首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于微卫星标记的桃蚜种群寄主遗传分化   总被引:4,自引:0,他引:4  
桃蚜Myzus persicae(Sulzer)是寄主范围最广、危害最大的蚜虫种类之一。为了探明桃蚜在不同寄主上的遗传分化特点,采用微卫星分子标记技术,对西兰花、桃树、辣椒上的桃蚜种群进行遗传多样性和遗传结构研究。结果表明,在所选用的5个微卫星位点上共检测到38个等位基因,平均每个位点的等位基因数达到7.6个,桃树种群遗传多样性最高,这可能是因为各种夏寄主上的桃蚜迁回桃树上越冬,从而使多种等位基因和基因型得以聚集的原因。等位基因频率差异分析显示西兰花种群、桃树种群和辣椒种群两两之间(除了桃树06种群和辣椒06种群之间没有遗传分化外)都出现了明显遗传分化,相比之下桃树种群和辣椒种群的分化程度要比桃树种群和西兰花种群的分化程度低,这可能预示着西兰花寄主上的桃蚜正在向远离桃树和辣椒种群的方向进化。  相似文献   

2.
The program structure has been used extensively to understand and visualize population genetic structure. It is one of the most commonly used clustering algorithms, cited over 11 500 times in Web of Science since its introduction in 2000. The method estimates ancestry proportions to assign individuals to clusters, and post hoc analyses of results may indicate the most likely number of clusters, or populations, on the landscape. However, as has been shown in this issue of Molecular Ecology Resources by Puechmaille ( 2016 ), when sampling is uneven across populations or across hierarchical levels of population structure, these post hoc analyses can be inaccurate and identify an incorrect number of population clusters. To solve this problem, Puechmaille ( 2016 ) presents strategies for subsampling and new analysis methods that are robust to uneven sampling to improve inferences of the number of population clusters.  相似文献   

3.
日本落叶松群体的叶绿体SSR分析   总被引:7,自引:0,他引:7  
张新叶  白石进  黄敏仁 《遗传》2004,26(4):486-490
利用叶绿体微卫星(cpSSR)分子标记对日本国内的7个日本落叶松(Larix kaempferi)群体遗传结构进行了研究。11对cpSSR引物中筛选出的3对多态性引物,共产生10个长度不同片段,在197个样品中组合出现10个不同的单倍型(haplotype)。各群体的单倍型差异较大。cpSSR基因座揭示了日本落叶松的遗传变异:平均等位基因数A=3.33,平均有效等位基因数NE=1.20,基因多样度HE=0.17,群体间变异占总群体变异的5.37%,遗传变异主要来自于群体内个体间。Abstract: Genetic structure of seven populations in Larix kaempferi in Japan was studied by use of cpSSR markers. Ten different length fragments in and ten different kinds of haplotypes were reduced in 197 samples based on 3 pairs of polymorphic primers screened from 11 pairs of primers. There were significant variant haplotypes among the populations. The genetic variation in the populations of Larix kaempferi was detected by using cpSSR with the number of average loci A=3.33, the number of average efficient loci NE=1.20, gene diversity HE=0.17 and 5.37% variation from different populations. The genetic variation was mainly from individuals in population.  相似文献   

4.
Genetic effects of habitat fragmentation may be undetectable because they are generally a recent event in evolutionary time or because of confounding effects such as historical bottlenecks and historical changes in species'' distribution. To assess the effects of demographic history on the genetic diversity and population structure in the Neotropical tree Dipteryx alata (Fabaceae), we used coalescence analyses coupled with ecological niche modeling to hindcast its distribution over the last 21 000 years. Twenty-five populations (644 individuals) were sampled and all individuals were genotyped using eight microsatellite loci. All populations presented low allelic richness and genetic diversity. The estimated effective population size was small in all populations and gene flow was negligible among most. We also found a significant signal of demographic reduction in most cases. Genetic differentiation among populations was significantly correlated with geographical distance. Allelic richness showed a spatial cline pattern in relation to the species'' paleodistribution 21 kyr BP (thousand years before present), as expected under a range expansion model. Our results show strong evidences that genetic diversity in D. alata is the outcome of the historical changes in species distribution during the late Pleistocene. Because of this historically low effective population size and the low genetic diversity, recent fragmentation of the Cerrado biome may increase population differentiation, causing population decline and compromising long-term persistence.  相似文献   

