首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
《MABS-AUSTIN》2013,5(3):553-561
The effectiveness of therapeutic monoclonal antibodies (mAbs) is governed not only by their bioactivity, but also by their biophysical properties. Assays for rapidly evaluating the biophysical properties of mAbs are valuable for identifying those most likely to exhibit superior properties such as high solubility, low viscosity and slow serum clearance. Analytical hydrophobic interaction chromatography (HIC), which is performed at high salt concentrations to enhance hydrophobic interactions, is an attractive assay for identifying mAbs with low hydrophobicity. However, this assay is low throughput and thus not amenable to processing the large numbers of mAbs that are commonly generated during antibody discovery. Therefore, we investigated whether an alternative, higher throughput, assay could be developed that is based on evaluating antibody self-association at high salt concentrations using affinity-capture self-interaction nanoparticle spectroscopy (AC-SINS). Our approach is to coat gold nanoparticles with polyclonal anti-human antibodies, use these conjugates to immobilize human mAbs, and evaluate mAb self-interactions by measuring the plasmon wavelengths of the antibody conjugates as a function of ammonium sulfate concentration. We find that hydrophobic mAbs, as identified by HIC, generally show significant self-association at low to moderate ammonium sulfate concentrations, while hydrophilic mAbs typically show self-association only at high ammonium sulfate concentrations. The correlation between AC-SINS and HIC measurements suggests that our assay, which can evaluate tens to hundreds of mAbs in a parallel manner and requires only small (microgram) amounts of antibody, will enable early identification of mAb candidates with low hydrophobicity and improved biophysical properties.  相似文献   

3.
The effectiveness of therapeutic monoclonal antibodies (mAbs) is governed not only by their bioactivity, but also by their biophysical properties. Assays for rapidly evaluating the biophysical properties of mAbs are valuable for identifying those most likely to exhibit superior properties such as high solubility, low viscosity and slow serum clearance. Analytical hydrophobic interaction chromatography (HIC), which is performed at high salt concentrations to enhance hydrophobic interactions, is an attractive assay for identifying mAbs with low hydrophobicity. However, this assay is low throughput and thus not amenable to processing the large numbers of mAbs that are commonly generated during antibody discovery. Therefore, we investigated whether an alternative, higher throughput, assay could be developed that is based on evaluating antibody self-association at high salt concentrations using affinity-capture self-interaction nanoparticle spectroscopy (AC-SINS). Our approach is to coat gold nanoparticles with polyclonal anti-human antibodies, use these conjugates to immobilize human mAbs, and evaluate mAb self-interactions by measuring the plasmon wavelengths of the antibody conjugates as a function of ammonium sulfate concentration. We find that hydrophobic mAbs, as identified by HIC, generally show significant self-association at low to moderate ammonium sulfate concentrations, while hydrophilic mAbs typically show self-association only at high ammonium sulfate concentrations. The correlation between AC-SINS and HIC measurements suggests that our assay, which can evaluate tens to hundreds of mAbs in a parallel manner and requires only small (microgram) amounts of antibody, will enable early identification of mAb candidates with low hydrophobicity and improved biophysical properties.  相似文献   

4.
5.
Post-translational modifications can have a signification effect on antibody stability. A comprehensive approach is often required to best understand the underlying reasons the modification affects the antibody's potency or aggregation state. Monoclonal antibody 001 displayed significant variation in terms of potency, as defined by surface plasmon resonance testing (Biacore), from lot to lot independent of any observable aggregation or degradation, suggesting that a post-translational modification could be driving this variability. Analysis of different antibody lots using analytical hydrophobic interaction chromatography (HIC) uncovered multiple peaks of varying size. Electrospray ionization mass spectrometry (ESI-MS) indicated that the antibody contained a cysteinylation post-translational modification in complementarity-determining region (CDR) 3 of the antibody light chain. Fractionation of the antibody by HIC followed by ESI-MS and Biacore showed that the different peaks were antibody containing zero, one, or two cysteinylation modifications, and that the modification interferes with the ability of the modified antibody arm to bind antigen. Molecular modeling of the modified region shows that this oxidation of an unpaired cysteine in the antibody CDR would block a potential antigen binding pocket, suggesting an inhibition mechanism.  相似文献   

