首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Metabolic Ecology Model predicts that tree diameter ( D ) growth ( dD/dt ) scales with D 1/3. Using data on diameter growth and height–diameter relationships for 56 and 40 woody species, respectively, from forests throughout New Zealand, we tested one prediction and two assumptions of this model: (i) the exponent of the growth–diameter scaling relationship equals 1/3 and is invariant among species and growth forms, (ii) small and large individuals are invariant in their exponents and (iii) tree height scales with D 2/3. We found virtually no support for any prediction or assumption: growth–diameter scaling exponents varied substantially among species and growth forms, correlated positively with species' maximum height, and shifted significantly with increasing individual size. Tree height did not scale invariantly with diameter. Based on a quantitative test, violation of these assumptions alone could not explain the model's poor fit to our data, possibly reflecting multiple, unsound assumptions, as well as unaccounted-for variation that should be incorporated.  相似文献   

2.
3.
1.  Metabolic rate is conventionally assumed to scale with body mass to the 3/4-power, independently of the metabolic level of the organisms being considered. However, recent analyses in a variety of animals and plants indicate that the power (log–log slope) of this relationship varies significantly with metabolic level, ranging from c . 2/3 to 1.
2.  Here I show that the scaling slopes of rates of respiration and growth are related to the metabolic level of a variety of unicellular organisms, as similarly occurs for respiration rates in multicellular organisms.
3.  The recently proposed 'metabolic-level boundaries hypothesis' provides insight into these effects of metabolic level. As predicted, the scaling slopes for resting (endogenous) respiration rate in prokaryotes, algae and protozoans are negatively related to metabolic level; and in protozoans, the scaling slope increases with starvation. Also as predicted, the scaling slopes of growth rate in algae and protozoans are negatively related to growth level. Unexpectedly, opposite effects of starvation on the metabolic scaling slopes of unicellular prokaryotes (compared to that of eukaryotes) may be a spurious result of respiration measurements that did not adequately consider the effects of rapid cell multiplication in prokaryotes with extremely short generation times.
4.  Analyses of both unicellular and multicellular organisms show that there is no universal metabolic scaling relationship, and that variation in metabolic scaling relationships is systematically and possibly universally related to metabolic level.  相似文献   

4.
生态学中的尺度及尺度转换方法   总被引:95,自引:19,他引:95  
吕一河  傅伯杰 《生态学报》2001,21(12):2096-2105
尺度作为生态学的重要范式,已经引起了广泛重视,但对尺度问题的研究还不够成熟.尺度具有多维性特点,即功能尺度、空间尺度、时间尺度等,但生态学研究的重点是空间和时间尺度.并且时空尺度还具有复杂性、变异性特征.尺度研究的根本目的在于通过适宜的空间和时间尺度来揭示和把握复杂的生态学规律.为此,科学有效的尺度选择和尺度转换方法不可或缺.常见的尺度转换方法有图示法、回归分析、变异函数、自相关分析、谱分析、分形和小波变换,同时遥感和地理信息系统技术在尺度研究中也发挥着重要作用.结合实例对上述方法进行了分析和论述,认为各种方法都有其内在的优势和不足,新方法的引入和应用对于尺度转换方法体系的充实和完善非常重要.有关尺度的研究将进一步加强,研究的重点是尺度变异性、不同尺度间的相互作用机制以及尺度转换方法等.  相似文献   

5.
The significance of xylem function and metabolic scaling theory begins from the idea that water transport is strongly coupled to growth rate. At the same time, coordination of water transport and growth seemingly should differ between plant functional types. We evaluated the relationships between water transport, growth and species stature in six species of co‐occurring trees and shrubs. Within species, a strong proportionality between plant hydraulic conductance (K), sap flow (Q) and shoot biomass growth (G) was generally supported. Across species, however, trees grew more for a given K or Q than shrubs, indicating greater growth‐based water‐use efficiency (WUE) in trees. Trees also showed slower decline in relative growth rate (RGR) than shrubs, equivalent to a steeper G by mass (M) scaling exponent in trees (0.77–0.98). The K and Q by M scaling exponents were common across all species (0.80, 0.82), suggesting that the steeper G scaling in trees reflects a size‐dependent increase in their growth‐based WUE. The common K and Q by M exponents were statistically consistent with the 0.75 of ideal scaling theory. A model based upon xylem anatomy and branching architecture consistently predicted the observed K by M scaling exponents but only when deviations from ideal symmetric branching were incorporated.  相似文献   

6.

