mutations that dramatically improve FcRn binding. Notably, many of these mutations were unpredictable by rational design as they were located distantly from the FcRn binding site, validating our random molecular approach. When produced on the EMABling® platform allowing effector function increase, our IgG variants retained both higher ADCC and higher FcRn binding. Moreover, these IgG variants exhibited longer half-life in human FcRn transgenic mice. These results clearly demonstrate that glyco-engineering to improve cytotoxicity and protein-engineering to increase half-life can be combined to further optimize therapeutic mAbs.  相似文献   

11.
Immunoglobulin G (IgG) Fc receptors play a critical role in linking IgG antibody-mediated immune responses with cellular effector functions. A high resolution map of the binding site on human IgG1 for human Fc gamma RI, Fc gamma RIIA, Fc gamma RIIB, Fc gamma RIIIA, and FcRn receptors has been determined. A common set of IgG1 residues is involved in binding to all Fc gamma R; Fc gamma RII and Fc gamma RIII also utilize residues outside this common set. In addition to residues which, when altered, abrogated binding to one or more of the receptors, several residues were found that improved binding only to specific receptors or simultaneously improved binding to one type of receptor and reduced binding to another type. Select IgG1 variants with improved binding to Fc gamma RIIIA exhibited up to 100% enhancement in antibody-dependent cell cytotoxicity using human effector cells; these variants included changes at residues not found at the binding interface in the IgG/Fc gamma RIIIA co-crystal structure (Sondermann, P., Huber, R., Oosthuizen, V., and Jacob, U. (2000) Nature 406, 267-273). These engineered antibodies may have important implications for improving antibody therapeutic efficacy.  相似文献   

12.
Human IgG is the main antibody class used in antibody therapies because of its efficacy and longer half-life, which are completely or partly due to FcγR-mediated functions of the molecules. Preclinical testing in mouse models are frequently performed using human IgG, but no detailed information on binding of human IgG to mouse FcγRs is available. The orthologous mouse and human FcγRs share roughly 60–70% identity, suggesting some incompatibility. Here, we report binding affinities of all mouse and human IgG subclasses to mouse FcγR. Human IgGs bound to mouse FcγR with remarkably similar binding strengths as we know from binding to human ortholog receptors, with relative affinities IgG3>IgG1>IgG4>IgG2 and FcγRI>>FcγRIV>FcγRIII>FcγRIIb. This suggests human IgG subclasses to have similar relative FcγR-mediated biological activities in mice.  相似文献   

13.
Non-human primate (NHP) studies are often an essential component of antibody development efforts before human trials. Because the efficacy or toxicity of candidate antibodies may depend on their interactions with Fcγ receptors (FcγR) and their resulting ability to induce FcγR-mediated effector functions such as antibody-dependent cell-meditated cytotoxicity and phagocytosis (ADCP), the evaluation of human IgG variants with modulated affinity toward human FcγR is becoming more prevalent in both infectious disease and oncology studies in NHP. Reliable translation of these results necessitates analysis of the cross-reactivity of these human Fc variants with NHP FcγR. We report evaluation of the binding affinities of a panel of human IgG subclasses, Fc amino acid point mutants and Fc glycosylation variants against the common allotypes of human and rhesus macaque FcγR by applying a high-throughput array-based surface plasmon resonance platform. The resulting data indicate that amino acid variation present in rhesus FcγRs can result in disrupted, matched, or even increased affinity of IgG Fc variants compared with human FcγR orthologs. These observations emphasize the importance of evaluating species cross-reactivity and developing an understanding of the potential limitations or suitability of representative in vitro and in vivo models before human clinical studies when either efficacy or toxicity may be associated with FcγR engagement.  相似文献   

14.
IgG has a long half-life through engagement of its Fc region with the neonatal Fc receptor (FcRn). The FcRn binding site on IgG1 has been shown to contain I253 and H310 in the CH2 domain and H435 in the CH3 domain. Altering the half-life of IgG has been pursued with the aim to prolong or reduce the half-life of therapeutic IgGs. More recent studies have shown that IgGs bind differently to mouse and human FcRn. In this study we characterize a set of hu3S193 IgG1 variants with mutations in the FcRn binding site. A double mutation in the binding site is necessary to abrogate binding to murine FcRn, whereas a single mutation in the FcRn binding site is sufficient to no longer detect binding to human FcRn and create hu3S193 IgG1 variants with a half-life similar to previously studied hu3S193 F(ab')2 (t1/2β, I253A, 12.23 h; H310A, 12.94; H435A, 12.57; F(ab')2, 12.6 h). Alanine substitutions in S254 in the CH2 domain and Y436 in the CH3 domain showed reduced binding in vitro to human FcRn and reduced elimination half-lives in huFcRn transgenic mice (t1/2β, S254A, 37.43 h; Y436A, 39.53 h; wild-type, 83.15 h). These variants had minimal effect on half-life in BALB/c nu/nu mice (t1/2β, S254A, 119.9 h; Y436A, 162.1 h; wild-type, 163.1 h). These results provide insight into the interaction of human Fc by human FcRn, and are important for antibody-based therapeutics with optimal pharmacokinetics for payload strategies used in the clinic.  相似文献   