6.
A high-throughput screen (HTS) was developed to evaluate the selectivity of various hydrophobic interaction chromatography (HIC) resins for separating a mAb from aggregate species. Prior to the resin screen, the solubility of the protein was assessed to determine the allowable HIC operating region by examining 384 combinations of pH, salt, and protein concentration. The resin screen then incorporated 480 batch-binding and elution conditions with eight HIC resins in combination with six salts. The results from the screen were reproducible, and demonstrated quantitative recovery of the mAb and aggregate. The translation of the HTS batch-binding data to lab-scale chromatography columns was tested for four conditions spanning the range of product binding and selectivity. After accounting for the higher number of theoretical plates in the columns, the purity and recovery of the lab-scale column runs agreed with the HTS results demonstrating the predictive power of the filterplate system. The HTS data were further analyzed by the calculation of pertinent thermodynamic parameters such as the partition coefficient, K(P), and the separation factor, alpha. The separation factor was used to rank the purification capabilities of the resin and salt conditions explored.  相似文献   

7.
The hydrophobic contributions of 17 individual peptides, fused to the N-terminal of Bacillus stearothermophilus lactate dehydrogenase (LDH) were studied by hydrophobic interaction chromatography (HIC) and aqueous two-phase system (ATPS). The constructs were sequenced from a protein library designed with a five-amino acid randomised region in the N-terminal of an LDH protein. The 17 LDH variants and an LDH control lacking the randomised region were expressed in Escherichia coli. HIC and ATPS behaviour of the proteins indicated significant differences in protein hydrophobicity, even though the modifications caused only 1% increase in protein molecular weight and 2% variation in isoelectric points. HIC and ATPS results correlated well (R(2) = 0.89). Protein expression was clearly affected by N-terminal modification, but there was no evidence that the modification affected protein activity. A GluAsnAlaAspVal modification resulted in increased protein expression. In most cases, HIC and ATPS results compared favourably with those predicted on the basis of 34 amino acid residue hydrophobicity scales; assuming exposure of tag residues to solution. Exceptions included LeuAlaGlyValIle and LeuTyrGlyCysIle modifications, which were predicted, assuming full solution exposure, to be more hydrophobic than observed.  相似文献   

8.
Paula S  Monson N  Ball WJ 《Proteins》2005,60(3):382-391
The amino acid sequences of the heavy- and light-chain variable regions of the high-affinity human sequence antidigoxin monoclonal antibody 1B3 (mAb 1B3) were determined, and a structural model for the mAb's variable region was developed by homology modeling techniques. The structural model provided the basis for computationally docking digoxin and eight related cardiac glycosides into the putative binding site of mAb 1B3. Analysis of the consensus binding mode obtained for digoxin showed that the cardenolide moiety of digoxin is deeply embedded in a predominantly hydrophobic, narrow cavity, whereas the terminal, gamma-carbohydrate group is solvent-exposed. The docking results indicated that the primary driving forces for digoxin binding by mAb 1B3 are hydrophobic interactions with the digoxin steroid ring system and hydrogen bonds with the digitoxose groups. The binding model accounts for the experimentally observed variations in mAb 1B3 binding affinity for various structural analogs of digoxin used previously to develop a 3D structure-activity relationship model of drug binding (Farr CD, Tabet MR, Ball WJ Jr, Fishwild DM, Wang X, Nair AC, Welsh WJ. Three-dimensional quantitative structure-activity relationship analysis of ligand binding to human sequence antidigoxin monoclonal antibodies using comparative molecular field analysis. J Med Chem 2002;45:3257-3270). In particular, the hydrogen bond pattern is consistent with the unique sensitivity of mAb 1B3's binding affinity to the number of sugar residues present in a cardiac glycoside. The hydrophobic environment about the steroid moiety of digoxin is compatible with the mAb's reduced affinity for ligands that possess hydrophilic hydroxyl and acetyl group modifications in this region. The model also indicated that most of the amino acid residues in contact with the ligand reside in or about the three complementarity determining regions (CDRs) of the heavy chain and the third CDR of the light chain. A comparison of the 1B3 binding model with the crystal structures of two murine antidigoxin mAbs revealed similar binding patterns used by the three mAbs, such as a high frequency of occurrence of aromatic, hydrophobic residues in the CDRs and a dominant role of the heavy chain CDR3 in antigen binding.  相似文献   

