首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The [PSI+] yeast prion is formed when Sup35 misfolds into amyloid aggregates. [PSI+], like other yeast prions, is dependent on the molecular chaperone Hsp104, which severs the prion seeds so that they pass on as the yeast cells divide. Surprisingly, however, overexpression of Hsp104 also cures [PSI+]. Several models have been proposed to explain this effect: inhibition of severing, asymmetric segregation of the seeds between mother and daughter cells, and dissolution of the prion seeds. First, we found that neither the kinetics of curing nor the heterogeneity in the distribution of the green fluorescent protein (GFP)-labeled Sup35 foci in partially cured yeast cells is compatible with Hsp104 overexpression curing [PSI+] by inhibiting severing. Second, we ruled out the asymmetric segregation model by showing that the extent of curing was essentially the same in mother and daughter cells and that the fluorescent foci did not distribute asymmetrically, but rather, there was marked loss of foci in both mother and daughter cells. These results suggest that Hsp104 overexpression cures [PSI+] by dissolution of the prion seeds in a two-step process. First, trimming of the prion seeds by Hsp104 reduces their size, and second, their amyloid core is eliminated, most likely by proteolysis.  相似文献   

2.
Most prions in yeast form amyloid fibrils that must be severed by the protein disaggregase Hsp104 to be propagated and transmitted efficiently to newly formed buds. Only one yeast prion, [PSI+], is cured by Hsp104 overexpression. We investigated the interaction between Hsp104 and Sup35, the priongenic protein in yeast that forms the [PSI+] prion.1 We found that a 20-amino acid segment within the highly-charged, unstructured middle domain of Sup35 contributes to the physical interaction between the middle domain and Hsp104. When this segment was deleted from Sup35, the efficiency of [PSI+] severing was substantially reduced, resulting in larger Sup35 particles and weakening of the [PSI+] phenotype. Furthermore, [PSI+] in these cells was completely resistant to Hsp104 curing. The affinity of Hsp104 was considerably weaker than that of model Hsp104-binding proteins and peptides, implying that Sup35 prions are not ideal substrates for Hsp104-mediated remodeling. In light of this finding, we present a modified model of Hsp104-mediated [PSI+] propagation and curing that requires only partial remodeling of Sup35 assembled into amyloid fibrils.  相似文献   

3.
The yeast homolog of DJ-1, Hsp31, is a multifunctional protein that is involved in several cellular pathways including detoxification of the toxic metabolite methylglyoxal and as a protein deglycase. Prior studies ascribed Hsp31 as a molecular chaperone that can inhibit α-Syn aggregation in vitro and alleviate its toxicity in vivo. It was also shown that Hsp31 inhibits Sup35 aggregate formation in yeast, however, it is unknown if Hsp31 can modulate [PSI+] phenotype and Sup35 prionogenesis. Other small heat shock proteins, Hsp26 and Hsp42 are known to be a part of a synergistic proteostasis network that inhibits Sup35 prion formation and promotes its disaggregation. Here, we establish that Hsp31 inhibits Sup35 [PSI+] prion formation in collaboration with a well-known disaggregase, Hsp104. Hsp31 transiently prevents prion induction but does not suppress induction upon prolonged expression of Sup35 indicating that Hsp31 can be overcome by larger aggregates. In addition, elevated levels of Hsp31 do not cure [PSI+] strains indicating that Hsp31 cannot intervene in a pre-existing prion oligomerization cycle. However, Hsp31 can modulate prion status in cooperation with Hsp104 because it inhibits Sup35 aggregate formation and potentiates [PSI+] prion curing upon overexpression of Hsp104. The absence of Hsp31 reduces [PSI+] prion curing by Hsp104 without influencing its ability to rescue cellular thermotolerance. Hsp31 did not synergize with Hsp42 to modulate the [PSI+] phenotype suggesting that both proteins act on similar stages of the prion cycle. We also showed that Hsp31 physically interacts with Hsp104 and together they prevent Sup35 prion toxicity to greater extent than if they were expressed individually. These results elucidate a mechanism for Hsp31 on prion modulation that suggest it acts at a distinct step early in the Sup35 aggregation process that is different from Hsp104. This is the first demonstration of the modulation of [PSI+] status by the chaperone action of Hsp31. The delineation of Hsp31's role in the chaperone cycle has implications for understanding the role of the DJ-1 superfamily in controlling misfolded proteins in neurodegenerative disease and cancer.  相似文献   