5.
The ability of natural populations to adapt to new environmental conditions is crucial for their survival and partly determined by the standing genetic variation in each population. Populations with higher genetic diversity are more likely to contain individuals that are better adapted to new circumstances than populations with lower genetic diversity. Here, we use both neutral and major histocompatibility complex (MHC) markers to test whether small and highly fragmented populations hold lower genetic diversity than large ones. We use black grouse as it is distributed across Europe and found in populations with varying degrees of isolation and size. We sampled 11 different populations; five continuous, three isolated, and three small and isolated. We tested patterns of genetic variation in these populations using three different types of genetic markers: nine microsatellites and 21 single nucleotide polymorphisms (SNPs) which both were found to be neutral, and two functional MHC genes that are presumably under selection. The small isolated populations displayed significantly lower neutral genetic diversity compared to continuous populations. A similar trend, but not as pronounced, was found for genotypes at MHC class II loci. Populations were less divergent at MHC genes compared to neutral markers. Measures of genetic diversity and population genetic structure were positively correlated among microsatellites and SNPs, but none of them were correlated to MHC when comparing all populations. Our results suggest that balancing selection at MHC loci does not counteract the power of genetic drift when populations get small and fragmented.  相似文献   

6.
Reintroduction of terrestrial vertebrates with the goal of ecosystem restoration typically establishes small and isolated populations that may experience reduced genetic variability due to founder effects and genetic drift. Understanding the genetic structure of these populations and maintaining adequate genetic diversity is important for long‐term restoration success. We quantified genetic variability at six microsatellite loci for a reintroduced population of Cervus elaphus (elk) restored to the tallgrass prairie ecosystem of northeastern Kansas. Allelic richness, observed and expected heterozygosity were intermediate to levels reported in other North American elk populations. Current levels of genetic variability in restored North American elk populations were not well explained by founding population size, number of founding populations, or number of years since the last translocation. Simulation results suggest that the retention of genetic variability in isolated populations is strongly influenced by mating system while also being impacted by temporal variability in population size and population growth rate. Our results have implications for understanding how translocation strategies and post‐reintroduction management may influence genetic variability in restored populations.  相似文献   

7.
This study examined the genetic diversity in 20 rice landrace populations from parts of traditional farming areas of the Indian Himalayas using 11 mapped simple sequence repeats (SSR) loci. Twenty‐four individuals sampled from each of the 20 landraces (480 individuals), which were collected from farmers from Northwest to Northeast Himalaya, showed that all landraces showed within population variation and none were homogeneous. The number of polymorphic loci in a landrace population ranged from 5 to 11. A total of 71 alleles were recorded of which 58 were common and 13 were rare. Of the 71 alleles, 46 were common to both Northwest and Northeast regions, whereas 9 were unique to the former and 16 were unique to the latter. The mean number of alleles per locus was 6.45 and for landrace populations from Northwest and Northeast regions were 5.0 and 5.64, respectively. Population differentiation, as shown by a high FST value (0.61), was greater for Northeast populations. The unweighted pair group method with arithmetic mean (UPGMA) dendrogram classified the populations into three major clusters: cluster I comprised seven populations from the Northwest region, cluster II comprised seven populations from the Northeast region and cluster III comprised populations from both regions. Investigating the population genetic structure can help monitor change in diversity over time and space, and also help devise a rational plan for management of crop landraces on‐farm under farmer management.  相似文献   

8.
Guidelines designed to aid in the restoration of rare species have been previously proposed using two primary strategies to select individuals for augmentation and reintroduction: mixing progeny from different populations or separating individuals from different populations. Understanding the genetic structure and diversity of an endangered species can offer insights into conservation management strategies. We used random amplified polymorphic DNA markers to assess the genetic structure and diversity of Jacquemontia reclinata , a federally endangered species endemic to Southeastern Florida. We sampled 20 percent of total number of individuals from eight of the ten known wild populations. Across individuals high levels of polymorphic loci (94.7%) were found and larger populations had greater genetic diversity. Cluster and ordination analyses found that one population was genetically differentiated from all the others; this population grows in a unique habitat. Most genetic variation (77.5%) was found within populations, and genetic distances between populations were not explained by their geographic distances. We recommend the use of two management units in restoration programs for J. reclinata , one consisting of the genetically differentiated population and the second consisting of the other seven populations sampled.  相似文献   