9.
In this article, a systematic workflow was formulated and implemented to understand selectivity differences and preferred binding patches for bispecific monoclonal antibodies (mAbs) and their parental mAbs on three multimodal cation exchange resin systems. This workflow incorporates chromatographic screening of the parent mAbs and their fragments at various pH followed by surface property mapping and protein footprinting using covalent labeling followed by liquid chromatography–mass spectrometry analysis. The chromatography screens on multimodal resins with the intact mAbs indicated enhanced selectivity as compared to single-mode interaction systems. While the bispecific antibody (bsAb) eluted between the two parental mAbs on most of the resins, the retention of the bispecific transitioned from co-eluting with one parental mAb to the other parental mAb on Capto MMC. To investigate the contribution of different domains, mAb fragments were evaluated and the results indicated that the interactions were likely dominated by the Fab domain at higher pH. Protein surface property maps were then employed to hypothesize the potential preferred binding patches in the solvent-exposed regions of the parental Fabs. Finally, protein footprinting was carried out with the parental mAbs and the bsAb in the bound and unbound states at pH 7.5 to identify the preferred binding patches. Results with the intact mAb analysis supported the hypothesis that interactions with the resins were primarily driven by the residues in the Fab fragments and not the Fc. Furthermore, peptide mapping data indicated that the light chain may be playing a more important role in the higher binding of Parent A as compared with Parent B in these resin systems. Finally, results with the bsAb indicated that both halves of the molecule contributed to binding with the resins, albeit with subtle differences as compared to the parental mAbs. The workflow presented in this paper lays the foundation to systematically study the chromatographic selectivity of large multidomain molecules which can provide insights into improved biomanufacturability and expedited downstream bioprocess development.  相似文献   

10.
A major challenge in chromatography purification of therapeutic proteins is batch-to-batch variability with respect to impurity levels and product concentration in the feed. Mechanistic model can enable process analytical technology (PAT) implementation by predicting impact of such variations and thereby improving the robustness of the resulting process and controls. This article presents one such application of mechanistic model of hydrophobic interaction chromatography (HIC) as a PAT tool for making robust pooling decisions to enable clearance of aggregates for a monoclonal antibody (mAb) therapeutic. Model predictions were performed before the actual chromatography experiments to facilitate feedforward control. The approach has been successfully demonstrated for four different feeds with varying aggregate levels (3.84%–5.54%) and feed concentration (0.6 mg/mL–1 mg/mL). The resulting pool consistently yielded a product with 1.32 ± 0.03% aggregate vs. a target of 1.5%. A comparison of the traditional approach involving column fractionation with the proposed approach indicates that the proposed approach results in achievement of satisfactory product purity (98.68 ± 0.03% for mechanistic model based PAT controlled pooling vs. 98.64 ± 0.16% for offline column fractionation based pooling). © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2758, 2019.  相似文献   

11.
A two‐conformation, four‐state model has been proposed to describe protein adsorption and unfolding behavior on hydrophobic interaction chromatography (HIC) resins. In this work, we build upon previous study and application of a four‐state model to the effect of salt concentration on the adsorption and unfolding of the model protein α‐lactalbumin in HIC. Contributions to the apparent adsorption strength of the wild‐type protein from native and unfolded conformations, obtained using a deuterium labeling technique, reveal the free energy change and kinetics of unfolding on the resin, and demonstrate that surface unfolding is reversible. Additionally, variants of α‐lactalbumin in which one of the disulfide bonds is reduced were synthesized to examine the effects of conformational stability on apparent retention. Below the melting temperatures of the wild‐type protein and variants, reduction of a single disulfide bond significantly increases the apparent adsorption strength (~6–8 kJ/mol) due to increased instability of the protein. Finally, the four‐state model is used to accurately predict the apparent adsorption strength of a disulfide bond‐reduced variant. Biotechnol. Bioeng. 2009;102: 1416–1427. © 2008 Wiley Periodicals, Inc.  相似文献   

12.
Among the known regulatory proteins that are conformationally sensitive to the binding of calcium ions, calmodulin and troponin-C have the greatest primary sequence homology. This observation has led to the conclusion that the most accurate predicted molecular model of calmodulin would be based on the X-ray crystallographic coordinates of the highly refined structure of turkey skeletal troponin-C. This paper describes the structure of calmodulin built from such a premise. The resulting molecular model was subjected to conjugate gradient energy minimization to remove unacceptable intramolecular non-bonded contacts. In the analysis of the resulting structure, many features of calmodulin, including the detailed conformation of the Ca2+-binding loops, the amino- and carboxy-terminal hydrophobic patches of the Ca2+-bound form, and the several clusters of acidic residues can be reconciled with much of the previously published solution data. Calmodulin is missing the N-terminal helix characteristic of troponin-C. The deletion of three residues from the central helical linker (denoted D/E in troponin-C) shortens the molecule and changes the orientation of the two domains of calmodulin by 60 degrees relative to those in troponin-C. The molecular model has been used to derive two possible binding sites for the antipsychotic drug trifluoperazine, a potent competitive inhibitor of calmodulin activity.  相似文献   