4.
Prions are self-seeding alternate protein conformations. Most yeast prions contain glutamine/asparagine (Q/N)-rich domains that promote the formation of amyloid-like prion aggregates. Chaperones, including Hsp104 and Sis1, are required to continually break these aggregates into smaller “seeds.” Decreasing aggregate size and increasing the number of growing aggregate ends facilitates both aggregate transmission and growth. Our previous work showed that overexpression of 11 proteins with Q/N-rich domains facilitates the de novo aggregation of Sup35 into the [PSI+] prion, presumably by a cross-seeding mechanism. We now discuss our recent paper, in which we showed that overexpression of most of these same 11 Q/N-rich proteins, including Pin4C and Cyc8, destabilized pre-existing Q/N rich prions. Overexpression of both Pin4C and Cyc8 caused [PSI+] aggregates to enlarge. This is incompatible with a previously proposed “capping” model where the overexpressed Q/N-rich protein poisons, or “caps,” the growing aggregate ends. Rather the data match what is expected of a reduction in prion severing by chaperones. Indeed, while Pin4C overexpression does not alter chaperone levels, Pin4C aggregates sequester chaperones away from the prion aggregates. Cyc8 overexpression cures [PSI+] by inducing an increase in Hsp104 levels, as excess Hsp104 binds to [PSI+] aggregates in a way that blocks their shearing.  相似文献   

5.
[PSI(+)] yeast, containing the misfolded amyloid conformation of Sup35 prion, is cured by inactivation of Hsp104. There has been controversy as to whether inactivation of Hsp104 by guanidine treatment or by overexpression of the dominant negative Hsp104 mutant, Hsp104-2KT, cures [PSI(+)] by the same mechanism- inhibition of the severing of the prion seeds. Using live cell imaging of Sup35-GFP, overexpression of Hsp104-2KT caused the foci to increase in size, then decrease in number, and finally disappear when the cells were cured, similar to that observed in cells cured by depletion of Hsp104. In contrast, guanidine initially caused an increase in foci size but then the foci disappeared before the cells were cured. By starving the yeast to make the foci visible in cells grown with guanidine, the number of cells with foci was found to correlate exactly with the number of [PSI(+)] cells, regardless of the curing method. Therefore, the fluorescent foci are the prion seeds required for maintenance of [PSI(+)] and inactivation of Hsp104 cures [PSI(+)] by preventing severing of the prion seeds. During curing with guanidine, the reduction in seed size is an Hsp104-dependent effect that cannot be explained by limited severing of the seeds. Instead, in the presence of guanidine, Hsp104 retains an activity that trims or reduces the size of the prion seeds by releasing Sup35 molecules that are unable to form new prion seeds. This Hsp104 activity may also occur in propagating yeast.  相似文献   

6.
The ability of a yeast cell to propagate [PSI+], the prion form of the Sup35 protein, is dependent on the molecular chaperone Hsp104. Inhibition of Hsp104 function in yeast cells leads to a failure to generate new propagons, the molecular entities necessary for [PSI+] propagation in dividing cells and they get diluted out as cells multiply. Over‐expression of Hsp104 also leads to [PSI+] prion loss and this has been assumed to arise from the complete disaggregation of the Sup35 prion polymers. However, in conditions of Hsp104 over‐expression in [PSI+] cells we find no release of monomers from Sup35 polymers, no monomerization of aggregated Sup35 which is not accounted for by the proportion of prion‐free [psi] cells present, no change in the molecular weight of Sup35‐containing SDS‐resistant polymers and no significant decrease in average propagon numbers in the population as a whole. Furthermore, they show that over‐expression of Hsp104 does not interfere with the incorporation of newly synthesised Sup35 into polymers, nor with the multiplication of propagons following their depletion in numbers while growing in the presence of guanidine hydrochloride. Rather, they present evidence that over‐expression of Hsp104 causes malpartition of [PSI+] propagons between mother and daughter cells in a sub‐population of cells during cell division thereby generating prion‐free [psi?] cells.  相似文献   