Background and Aims

Height gain plays an important role in plant life-history strategies and species coexistence. Here main-stem costs of height gain of saplings across species within a rainforest community are compared.

Methods

Scaling relationships of height to diameter at the sapling stage were compared among 75 woody rainforest plant species in subtropical eastern Australia using standardized major axis regression. Main-stem costs of height gain were then related to other functional traits that reflect aspects of species ecological strategies.

Key Results

Slopes (β) for the height–diameter (H–D) scaling relationship were close to 1·3, in line with previous reports and with theory. Main-stem volume to achieve 5 m in height varied substantially between species, including between species within groups based on adult height and successional status. The variation was largely independent of other species traits, being uncorrelated with mature plant height (Hmax) and with leaf size, and weakly negatively correlated with wood density and seed size. The relationship between volume to reach 5 m and wood density was too weak to be regarded as a trade-off. Estimated main-stem dry mass to achieve 5 m height varied almost three-fold across species, with wood density and stem volume contributing roughly equally to the variation.

Conclusion

The wide range in economy of sapling height gain reported here is presumed to be associated with a trade-off between faster growth and higher mortality rates. It is suggested that wide diameters would have a stronger effect in preventing main-stem breakage in the short term, while high wood density would have a stronger effect in sustaining stem strength over time.  相似文献   

7.
8.
Knowledge of feeding rates is the basis to understand interaction strength and subsequently the stability of ecosystems and biodiversity. Feeding rates, as all biological rates, depend on consumer and resource body masses and environmental temperature. Despite five decades of research on functional responses as quantitative models of feeding rates, a unifying framework of how they scale with body masses and temperature is still lacking. This is perplexing, considering that the strength of functional responses (i.e. interaction strengths) is crucially important for the stability of simple consumer–resource systems and the persistence, sustainability and biodiversity of complex communities. Here, we present the largest currently available database on functional response parameters and their scaling with body mass and temperature. Moreover, these data are integrated across ecosystems and metabolic types of species. Surprisingly, we found general temperature dependencies that differed from the Arrhenius terms predicted by metabolic models. Additionally, the body-mass-scaling relationships were more complex than expected and differed across ecosystems and metabolic types. At local scales (taxonomically narrow groups of consumer–resource pairs), we found hump-shaped deviations from the temperature and body-mass-scaling relationships. Despite the complexity of our results, these body-mass- and temperature-scaling models remain useful as a mechanistic basis for predicting the consequences of warming for interaction strengths, population dynamics and network stability across communities differing in their size structure.  相似文献   

9.
WBE 模型及其在生态学中的应用:研究概述   总被引:7,自引:0,他引:7  
李妍  李海涛  金冬梅  孙书存 《生态学报》2007,27(7):3018-3031
介绍了WBE模型,综述了该模型在生态学中的应用进展。WBE模型,以及以该模型为基础的MTE模型,假设生物体为自相似分形网络结构,提出代谢速率和个体大小之间存在3/4指数关系,分别预测了从个体到生物圈多个尺度上的生物属性之间的异速生长关系,而且部分得到了验证。WBE模型的应用涵盖了个体组织生物量、年生长率,种群密度和生态系统单位面积产量、能量流动率等多个方面;即使在生物圈大尺度上,WBE模型也可用来预测试验中无法直接测量的特征变量的属性,如全球碳储量的估算等。至今,关于WBE和MTE模型仍然存在各种褒贬争论,讨论焦点主要集中于模型建立的前提假设以及权度指数的预测。今后的研究工作应规范试验技术和方法,考虑物种多样性和环境等因素的影响,提出符合各类生物的模型结构体系,使其具有更广泛的应用性和预测性。  相似文献   