13.
Size exclusion high performance liquid chromatography analysis of a human monoclonal antibody (mAb) showed the presence of a new species that eluted with a retention time between the dimeric and monomeric species of the antibody. Extensive characterization of this species, referred to as “shoulder,” indicated that it was a mAb containing an extra light chain and had a molecular weight of approximately 175 kDa. The extra light chain was found to be non-covalently associated with the Fab portion of the protein. The relative amount of shoulder (typically 1−3% of the total mAb present) varied with the Chinese hamster ovary cell line producing the mAb and was not influenced by the growth conditions. Our three-step mAb purification platform using protein A, anion exchange, and cation exchange process steps was successful at removing dimer and higher and lower molecular weight species, but not the shoulder impurity. It was found that hydrophobic interaction chromatography could be used in place of cation exchange to exploit the subtle differences in hydrophobicity between monomer and shoulder. We developed an antibody polishing process using Butyl Sepharose HP resin that is capable of removing the majority of high and low molecular weight impurities yielding 99% pure mAb monomer, virtually devoid of the shoulder species, with a step recovery of about 80%.  相似文献   

14.
The structural features of mAb directed against the opiate morphine were analyzed by using competitive ligand analog-binding studies, examination of the V region amino acid sequence, and computer-aided molecular modeling of the fragment V region. The antibody response in BALB/c mice to morphine is relatively restricted, in that all of the mAb examined in this study contained the same lambda L chain and very similar H chain V regions. A three-dimensional model of the antimorphine-binding site was constructed by using computational and graphic display techniques. Each of the six complementary-determining regions was constructed by using fragment replacement methods employing canonical loop conformations of known "parent" structures. Experimental competitive ligand-binding data and theoretical modeling suggest that a charged glutamate residue at position H:50 and aromatic side chains of residues H:33W, H:47W, H:58F, H:95W, H:101iY, and L:91W are key features in ionic and hydrophobic interactions with the ligand. This study represents the first use of theoretical and experimental modeling techniques to describe the Ag-binding site of a mouse fragment V region containing a lambda L chain.  相似文献   

15.
Starting with nine plaques of influenza A/Kamata/14/91(H3N2) virus, we selected mutants in the presence of monoclonal antibody 203 (mAb203). In total, amino acid substitutions were found at nine positions (77, 80, 131, 135, 141, 142, 143, 144 and 146), which localized in the antigenic site A of the hemagglutinin (HA). The escape mutants differed in the extent to which they had lost binding to mAb203. HA protein with substitutions of some amino acid residues created by site-directed mutagenesis in the escape mutants retained the ability to bind to mAb203. Changes in the amino acid character affecting charge or hydrophobicity accounted for the binding capacity to the antibody of the HA with most of the substitutions in the escape mutants and binding-positive mutants. However, the effect of some amino acid substitutions remained unexplained. A three-dimensional model of the 1991 HA was constructed and used to analyze substituted amino acids in these mutants for the accessible surface hydrophobic and hydrophilic characters. One amino acid substitution in an escape mutant and another amino acid substitution in a binding-positive mutant seemed to be explained by the changes noted on this model.  相似文献   

16.
Susceptibility of tryptophan (Trp) in a complementarity-determining region (CDR) to oxidation is a significant issue for recombinant monoclonal antibody (mAb) therapeutics due to the clinical efficacy and stability concerns. Here we present a case study using hydrophobic interaction chromatography (HIC) to separate an oxidized Trp containing population of an IgG1. The best separation was achieved using dual Dionex ProPac HIC-10 columns, and the oxidized Trp population was isolated as a separated pre-peak. Peptide map analysis revealed that the oxidized Trp is located in a heavy chain CDR. In addition, the HIC method was capable of monitoring the oxidation status of the CDR Trp, as the oxidation rate of the CDR Trp measured by HIC directly correlated with the results of the peptide maps. The same method conditions were also capable of separating oxidized methionine (Met) and isomerization/deamidation products, which co-elute as another pre-peak at a different retention time from the oxidized Trp species. These observations indicate that the HIC procedure can be utilized to monitor the oxidative status of the CDR Trp in the IgG1.  相似文献   