7.
《朊病毒》2013,7(3):234-239
Most prions in yeast form amyloid fibrils that must be severed by the protein disaggregase Hsp104 to be propagated and transmitted efficiently to newly formed buds. Only one yeast prion, [PSI+], is cured by Hsp104 overexpression. We investigated the interaction between Hsp104 and Sup35, the priongenic protein in yeast that forms the [PSI+] prion.1 Helsen CW, Glover JR. Insight into molecular basis of curing of [PSI+] prion by overexpression of 104-kDa heat shock protein (Hsp104). J Biol Chem 2012; 287:542 - 56; http://dx.doi.org/10.1074/jbc.M111.302869; PMID: 22081611 [Crossref], [PubMed], [Web of Science ®] [Google Scholar] We found that a 20-amino acid segment within the highly-charged, unstructured middle domain of Sup35 contributes to the physical interaction between the middle domain and Hsp104. When this segment was deleted from Sup35, the efficiency of [PSI+] severing was substantially reduced, resulting in larger Sup35 particles and weakening of the [PSI+] phenotype. Furthermore, [PSI+] in these cells was completely resistant to Hsp104 curing. The affinity of Hsp104 was considerably weaker than that of model Hsp104-binding proteins and peptides, implying that Sup35 prions are not ideal substrates for Hsp104-mediated remodeling. In light of this finding, we present a modified model of Hsp104-mediated [PSI+] propagation and curing that requires only partial remodeling of Sup35 assembled into amyloid fibrils.  相似文献   

8.
《朊病毒》2013,7(1):69-77
The yeast prion [PSI+] represents an aggregated state of the translational release factor Sup35 (eRF3) and deprives termination complexes of functional Sup35, resulting in nonsense codon suppression. Protein-remodeling factor Hsp104 is involved in thermotolerance and [PSI+] propagation, however the structure-and-function relationship of Hsp104 for [PSI+] remains unclear. In this study, we engineered 58 chromosomal hsp104 mutants that affect residues considered structurally or functionally relevant to Hsp104 remodeling activity, yet most remain to be examined for their significance to [PSI+] in the same genetic background. Many of these hsp104 mutants were affected both in thermotolerance and [PSI+] propagation. However, nine mutants were impaired exclusively for [PSI+], while two mutants were impaired exclusively for thermotolerance. Mutations exclusively affecting [PSI+] are clustered around the lateral channel of the Hsp104 hexamer. These findings suggest that Hsp104 possesses shared as well as distinct remodeling activities for stress-induced protein aggregates and [PSI+] prion aggregates and that the lateral channel plays a role specific to [PSI+] prion propagation.  相似文献   

9.
Prions are self-propagating conformations of proteins that can cause heritable phenotypic traits. Most yeast prions contain glutamine (Q)/asparagine (N)-rich domains that facilitate the accumulation of the protein into amyloid-like aggregates. Efficient transmission of these infectious aggregates to daughter cells requires that chaperones, including Hsp104 and Sis1, continually sever the aggregates into smaller “seeds.” We previously identified 11 proteins with Q/N-rich domains that, when overproduced, facilitate the de novo aggregation of the Sup35 protein into the [PSI +] prion state. Here, we show that overexpression of many of the same 11 Q/N-rich proteins can also destabilize pre-existing [PSI +] or [URE3] prions. We explore in detail the events leading to the loss (curing) of [PSI+] by the overexpression of one of these proteins, the Q/N-rich domain of Pin4, which causes Sup35 aggregates to increase in size and decrease in transmissibility to daughter cells. We show that the Pin4 Q/N-rich domain sequesters Hsp104 and Sis1 chaperones away from the diffuse cytoplasmic pool. Thus, a mechanism by which heterologous Q/N-rich proteins impair prion propagation appears to be the loss of cytoplasmic Hsp104 and Sis1 available to sever [PSI +].  相似文献   