9.
During the last decade, an invasive wheatgrass species (Elytrigia pycnantha) has colonized the low salt marshes of the Mont Saint Michel Bay resulting in an accelerated change in the vegetation. This study was conducted using microgeographical genetic diversity in order to understand the genetic structure of this invasive and clonal species. Genetic variation and population structure of fifteen populations collected in high and low marsh habitats around the Bay were analyzed using five microsatellite loci. Because E. pycnantha is an allohexaploid, the application of standard genetic diversity statistics was not possible; we chose to summarize genetic diversity using statistics calculated from banding phenotypes. The mean number of alleles per locus was 10.2, the mean number of different alleles per sample was 6.87. The mean number of allelic phenotypes across all populations was 7.21. The mean value of genetic diversity for the species, calculated as the average number of alleles by which pairs of individuals differ, was H's = 1.91 and H't = 2.04. Little genetic differentiation among populations was detected (0.067). The association between pairwise genetic differentiation and geographic distances exhibited no evidence for isolation by distance. A geographical pattern of population differentiation, where a single population GI was clearly separated from the remaining population groups (considered as a metapopulation), was revealed by principal component analysis (PCA), and we propose that this is because GI represents a new genotype.  相似文献   

10.
Genetic affinity of human populations based on allele frequency data was studied from two viewpoints. (1) The effect of the number of polymorphic loci on the reconstruction of a phylogenetic tree of human populations was empirically investigated. Genetic affinity trees were constructed based on data for 1–12 polymorphic loci, by using the neighbor-joining method. Geographical clustering of populations gradually appeared when the number of loci was increased. A new classification and terminology of higher order human population clusters is proposed based on these and other studies. (2) A new method of estimating the absolute divergence time of two populations is proposed, which is based on a diffusion equation that describes random genetic drift.  相似文献   

11.
Although many studies have shown that animal-associated bacterial species exhibit linkage disequilibrium at chromosomal loci, recent studies indicate that both animal-associated and soil-borne bacterial species can display a nonclonal genetic structure in which alleles at chromosomal loci are in linkage equilibrium. To examine the situation in soil-borne species further, we compared genetic structure in two soil populations of Rhizobium leguminosarum bv. trifolii and two populations of R. leguminosarum bv. viciae from two sites in Oregon, with genetic structure in R. leguminosarum bv. viciae populations recovered from peas grown at a site in Washington, USA, and at a site in Norfolk, UK. A total of 234 chromosomal types (ET) were identified among 682 strains analysed for allelic variation at 13 enzyme-encoding chromosomal loci by multilocus enzyme electrophoresis (MLEE). Chi-square tests for heterogeneity of allele frequencies showed that the populations were not genetically uniform. A comparison of the genetic diversity within combined and individual populations confirmed that the Washington population was the primary cause of genetic differentiation between the populations. Each individual population exhibited linkage disequilibrium, with the magnitude of the disequilibrium being greatest in the Washington population and least in the UK population of R. leguminosarum bv. viciae. Linkage disequilibrium in the UK population was created between two clusters of 9 and 23 ETs, which, individually, were in linkage equilibrium. Strong linkage disequilibrium between the two major clusters of 8 and 12 ETs in the Washington population was caused by the low genetic diversity of the ETs within each cluster relative to the inter-cluster genetic distance. Because neither the magnitude of genetic diversity nor of linkage disequilibrium increased as hierarchical combinations of the six local populations were analysed, we conclude that the populations have not been isolated from each other for sufficient time, nor have they been exposed to enough selective pressure to develop unique multilocus genetic structure.  相似文献   

12.
Parapiptadenia rigida is a tropical early secondary succession tree characteristic of the Tropical Atlantic Rainforest. This species is of great ecological importance in the recovery of degraded areas. In this study we investigated the variability and population genetic structure of eight populations of P. rigida. Five AFLP primer combinations were used in a sample of 159 individuals representing these eight populations, rendering a total of 126 polymorphic fragments. The averages of percentage of polymorphic loci, gene diversity, and Shannon index were 60.45%, 0.217, and 0.322, respectively. A significant correlation between the population genetic variability and the population sizes was observed. The genetic variability within populations (72.20%) was higher than between these (22.80%). No perfect correlation was observed between geographic and genetic distances, which might be explained by differences in deforestation intensities that occurred in these areas. A dendrogram constructed by the UPGMA method revealed the formation of two clusters, these also confirmed by Bayesian analysis for the number of K cluster. These results show that it is necessary to develop urgent management strategies for the conservation of certain populations of P. rigida, while other populations still preserve reasonably high levels of genetic variability.  相似文献   