17.
Membrane chromatography has already proven to be a powerful alternative to polishing columns in flow‐through mode for contaminant removal. As flow‐through utilization has expanded, membrane chromatography applications have included the capturing of large molecules, including proteins such as IgGs. Such bind‐and‐elute applications imply the demand for high binding capacity and larger membrane surface areas as compared to flow‐through applications. Given these considerations, a new Sartobind Phenyl? membrane adsorber was developed for large‐scale purification of biomolecules based on hydrophobic interaction chromatography (HIC) principles. The new hydrophobic membrane adsorber combines the advantages of membrane chromatography—virtually no diffusion limitation and shorter processing time—with high binding capacity for proteins comparable to that of conventional HIC resins as well as excellent resolution. Results from these studies confirmed the capability of HIC membrane adsorber to purify therapeutic proteins with high dynamic binding capacities in the range of 20 mg‐MAb/cm3‐membrane and excellent impurity reduction. In addition the HIC phenyl membrane adsorber can operate at five‐ to ten‐fold lower residence time when compared to column chromatography. A bind/elute purification step using the HIC membrane adsorber was developed for a recombinant monoclonal antibody produced using the PER.C6® cell line. Loading and elution conditions were optimized using statistical design of experiments. Scale‐up is further discussed, and the performance of the membrane adsorber is compared to a traditional HIC resin used in column chromatography. Biotechnol. Bioeng. 2010; 105: 296–305. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
SM5-1 is a mouse monoclonal antibody which has a high specificity for melanoma, hepatocellular carcinoma, and breast cancer, making it a promising candidate for cancer targeting therapy. We have therefore attempted to construct a humanized antibody of SM5-1 to minimize its immunogenicity for potential clinical use. Using a molecular model of SM5-1 built by computer-assisted homology modeling, framework region (FR) residues of potential importance to the antigen binding were identified. Then, a humanized version of SM5-1 was generated by transferring these mouse key FR residues onto a human framework that was selected based on homology to the mouse framework, together with the mouse complementarity-determining region (CDR) residues. This humanized antibody retained only six murine residues outside of the CDRs but was shown to possess affinity and specificity comparable to that of the parental antibody, suggesting that it might have the potential to be developed for future clinical use.  相似文献   

19.
脱磷脂牛血红蛋白的制备   总被引:3,自引:1,他引:2  
研究了一种新的脱磷脂血红蛋白制备方法。在2%、5%PEG4000或2%、5%PEG10000作共溶剂的情况下,利用疏水相互作用色谱基本上完全除去了新鲜牛血红细胞裂解液中的磷脂类成分,其中以5%PEG4000为共溶剂时,血红蛋白的回收率最高,达85.0%,在血红蛋白存在下所用的苯基琼脂糖-6B型疏水介质的吸附容量为86.6 mg磷脂/mL介质。经过疏水作用色谱后,血红蛋白的P50是33864Pa,Hill系数是2.54,较好地保存了血红蛋白的生物活性。对疏水作用色谱的脱磷脂机理以及PEG的保护机制进行了讨论。  血红蛋白,疏水作用色谱,PEG,磷脂,共溶剂  相似文献   

20.
A purification scheme for cell culture‐derived smallpox vaccines based on an orthogonal downstream process of pseudo‐affinity membrane adsorbers (MA) and hydrophobic interaction chromatography (HIC) was investigated. The applied pseudo‐affinity chromatography, based on reinforced sulfated cellulose and heparin‐MA, was optimized in terms of dynamic binding capacities, virus yield and process productivity. HIC was introduced as a subsequent method to further reduce the DNA content. Therefore, two screens were undertaken. First, several HIC ligands were screened for different adsorption behavior between virus particles and DNA. Second, elution from pseudo‐affinity MA and adsorption of virus particles onto the hydrophobic interaction matrix was explored by a series of buffers using different ammonium sulfate concentrations. Eventually, variations between different cultivation batches and buffer conditions were investigated.The most promising combination, a sulfated cellulose membrane adsorber with subsequent phenyl HIC resulted in overall virus particle recoveries ranging from 76% to 55% depending on the product batch and applied conditions. On average, 61% of the recovered virus particles were infective within all tested purification schemes and conditions. Final DNA content varied from 0.01% to 2.5% of the starting material and the level of contaminating protein was below 0.1%. Biotechnol. Bioeng. 2010;107: 312–320. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号