10.
择伐对阔叶红松林主要树种径向与纵向生长的影响   总被引:2,自引:0,他引:2  
蒋子涵  金光泽 《生态学报》2010,30(21):5843-5852
对择伐37a后的阔叶红松(Pinus koraiensis)林与原始林主要组成树种的年轮和树高数据进行分析,旨在了解择伐对其径向与纵向生长的影响。结果表明:(1)择伐显著促进了主要树种的径向生长(P0.01),但生长增加量在树种间存在显著差异(P0.01),其反应的强弱与耐荫性有关(r=-0.79,P0.01),因择伐所导致的生长加速会持续26—29a。(2)择伐显著减小了主要树种的树高-胸径比(P0.01),即同等胸径时择伐林的树木较矮,因此在计算择伐林蓄积量时应对树高进行实测。(3)径向生长率与树高、胸径之间存在显著相关性(原始林:r=0.65*,r=0.58*;择伐林:r=0.53*,r=0.48*),择伐林内每一树高级的径向生长率均高于原始林,其中树高级在10m以下的树木差异最大(0.69),说明择伐有利于林下树木的生长。择伐显著增加了DBH40cm树木的径向生长率,其中胸径在20—40cm之间的树木有较大的伐后生长率,应予以保护。  相似文献   

11.
Above-ground forest productivity can be reliably estimated from tree-ring width measurements. In doing so, annual growth is linked to the tree’s basal area increment (BAI), which is the change in cross-sectional area associated with each annual ring. When BAI is estimated from ring-width series, a value for the diameter of the tree is required. This diameter is ideally measured in the field, but can also be estimated as the sum of the annual ring widths. Tree biomass can also be estimated directly from the diameter estimates derived from tree-rings. Summing the ring widths, however, typically underestimates the tree’s true diameter. To evaluate this potential bias in diameter, we compared field-measured diameter and diameter estimated from the sum of the ring widths using tree-ring chronologies for seven common species in the eastern United States. We then evaluated the impacts of using the biased diameter estimates on derived BAI and biomass values. To simulate field-sampling error (i.e., failure to reach the pith when obtaining a core sample), we re-calculated BAI and biomass after removing a portion of the innermost rings from each tree. Comparisons of these various methods quantify the substantial and consistent underestimations in forest productivity estimates. To reduce the bias in diameter when using ring widths, we developed a regression model to adjust the diameter using core samples. This model is predicated on having some field-measured diameter values available at a site to calibrate and validate the model, but it can then be used to produce estimates at similar sites with similar species where no field-measured diameter values are available. Values of BAI and biomass derived from model-estimated diameter were more accurate at representing absolute growth than values produced by using the sum of the ring widths. Assessing the interannual variations in tree-growth is dependent on having metrics that accurately reflect the area and mass of wood produced. Our results suggest that published estimates of BAI and biomass using the sum of the ring widths to estimate diameter have substantially underestimated these productivity metrics. Our new procedure allows for more reliable estimates of productivity metrics that use diameter-at-breast height derived from tree rings.  相似文献   

12.
The scaling of metabolic rate with body mass has long been a controversial topic. Some workers have claimed that the slope of log-log metabolic scaling relationships typically obeys a universal 3/4-power law resulting from the geometry of resource-transport networks. Others have attempted to explain the broad diversity of metabolic scaling relationships. Although several potentially useful models have been proposed, at present none successfully predicts the entire range of scaling relationships seen among both physiological states and taxonomic groups of animals and plants. Here I argue that our understanding may be aided by three shifts in focus: from explaining average tendencies to explaining variation between extreme boundary limits, from explaining the slope and elevation (metabolic level) of scaling relationships separately to showing how and why they are interrelated, and from focusing primarily on internal factors (e.g. body design) to a more balanced consideration of both internal and external (ecological) factors. By incorporating all of these shifts in focus, the recently proposed metabolic-level boundaries hypothesis appears to provide a useful way of explaining both taxonomic and physiological variation in metabolic scaling relationships. This hypothesis correctly predicts that the scaling slope should vary mostly between 2/3 and 1 and that it should be related to metabolic (activity) level according to an approximately U-shaped function. It also implies that the scaling of other energy-dependent biological processes should be related to the metabolic level of the organisms being examined. Some data are presented that support this implication, but further research is needed.  相似文献   