15.
《MABS-AUSTIN》2013,5(4):915-927
Because the variable ability of the antibody constant (Fc) domain to recruit innate immune effector cells and complement is a major factor in antibody activity in vivo, convenient means of assessing these binding interactions is of high relevance to the development of enhanced antibody therapeutics, and to understanding the protective or pathogenic antibody response to infection, vaccination, and self. Here, we describe a highly parallel microsphere assay to rapidly assess the ability of antibodies to bind to a suite of antibody receptors. Fc and glycan binding proteins such as FcγR and lectins were conjugated to coded microspheres and the ability of antibodies to interact with these receptors was quantified. We demonstrate qualitative and quantitative assessment of binding preferences and affinities across IgG subclasses, Fc domain point mutants, and antibodies with variant glycosylation. This method can serve as a rapid proxy for biophysical methods that require substantial sample quantities, high-end instrumentation, and serial analysis across multiple binding interactions, thereby offering a useful means to characterize monoclonal antibodies, clinical antibody samples, and antibody mimics, or alternatively, to investigate the binding preferences of candidate Fc receptors.  相似文献   

16.
Immunostimulatory antibodies against the tumor necrosis factor receptors (TNFR) are emerging as promising cancer immunotherapies. The agonism activity of such antibodies depends on crosslinking to Fc gamma RIIB receptor (FcγRIIB) to enable the antibody multimerization that drives TNFR activation. Previously, Fc engineering was used to enhance the binding of such antibodies to Fcγ receptors. Here, we report the identification of Centyrins as alternative scaffold proteins with binding affinities to homologous FcγRIIB and FcγRIIA, but not to other types of Fcγ receptors. One Centyrin, S29, was engineered at distinct positions of an anti-OX40 SF2 antibody to generate bispecific and tetravalent molecules named as mAbtyrins. Regardless of the position of S29 on the SF2 antibody, SF2-S29 mAbtyrins could bind FcγRIIB and FcγRIIA specifically while maintaining binding to OX40 receptors. In a NFκB reporter assay, attachment of S29 Centyrin molecules at the C-termini, but not the N-termini, resulted in SF2 antibodies with increased agonism owing to FcγRIIB crosslinking. The mAbtyrins also showed agonism in T-cell activation assays with immobilized FcγRIIB and FcγRIIA, but this activity was confined to mAbtyrins with S29 specifically at the C-termini of antibody heavy chains. Furthermore, regardless of the position of the molecule, S29 Centyrin could equip an otherwise Fc-silent antibody with antibody-dependent cellular phagocytosis activity without affecting the antibody's intrinsic antibody-dependent cell-meditated cytotoxicity and complement-dependent cytotoxicity. In summary, the appropriate adoption FcγRII-binding Centyrins as functional modules represents a novel strategy to engineer therapeutic antibodies with improved functionalities.  相似文献   

17.
The IgG1 Fc is a dimeric protein that mediates important antibody effector functions by interacting with Fcγ receptors (FcγRs) and the neonatal Fc receptor (FcRn). Here, we report the discovery of a monomeric IgG1 Fc (mFc) that bound to FcγRI with very high affinity, but not to FcγRIIIa, in contrast to wild-type (dimeric) Fc. The binding of mFc to FcRn was the same as that of dimeric Fc. To test whether the high-affinity binding to FcγRI can be used for targeting of toxins, a fusion protein of mFc with a 38 kDa Pseudomonas exotoxin A fragment (PE38), was generated. This fusion protein killed FcγRI-positive macrophage-like U937 cells but not FcγRI-negative cells, and mFc or PE38 alone had no killing activity. The lack of binding to FcγRIIIa resulted in the absence of Fc-mediated cytotoxicity of a scFv-mFc fusion protein targeting mesothelin. The pharmacokinetics of mFc in mice was very similar to that of dimeric Fc. The mFc''s unique FcγRs binding pattern and related functionality, combined with its small size, monovalency and the preservation of FcRn binding which results in relatively long half-life in vivo, suggests that mFc has great potential as a component of therapeutics targeting inflammation mediated by activated macrophages overexpressing FcγRI and related diseases, including cancer.  相似文献   