13.
根据 2 2个等位酶位点遗传变异 ,探讨了韩国境内委陵菜 (PotentillafragarioidesL .var.sprengeliana)的遗传多样性和种群结构。酶位点的多态位点百分比为 5 9 1%。种和种群水平上的遗传多样性比较高 ,分别为Hes=0 .2 10 ,Hep=0 .199;而种群的分化水平则相对较低 (GST=0 .0 74)。 19个种群中随机交配的偏差为FIS=0 .331。每代迁移数的间接估计 (Nm=3.15 )表明该种在韩国的种群间基因流较高。另外 ,固定指数分析显示在一些种群和位点有轻微的杂合子缺乏。种群间平均遗传一致度为 0 985。这些韩国委陵菜种群存在于较为均一的生境 ,这很有可能是造成其种群遗传一致性较高的原因。  相似文献   

14.
Nuclear genetic diversity and differentiation of 341 sheep belonging to 12 sheep breeds from Croatia and Bosnia and Herzegovina were examined. The aim of the study was to provide the understanding of the genetic structure and variability of the analysed pramenka sheep populations, and to give indications for conservation strategies based on the population diversity and structure information. The genetic variation of the sheep populations, examined at the nuclear level using 27 microsatellite loci, revealed considerable levels of genetic diversity, similar to the diversity found in other European indigenous low-production sheep breeds. Population-specific alleles were detected at most loci and in breeds analysed. The observed heterozygosity ranged from 0.643 (in Lika pramenka) to 0.743 (in Vlasic pramenka), and the expected heterozygosity ranged from 0.646 (in Lika pramenka) to 0.756 (in Dalmatian pramenka). Significant inbreeding coefficients were found for half of the populations studied and ranged from 0.040 (Pag island sheep) to 0.091 (Kupres pramenka). Moderate genetic differentiation was found between the studied sheep populations. The total genetic variability observed between different populations was 5.29%, whereas 94.71% of the variation was found within populations. Cres island sheep, Lika pramenka and Istrian sheep were identified as the most distinct populations, which was confirmed by the factorial analysis of correspondence and supported through a bootstrapping adjustment to correct for the difference in the sample sizes. The population structure analysis distinguished 12 clusters for the 12 sheep breeds analysed. However, the cluster differentiation was low for Dalmatian, Vlasic, Stolac and Krk pramenka. This systematic study identified Lika pramenka and Rab island sheep as those with the lowest diversity, whereas Istrian sheep and Pag island sheep had the highest. Conservation actions are proposed for Istrian, Rab and Cres island sheep, Lika and Kupres pramenka because of high estimated coefficients of inbreeding.  相似文献   

15.
Microsatellite diversity at 18 loci was analysed in 94 individual plants of 10 wild barley, Hordeum spontaneum (C. Koch) Thell., populations sampled from Israel across a southward transect of increasing aridity. Allelic distribution in populations was not distributed randomly. Estimates of mean gene diversity were highest in stressful arid-hot environments. Sixty-four per cent of the genetic variation was partitioned within populations and 36% between populations. Associations between ecogeographical variables and gene diversity, H(e), were established in nine microsatellite loci. By employing principle component analysis we reduced the number of ecogeographical variables to three principal components including water factors, temperature and geography. At three loci, stepwise multiple regression analysis explained significantly the gene diversity by a single principal component (water factors). Based on these observations it is suggested that simple sequence repeats are not necessarily biologically neutral.  相似文献   

16.
Although Brook Trout are distributed across most of eastern North America, population numbers have declined in many regions due to habitat loss, climate change, and competition with non‐native species. In New York State, Brook Trout habitat has been substantially reduced, with many areas showing complete extirpation of Brook Trout populations, predominantly in the western portion of the state. Small, fragmented populations are at risk of genetic diversity loss, inbreeding depression, and reduced fitness, leading to a greater potential for local extirpation. Genetic monitoring is a practical tool that can facilitate further conservation‐decision making regarding small populations. In this study, we used 12 microsatellite loci to examine 3,436 sampled Brook Trout, representing 75 sites from the Allegheny, Erie/Niagara, Genesee, Oswego, Lake Ontario, and Susquehanna drainage basins throughout western New York State. Three Brook Trout hatchery strains were also genetically characterized to evaluate the degree of hatchery introgression between wild populations and hatchery strains stocked in the region. Overall, estimates of genetic diversity varied widely: Allelic richness ranged from 2.23 to 7.485, and expected heterozygosity ranged from 0.402 to 0.766. As observed for Brook Trout in other regions, we found a high degree of genetic differentiation among populations, with all comparisons except one showing significant FST values. Hatchery introgression was found to be minimal, with estimates ranging from 1.96% to 3.10% of wild individuals exhibiting membership proportions to a hatchery strain cluster exceeding 10% (q ≥ 0.10). Results from this investigation can be used to prioritize management efforts for Brook Trout in western New York State and act as a baseline to monitor future population trends.  相似文献   