13.
Summary Previous work has suggested that tree stems are structured dimensionally to resist the forces to which they are subjected by the weight of the crown and the action of wind, snow and other loads on the crown. This proposition has been used to develop allometric relationships relating diameter at breast height or height of individual trees growing in even-aged monoculture to their above-ground fresh biomass. These models have practical application as estimators of tree diameters or heights from tree biomass as extensions of mechanistically based models of forest tree growth which predict tree biomasses. The present work applied these models to Eucalyptus regnans F. Muell, E. delegatensis R. Baker, E. nitens (Deane: Maiden) Maiden and E. grandis Hill ex Maiden trees, growing in plantation or regrowth stands, aged between 1.5 and 20 years, at eight geographically diverse sites extending from temperate to sub-tropical regions of Australia. While the models held for the various species at the various sites, their parameter values differed significantly between sites and/or species. This suggested there may be some inadequacy in the models. However, the differences were small and it was found reasonable to fit single models across all species and sites for practical use in estimating diameter or height. The errors about predicted values of height and diameter from these models were quantified. The models were also found to estimate diameter or height with little loss of precision when dry biomass was used in place of fresh biomass.  相似文献   

14.
This study provides a unique large dataset of total epiphytic lichen diversity (fruticose, foliose and crustose species) and composition on 1,294 trees of 17 tree species in wooded meadows in Sweden and Estonia, the Baltic region. The inventory (25,380 observations and 246 lichen taxa) clearly illustrated that Ulmus minor, Quercus robur and Fraxinus excelsior contributed most significantly to epiphytic lichen richness and number of red-listed species. In Sweden, average single tree α richness was 22.2 on Ulmus (only in Sweden), 21.6 on Quercus (25.0 in Estonia) and 19.8 on Fraxinus (16.7 in Estonia), respectively. Ulmus hosted on average one red-listed species per tree, compared with 0.7 on Fraxinus (0.6 in Estonia), 0.4 on Quercus (0.7 in Estonia) and only 0.05 on Betula (same in Estonia). Lichen species composition and the average number of red-listed lichens were influenced by tree diameter on Fraxinus and Quercus, whilst no such pattern was evident on Ulmus. Randomized species accumulation curves of the dominating tree species illustrated that Fraxinus, Quercus and Ulmus supported α dominated lichen communities where individual trees hosted a substantial part of the total richness. Betula, on the other hand, supported β dominated communities where individual trees tended to be dissimilar and, therefore, more of the total richness existed as species turnover among host trees. Lichen species composition was influenced by tree species, and most notably, lichen species on Ulmus had a strong consistent clumping in ordination graphs, with many rare and red-listed lichens. The broadleaved deciduous trees within the wooded meadows clearly contribute greatly to the biodiversity of the Baltic region.  相似文献   

15.
16.
Several theories predict whole‐tree function on the basis of allometric scaling relationships assumed to emerge from traits of branching networks. To test this key assumption, and more generally, to explore patterns of external architecture within and across trees, we measure branch traits (radii/lengths) and calculate scaling exponents from five functionally divergent species. Consistent with leading theories, including metabolic scaling theory, branching is area preserving and statistically self‐similar within trees. However, differences among scaling exponents calculated at node‐ and whole‐tree levels challenge the assumption of an optimised, symmetrically branching tree. Furthermore, scaling exponents estimated for branch length change across branching orders, and exponents for scaling metabolic rate with plant size (or number of terminal tips) significantly differ from theoretical predictions. These findings, along with variability in the scaling of branch radii being less than for branch lengths, suggest extending current scaling theories to include asymmetrical branching and differential selective pressures in plant architectures.  相似文献   