10.
The yeast prion [PSI+] represents an aggregated state of the translational release factor Sup35 (eRF3) and deprives termination complexes of functional Sup35, resulting in nonsense codon suppression. Protein-remodeling factor Hsp104 is involved in thermotolerance and [PSI+] propagation, however the structure-and-function relationship of Hsp104 for [PSI+] remains unclear. In this study, we engineered 58 chromosomal hsp104 mutants that affect residues considered structurally or functionally relevant to Hsp104 remodeling activity, yet most remain to be examined for their significance to [PSI+] in the same genetic background. Many of these hsp104 mutants were affected both in thermotolerance and [PSI+] propagation. However, nine mutants were impaired exclusively for [PSI+], while two mutants were impaired exclusively for thermotolerance. Mutations exclusively affecting [PSI+] are clustered around the lateral channel of the Hsp104 hexamer. These findings suggest that Hsp104 possesses shared as well as distinct remodeling activities for stress-induced protein aggregates and [PSI+] prion aggregates and that the lateral channel plays a role specific to [PSI+] prion propagation.Key Words: Hsp104, reverse genetics, hexamer, nonsense suppression, yeast prion [PSI+], thermotolerance  相似文献   

11.
Several cellular chaperones have been shown to affect the propagation of the yeast prions [PSI+], [PIN+] and [URE3]. Ssa1 and Ssa2 are Hsp70 family chaperones that generally cause pro-[PSI+] effects, since dominant-negative mutants of Ssa1 or Ssa2 cure [PSI+], and overexpression of Ssa1 enhances de novo [PSI+] appearance and prevents curing by excess Hsp104. In contrast, Ssa1 was shown to have anti-[URE3] effects, since overexpression of Ssa1 cures [URE3]. Here we show that excess Ssa1 or Ssa2 can also cure [PSI+]. This curing is enhanced in the presence of [PIN+]. During curing, Sup35-GFP fluorescent aggregates get bigger and fewer in number, which leads to their being diluted out during cell division, a phenotype that was also observed during the curing of [PSI+] by certain variants of [PIN+]. The sizes of the detergent-resistant [PSI+] prion oligomers increase during [PSI+] curing by excess Ssa1. Excess Ssa1 likewise leads to an increase in oligomer sizes of low, medium and very high [PIN+] variants. While these phenotypes are also caused by inhibition of Hsp104 or Sis1, the overexpression of Ssa1 did not cause any change in Hsp104 or Sis1 levels.  相似文献   

12.
《朊病毒》2013,7(4):135-140
Infectious amyloid forms of the release factor, Sup35, comprise the yeast prion [PSI+]. This protein-based unit of inheritance is an evolutionary capacitor able to release cryptic genetic variation during environmental stress and generate potentially beneficial phenotypes. Genetic data have uncovered a sophisticated proteostasis network that tightly regulates [PSI+] formation, propagation and elimination. Central to this network, is the AAA+ ATPase and protein disaggregase, Hsp104. Shifting the balance of the cytosolic Hsp70:Hsp40 chaperone machinery and associated nucleotide exchange factors also influences the [PSI+] prion cycle. Yet, a precise understanding of how these systems co-operate to directly modulate the protein folding events required for sustainable Sup35 prionogenesis has remained elusive. Here, we spotlight recent advances that begin to clarify this issue. We suggest that the Hsp70:Hsp40 chaperone machinery functions collectively as a rheostat that adjusts Hsp104’s basic prion-remodeling activities.  相似文献   