17.
The pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), a cotton pest probably native to Indo-Pakistan, invaded China at the beginning of the 20th century. Chinese P. gossypiella have been assumed to be the result of indiscriminate introductions from Pakistan and America by transport of cotton seed. We tested this long-held hypothesis and genotyped a total of 527 individuals from 14 sites at 13 microsatellite loci. We analyzed these data with traditional statistics as well as with Bayesian methods. The loci were, for the most part, highly polymorphic. The allelic richness of Chinese populations at six loci was greater than those of the Pakistani and American populations. Significant deficits of heterozygotes were recorded for all 14 populations, and null alleles were the most probable factor contributing to these deficits. Pairwise FST estimates showed that there was significant differentiation among the pooled Chinese, Pakistani, and American populations, and there was structure within most of the Chinese populations. The Bayesian analysis revealed that the combined Chinese, American, and Pakistani populations formed separate clusters, and the nine Chinese populations were divided into two clusters. Allelic frequency distributions showed that private and shared alleles within Chinese P. gossypiella were derived only partly from the Pakistani and American populations. The microsatellite-based genetic analyses suggested that the Chinese P. gossypiella populations originated from multiple sources.  相似文献   

18.
The genetic diversity and population structure of Potentilla fragarioides var. sprengeliana(Rosaceae) in Korea were investigated using genetic variation at 22 allozyme loci. The percent of polymorphic loci within the enzymes was 59.1%. The genetic diversity at the species level and at the population level was high (Hes=0.210; Hep=0.199, respectively), whereas the extent of the population divergence was relatively low (GST=0.074). FIS, a measure of the deviation from random mating within the 19 populations, was 0.331. An indirect estimate of the number of migrants per generation (Nm=3.15) indicates that gene flow is high among Korean populations of the species. In addition, analysis of fixation indices revealed a slight heterozygote deficiency in some populations and at some loci. The mean genetic identity between populations was 0.985. It is highly probable that the trend of genetic uniformity in a relatively homogeneous habitat is thought to be operated among Korean populations of P. fragarioides var.sprengeliana.  相似文献   

19.
In order to analyze population genetic structure at multiple spatial scales, microsatellite loci were developed for the ornamented pygmy flog (Microhylafissipes), and 15 polymorphic microsatellite loci were successfully screened from 105 individuals, of which 82 from four populations distributed in the Sichuan Basin and 23 from the Sangzhi population in western Hunan. Five loci were found to deviate significantly from Hardy-Weinberg equilibrium in one to three popu lations, probably due to small sample size or null alleles. The average number of alleles in all loci was 8.5, ranging from 4 to 13, and the observed and expected heterozygosity ranged from 0.26 to 0.90 and 0.63 to 0.90, respectively. The Sangzhi population and the remaining four populations can be clearly separated using Bayesian clustering methods, showing that the genetic structure of M. fissipes was probably affected by the topography, especially mountain barriers. These polymorphic microsatellite loci could be used for further study on the landscape genetics of this highly adaptive and widely distributed species.  相似文献   

20.
We determined the genetic diversity and population structures ofCarex breviculmis (Cyperaceae) populations in Korea, using genetic variations at 23 allozyme loci.C. breviculmis is a long-lived herbaceous species that is widely distributed in eastern Asia. A high level of genetic variation was found in 15 populations. Twelve enzymes revealed 23 loci, of which 11 were polymorphic (47.8%). Genetic diversity at the speciesand population levels were 0.174 and 0.146, respectively. Total genetic diversity (HT = 0.363) and within-population genetic diversity (Hs = 0.346) were high, whereas the extent of the population divergence was relatively low (GST = 0.063). Deviation from random mating (Fis) within the 15 populations was 0.206. An indirect estimate of the number of migrants per generation(Nm = 3.69) indicated that gene flow was extensive among Korean populations of this species. Analysis of fixation indices revealed a substantial heterozygote deficiency in some populations and at some loci. Genetic identity between popu-lations was high, exceeding 0.956.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号