18.
Ha S  Ou Y  Vlasak J  Li Y  Wang S  Vo K  Du Y  Mach A  Fang Y  Zhang N 《Glycobiology》2011,21(8):1087-1096
N-glycosylation of immunoglobulin G (IgG) at asparigine residue 297 plays a critical role in antibody stability and immune cell-mediated Fc effector function. Current understanding pertaining to Fc glycosylation is based on studies with IgGs that are either fully glycosylated [both heavy chain (HC) glycosylated] or aglycosylated (neither HC glycosylated). No study has been reported on the properties of hemi-glycosylated IgGs, antibodies with asymmetrical glycosylation in the Fc region such that one HC is glycosylated and the other is aglycosylated. We report here for the first time a detailed study of how hemi-glycosylation affects the stability and functional activities of an IgG1 antibody, mAb-X, in comparison to its fully glycosylated counterpart. Our results show that hemi-glycosylation does not impact Fab-mediated antigen binding, nor does it impact neonatal Fc receptor binding. Hemi-glycosylated mAb-X has slightly decreased thermal stability in the CH2 domain and a moderate decrease (~20%) in C1q binding. More importantly, the hemi-glycosylated form shows significantly decreased binding affinities toward all Fc gamma receptors (FcγRs) including the high-affinity FcγRI, and the low-affinity FcγRIIA, FcγRIIB, FcγRIIIA and FcγRIIIB. The decreased binding affinities to FcγRs result in a 3.5-fold decrease in antibody-dependent cell cytotoxicity (ADCC). As ADCC often plays an important role in therapeutic antibody efficacy, glycosylation status will not only affect the antibody quality but also may impact the biological function of the product.  相似文献   

19.
Monoclonal antibodies are traditionally used to block the function of a specific target in a given disease. However, some diseases are the consequence of multiple components or pathways and not the result of a single mediator; thus, blocking at a single point may not optimally control disease. Antibodies that simultaneously block the functions of two or more disease-associated targets are now being developed. Herein, we describe the design, expression, and characterization of several oligospecific antibody formats that are capable of binding simultaneously to two or three different antigens. These constructs were generated by genetically linking single-chain Fv fragments to the N-terminus of the antibody heavy and light chains and to the C-terminus of the antibody CH3 domain. The oligospecific antibodies were expressed in mammalian cells, purified to homogeneity, and characterized for binding to antigens, Fcγ receptors, FcRn, and C1q. In addition, the oligospecific antibodies were assayed for effector function, protease susceptibility, thermal stability, and size distribution. We demonstrate that these oligospecific antibody formats maintain high expression level, thermostability, and protease resistance. The in vivo half-life, antibody-dependent cellular cytotoxicity function, and binding ability to Fcγ receptors and C1q of the test oligospecific antibodies remain similar to the corresponding properties of their parental IgG antibodies. The excellent expression, biophysical stability, and potential manufacturing feasibility of these multispecific antibody formats suggest that they will provide a scaffold template for the construction of similar molecules to target multiple antigens in complex diseases.  相似文献   

20.
A glycoengineered Pichia pastoris host was used to produce an IgG1 with either afucosylated N-glycosylation (afucosylated biantennary complex) or without N-glycosylation (N297A) while a wild type P. pastoris host was used to produce an IgG1 containing fungal-type N- and O-linked glycosylation. The PK properties of these antibodies were compared to a commercial IgG1 produced in CHO cells following intravenous administration in wild type C57B6, FcγR-/- or hFcRn transgenic mice. MAbs produced in glycoengineered yeast exhibited similar PK properties in wild type mice or FcγR-/- mice with respect to clearance (CL), volume of distribution at steady-state (Vss) and half-life (t1/2) to that produced in mammalian (CHO) cells, while the mAb produced in wild type yeast exhibited ∼2–3-fold faster CL, which might be due to the high mannose content interacting with mannose receptors. Furthermore, in vitro binding affinity to human FcRn or mouse FcRn was similar between the reference mAb and mAbs produced in humanized yeast, and the glycovariants produced in humanized yeast exhibited similar PK patterns in human FcRn transgenic mice and in wild type mice. These results suggest the potential application of P. pastoris as a production platform for clinically viable mAbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号