13.
The amyloid‐based prions of Saccharomyces cerevisiae are heritable aggregates of misfolded proteins, passed to daughter cells following fragmentation by molecular chaperones including the J‐protein Sis1, Hsp70 and Hsp104. Overexpression of Hsp104 efficiently cures cell populations of the prion [PSI+] by an alternative Sis1‐dependent mechanism that is currently the subject of significant debate. Here, we broadly investigate the role of J‐proteins in this process by determining the impact of amyloid polymorphisms (prion variants) on the ability of well‐studied Sis1 constructs to compensate for Sis1 and ask whether any other S. cerevisiae cytosolic J‐proteins are also required for this process. Our comprehensive screen, examining all 13 members of the yeast cytosolic/nuclear J‐protein complement, uncovered significant variant‐dependent genetic evidence for a role of Apj1 (antiprion DnaJ) in this process. For strong, but not weak [PSI+] variants, depletion of Apj1 inhibits Hsp104‐mediated curing. Overexpression of either Apj1 or Sis1 enhances curing, while overexpression of Ydj1 completely blocks it. We also demonstrated that Sis1 was the only J‐protein necessary for the propagation of at least two weak [PSI+] variants and no J‐protein alteration, or even combination of alterations, affected the curing of weak [PSI+] variants, suggesting the possibility of biochemically distinct, variant‐specific Hsp104‐mediated curing mechanisms.  相似文献   

14.
Prions are self‐perpetuating amyloid protein aggregates which underlie various neurodegenerative diseases in mammals and heritable traits in yeast. The molecular basis of how yeast and mammalian prions form spontaneously into infectious amyloid‐like structures is poorly understood. We have explored the hypothesis that oxidative stress is a general trigger for prion formation using the yeast [PSI+] prion, which is the altered conformation of the Sup35 translation termination factor. We show that the frequency of [PSI+] prion formation is elevated under conditions of oxidative stress and in mutants lacking key antioxidants. We detect increased oxidation of Sup35 methionine residues in antioxidant mutants and show that overexpression of methionine sulphoxide reductase abrogates both the oxidation of Sup35 and its conversion to the [PSI+] prion. [PSI+] prion formation is particularly elevated in a mutant lacking the Sod1 Cu,Zn‐superoxide dismutase. We have used fluorescence microscopy to show that the de novo appearance of [PSI+] is both rapid and increased in frequency in this mutant. Finally, electron microscopy analysis of native Sup35 reveals that similar fibrillar structures are formed in both the wild‐type and antioxidant mutants. Together, our data indicate that oxidative stress is a general trigger of [PSI+] formation, which can be alleviated by antioxidant defenses.  相似文献   

15.
Prions are self-perpetuating conformational variants of particular proteins. In yeast, prions cause heritable phenotypic traits. Most known yeast prions contain a glutamine (Q)/asparagine (N)-rich region in their prion domains. [PSI+], the prion form of Sup35, appears de novo at dramatically enhanced rates following transient overproduction of Sup35 in the presence of [PIN+], the prion form of Rnq1. Here, we establish the temporal de novo appearance of Sup35 aggregates during such overexpression in relation to other cellular proteins. Fluorescently-labeled Sup35 initially forms one or a few dots when overexpressed in [PIN+] cells. One of the dots is perivacuolar, colocalizes with the aggregated Rnq1 dot and grows into peripheral rings/lines, some of which also colocalize with Rnq1. Sup35 dots that are not near the vacuole do not always colocalize with Rnq1 and disappear by the time rings start to grow. Bimolecular fluorescence complementation failed to detect any interaction between Sup35-VN and Rnq1-VC in [PSI +][PIN +] cells. In contrast, all Sup35 aggregates, whether newly induced or in established [PSI +], completely colocalize with the molecular chaperones Hsp104, Sis1, Ssa1 and eukaryotic release factor Sup45. In the absence of [PIN+], overexpressed aggregating proteins such as the Q/N-rich Pin4C or the non-Q/N-rich Mod5 can also promote the de novo appearance of [PSI +]. Similar to Rnq1, overexpressed Pin4C transiently colocalizes with newly appearing Sup35 aggregates. However, no interaction was detected between Mod5 and Sup35 during [PSI+] induction in the absence of [PIN +]. While the colocalization of Sup35 and aggregates of Rnq1 or Pin4C are consistent with the model that the heterologous aggregates cross-seed the de novo appearance of [PSI +], the lack of interaction between Mod5 and Sup35 leaves open the possibility of other mechanisms. We also show that Hsp104 is required in the de novo appearance of [PSI+] aggregates in a [PIN +]-independent pathway.  相似文献   