17.
Allometric biomass allocation theory predicts that leaf biomass (ML) scaled isometrically with stem (MS) and root (MR) biomass, and thus above‐ground biomass (leaf and stem) (MA) and root (MR) scaled nearly isometrically with below‐ground biomass (root) for tree seedlings across a wide diversity of taxa. Furthermore, prior studies also imply that scaling constant should vary with species. However, litter is known about whether such invariant isometric scaling exponents hold for intraspecific biomass allocation, and how variation in scaling constants influences the interspecific scaling relationship between above‐ and below‐ground biomass. Biomass data of seedlings from five evergreen species were examined to test scaling relationships among biomass components across and within species. Model Type II regression was used to compare the numerical values of scaling exponents and constants among leaf, stem, root, and above‐ to below‐ground biomass. The results indicated that ML and MS scaled in an isometric or a nearly isometric manner with MR, as well as MA to MR for five woody species. Significant variation was observed in the Y‐intercepts of the biomass scaling curves, resulting in the divergence for intraspecific scaling and interspecific scaling relationships for ML versus MS and ML versus MR, but not for MS versus MR and MA versus MR. We conclude, therefore, that a nearly isometric scaling relationship of MA versus MR holds true within each of the studied woody species and across them irrespective the negative scaling relationship between leaf and stem.  相似文献   

18.
代谢异速生长理论及其在微生物生态学领域的应用   总被引:1,自引:0,他引:1  
贺纪正  曹鹏  郑袁明 《生态学报》2013,33(9):2645-2655
新陈代谢是生物的基本生理过程,影响生物在不同环境中参与物质循环和能量转化的过程.代谢速率作为生物体重要的生命过程指标,几乎影响所有的生物活性速率,且在很多研究中均表现出异速生长现象.所谓代谢异速是指生物体代谢速率与其个体大小(或质量)之间存在的幂函数关系.代谢异速生长理论的提出,从机制模型角度解释了代谢异速关系这一普遍存在的生命现象.该理论利用分形几何学及流体动力学等原理,从生物能量学角度阐释了异速生长规律的机理,证实了3/4权度指数的存在;但同时有研究表明,权度指数因环境因素等影响处于2/3-1范围之间而非定值.随着研究工作的深入,代谢异速生长理论研究从起初的宏观动植物领域拓展到了微生物领域,在研究微生物的代谢异速生长理论时,可将微生物的可操作分类单元(Operational taxonomic unit,OTU)或具有特定功能的功能群视为一个微生物个体,基于其遗传多样性和功能多样性特征进行表征,以便于将微生物群落多样性与其生态功能性联系起来,使该理论在微生物生态学领域得到有效的补充和完善.尽管细菌具有独特的生物学特性,但与宏观生物系统中观测到的现象表现出明显的一致性.有研究表明,3个农田土壤细菌基于遗传多样性的OTU数的平均周转率分别为0.71、0.80和0.84,介于2/3与1之间,可能与生物代谢异速指数有一定关联,为微生物代谢异速指数的研究提出了一个参考解决方案.鉴于微生物个体特征和生物学特性,在分析代谢速率与个体大小关系中,从微生物单位个体的定义、个体大小表征到计量单位的统一,仍需更多的理论支持.分析了代谢异速生长理论在微生物与生态系统功能关系研究中的可能应用,延伸了该理论的应用范围,并对尚待加强的研究问题进行了评述和展望.  相似文献   

19.
The relationship between body mass (M) and metabolic rate was investigated through the assessment of active (RA) and standard (RS) metabolic rate at different life stages in zebrafish Danio rerio (5 day‐old larvae, 2 month‐old juveniles and 6 month‐old adults). Scaling exponents and constants were assessed for standard (RS = 0·273M0·965 in mgO2 g?1 h?1) and active metabolic rate (RA = 0·799M0·926 in mgO2 g?1 h?1). These data provide the basis for further experiments regarding the effects of environmental factors on aerobic metabolism throughout the life cycle of this species.  相似文献   

20.
南亚热带气候下三种树木径向生长季节节律研究   总被引:15,自引:2,他引:13  
用带状测树器对南亚热带气候条件下的落叶树柚木(Tectona grandis L.f.)、喜树(Camptotheca acuminata Decne)和常绿树火烧花(Mayodendron igeum Kurz)16年生(测定开始时年龄)的立木的径向生长进行了6a的测定。研究结果表明,所测立木的年均胸围生长量在1.5~2.5cm(胸径生长量为0.48~0.80cm)之间,年间有一定的差异。年生长  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号