16.
Yeast prions, based on self-seeded highly ordered fibrous aggregates (amyloids), serve as a model for human amyloid diseases. Propagation of yeast prions depends on the balance between chaperones of the Hsp100 and Hsp70 families. The yeast prion [PSI+] can be eliminated by an excess of the chaperone Hsp104. This effect is reversed by an excess of the chaperone Hsp70-Ssa. Here we show that the actions of Hsp104 and Ssa on [PSI+] are modulated by the small glutamine-rich tetratricopeptide cochaperone Sgt2. Sgt2 is conserved from yeast to humans, has previously been implicated in the guided entry of tail-anchored proteins (GET) trafficking pathway, and is known to interact with Hsps, cytosolic Get proteins, and tail-anchored proteins. We demonstrate that Sgt2 increases the ability of excess Ssa to counteract [PSI+] curing by excess Hsp104. Deletion of SGT2 also restores trafficking of a tail-anchored protein in cells with a disrupted GET pathway. One region of Sgt2 interacts both with the prion domain of Sup35 and with tail-anchored proteins. Sgt2 levels are increased in response to the presence of a prion when major Hsps are not induced. Our data implicate Sgt2 as an amyloid “sensor” and a regulator of chaperone targeting to different types of aggregation-prone proteins.  相似文献   

17.
The formation and maintenance of prions in the yeast Saccharomyces cerevisiae is highly regulated by the cellular chaperone machinery. The most important player in this regulation is Hsp104p, which is required for the maintenance of all known prions. The requirements for other chaperones, such as members of the Hsp40 or Hsp70 families, vary with each individual prion. [RNQ+] cells do not have a phenotype that is amenable to genetic screens to identify cellular factors important in prion propagation. Therefore, we used a chimeric construct that reports the [RNQ+] status of cells to perform a screen for mutants that are unable to maintain [RNQ+]. We found eight separate mutations in Hsp104p that caused [RNQ+] cells to become [rnq]. These mutations also caused the loss of the [PSI+] prion. The expression of one of these mutants, Hsp104p-E190K, showed differential loss of the [RNQ+] and [PSI+] prions in the presence of wild type Hsp104p. Hsp104p-E190K inefficiently propagated [RNQ+] and was unable to maintain [PSI+]. The mutant was unable to act on other in vivo substrates, as strains carrying it were not thermotolerant. Purified recombinant Hsp104p-E190K showed a reduced level of ATP hydrolysis as compared to wild type protein. This is likely the cause of both prion loss and lack of in vivo function. Furthermore, it suggests that [RNQ+] requires less Hsp104p activity to maintain transmissible protein aggregates than Sup35p. Additionally, we show that the L94A mutation in Rnq1p, which reduces its interaction with Sis1p, prevents Rnq1p from maintaining a prion and inducing [PSI+].Key words: [RNQ+], [PSI+], Hsp104p, Sis1p, mutagenesis  相似文献   

18.
Yeast prion [PSI+] is a self-perpetuating amyloid of the translational termination factor Sup35. Although [PSI+] propagation is modulated by heat shock proteins (Hsps), high temperature was previously reported to have little or no effect on [PSI+]. Our results show that short-term exposure of exponentially growing yeast culture to mild heat shock, followed by immediate resumption of growth, leads to [PSI+] destabilization, sometimes persisting for several cell divisions after heat shock. Prion loss occurring in the first division after heat shock is preferentially detected in a daughter cell, indicating the impairment of prion segregation that results in asymmetric prion distribution between a mother cell and a bud. Longer heat shock or prolonged incubation in the absence of nutrients after heat shock led to [PSI+] recovery. Both prion destabilization and recovery during heat shock depend on protein synthesis. Maximal prion destabilization coincides with maximal imbalance between Hsp104 and other Hsps such as Hsp70-Ssa. Deletions of individual SSA genes increase prion destabilization and/or counteract recovery. The dynamics of prion aggregation during destabilization and recovery are consistent with the notion that efficient prion fragmentation and segregation require a proper balance between Hsp104 and other (e.g., Hsp70-Ssa) chaperones. In contrast to heat shock, [PSI+] destabilization by osmotic stressors does not always depend on cell proliferation and/or protein synthesis, indicating that different stresses may impact the prion via different mechanisms. Our data demonstrate that heat stress causes asymmetric prion distribution in a cell division and confirm that the effects of Hsps on prions are physiologically relevant.  相似文献   

19.
Yeast prion determinants are related to polymerization of some proteins into amyloid-like fibers. The [PSI+] determinant reflects polymerization of the Sup35 protein. Fragmentation of prion polymers by the Hsp104 chaperone represents a key step of the prion replication cycle. The frequency of fragmentation varies depending on the structure of the prion polymers and defines variation in the prion phenotypes, e.g., the suppressor strength of [PSI+] and stability of its inheritance. Besides [PSI+], overproduction of Sup35 can produce nonheritable phenotypically silent Sup35 amyloid-like polymers. These polymers are fragmented poorly and are present due to efficient seeding with the Rnq1 prion polymers, which occurs by several orders of magnitude more frequently than seeding of [PSI+] appearance. Such Sup35 polymers resemble human nonprion amyloids by their nonheritability, mode of appearance and increased size. Thus, a single protein, Sup35, can model both prion and nonprion amyloids. In yeast, these phenomena are distinguished by the frequency of polymer fragmentation. We argue that in mammals the fragmentation frequency also represents a key factor defining differing properties of prion and nonprion amyloids, including infectivity. By analogy with the Rnq1 seeding of nonheritable Sup35 polymers, the “species barrier” in prion transmission may be due to seeding by heterologous prion of nontransmissible type of amyloid, rather than due to the lack of seeding.Key Words: amyloid, prion, Rnq1, Sup35, Ure2, translation termination, yeast  相似文献   

20.
The budding yeast, Saccharomyces cerevisiae, harbors several prions that are transmitted as altered, heritable protein conformations. [SWI+] is one such prion whose determinant is Swi1, a subunit of the evolutionarily conserved chromatin‐remodeling complex SWI/SNF. Despite the importance of Swi1, the molecular events that lead to [SWI+] prionogenesis remain poorly understood. In this study, we have constructed floccullin‐promoter‐based URA3 reporters for [SWI+] identification. Using these reporters, we show that the spontaneous formation frequency of [SWI+] is significantly higher than that of [PSI+] (prion form of Sup35). We also show that preexisting [PSI+] or [PIN+] (prion form of Rnq1), or overproduction of Swi1 prion‐domain (PrD) can considerably promote Swi1 prionogenesis. Moreover, our data suggest a strain‐specific effect of overproduction of Sse1 – a nucleotide exchange factor of the molecular chaperone Hsp70, and its interaction with another molecular chaperone Hsp104 on [SWI+] maintenance. Additionally, we show that Swi1 aggregates are initially ring/ribbon‐like then become dot‐like in mature [SWI+] cells. In the presence of [PSI+] or [PIN+], Swi1 ring/ribbon‐like aggregates predominantly colocalize with the Sup35 or Rnq1 aggregates; without a preexisting prion, however, such colocalizations are rarely seen during Swi1‐PrD overproduction‐promoted Swi1 prionogenesis. We have thus demonstrated a complex interacting mechanism of yeast prionogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号