首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron is an essential element for almost all living organisms. The possible role of iron for growth, adherence and cytotoxicity of Entamoeba histolytica was evaluated in this study. The absence of iron from TYI-S-33 medium stopped amebic growth in vitro. However, iron concentrations in the culture media of 21.4-285.6 microM did not affect the growth of the amebae. Although growth was not retarded at these concentrations, the adhesive abilities of E. histolytica and their cytotoxicities to CHO cell monolayer were correlated with iron concentration. Amebic adhesion to CHO cell monolayers was significantly reduced by low-iron (24.6 +/- 2.1%) compared with 62.7 +/- 2.8 and 63.1 +/- 1.4% of amebae grown in a normal-iron and high-iron media, respectively. E. histolytica cultured in the normal- and high-iron media destroyed 69.1 +/- 4.3% and 72.6 +/- 5.7% of cultured CHO cell monolayers, but amebae grown in the low-iron medium showed a significantly reduced level of cytotoxicity to CHO cells (2.8 +/- 0.2%). Addition of divalent cations other than iron to amebic trophozoites grown in the low-iron medium failed to restore levels of the cytotoxicity. However, when E. histolytica grown in low-iron medium were transferred to normal-iron medium, the amebae showed completely restored cytotoxicity within 7 days. The result suggests that iron is an important factor in the adherence and cytotoxicity of E. histolytica to CHO cell monolayer.  相似文献   

2.
This study compares the ganglioside composition of tissue culture substrate-attached material (SAM) with that of cell bodies in a line of transformed hepatocytes derived from the minimal deviation Morris hepatoma 5123 c (CMH5123 cells). We examined both confluent cultures (late-phase cultures) and cells which were allowed to attach for only 3 h (early-phase cultures). We also determined to what extent ganglioside compositions of SAM and cell bodies from early- and late-phase cultures of CMH5123 cells are affected by the block of complex ganglioside biosynthesis induced by treatment with chelating agents (EGTA + EDTA). The morphological characteristics of SAM were monitored by scanning electron microscopy during the different steps of this study. In early-phase cultures, SAM was composed of fragments of filopodia and small vesicles probably representing newly formed substratum adhesion sites. In contrast, SAM of late-phase cultures was made up of large pools of membranous material resulting from the breakage of thick retraction fibers connecting the cell body with broad, mature adhesion sites. SAM of early-phase cultures yielded ganglioside profiles with a higher content of GM1 and GD1 a than those of cell bodies, while in late-phase cultures there was no difference between SAM and cell body gangliosides. When cells were grown in the presence of chelating agents, SAM of early-phase cultures was composed of vesicles and filopodial fragments similar to those found in early-phase cultures grown in regular media; these morphological features also appeared in SAM of confluent cultures (in contrast to the membranous material characteristic of late-phase cultures grown in regular media). In early-phase cultures grown in the presence of chelating agents, gangliosides of SAM were enriched in complex homologs relative to their content in cell bodies. These ganglioside characteristics were also found in SAM of confluent cultures grown in the presence of chelating agents, reflecting the presence of newly formed adhesion sites. On the basis of these results, we may conclude that the molecular assembly of newly formed adhesion sites implies the preferential distribution of several surface components involved in cell adhesion, including complex gangliosides.  相似文献   

3.
Fermentation development for improved culture productivity can be achieved in a number of ways. Conventional approaches usually concentrate initially on optimisation of the final stage fermentation. However an understanding of the seed stage and its further development can lead to an improvement in final stage productivity. A significant increase in the production of milbemycin VM44866 byStreptomyces hygroscopicus was achieved by manipulation of several factors associated with the seed stage fermentation. Juvenile seeds and seed media containing reduced levels of carbohydrates overcame the detrimental effects of passaging and seed age associated with the standard (control) process. The effect of final stage inoculum level was seed medium-dependent and seed fermentation incubation temperature also affected subsequent milbemycin VM44866 production. These findings were extended to a second milbemycin-producing strain and these results have demonstrated the potential benefits of seed stage optimisation for improved final stage production.  相似文献   

4.
A high‐throughput DoE approach performed in a 96‐deepwell plate system was used to explore the impact of media and feed components on main quality attributes of a monoclonal antibody. Six CHO‐S derived clonal cell lines expressing the same monoclonal antibody were tested in two different cell culture media with six components added at three different levels. The resulting 384 culture conditions including controls were simultaneously tested in fed‐batch conditions, and process performance such as viable cell density, viability, and product titer were monitored. At the end of the culture, supernatants from each condition were purified and the product was analyzed for N‐glycan profiles, charge variant distribution, aggregates, and low molecular weight forms. The screening described here provided highly valuable insights into the factors and combination of factors that can be used to modulate the quality attributes of a molecule. The approach also revealed specific intrinsic differences of the selected clonal cell lines ‐ some cell lines were very responsive in terms of changes in performance or quality attributes, whereas others were less affected by the factors tested in this study. Moreover, it indicated to what extent the attributes can be impacted within the selected experimental design space. The outcome correlated well with confirmations performed in larger cell culture volumes such as small‐scale bioreactors. Being fast and resource effective, this integrated high‐throughput approach can provide information which is particularly useful during early stage cell culture development. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:571–583, 2014  相似文献   

5.
This study describes the development work to shorten the monoclonal antibody (mAb) production time in CHO cell cultures from 14 days to 8 days without impacting mAb titer or product quality. The proposed process increases cell inoculation densities up to 25× higher than a typical seeding density in the final production bioreactor, with the implementation of an ATF? perfusion system in the N ? 1 stage. Similar antibody titer and N‐glycosylation profiles were reached in 8 days using the 25× seed condition, as in 14 days using the 1× seed condition. Acidic variants in the 25× seed condition were 12–20% lower than the 1× seed condition. These results indicate that an accelerated 8‐day antibody production process utilizing a 25× seeding strategy has the potential of achieving similar product quality and titer as the 1× seeding condition in a 14‐day production process. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:829–832, 2013  相似文献   

6.
Temperature shifts to lower culture temperatures are frequently employed in the manufacturing of protein therapeutics in mammalian cells to improve productivity, viability, or quality attributes. The direction and extent to which a temperature shift affects productivity and quality may vary depending on the expression host and characteristics of the expressed protein. We demonstrated here that two Chinese hamster ovary (CHO) clones expressing different human monoclonal antibodies responded differently to a temperature shift despite sharing a common parental CHO cell line. Within a single CHO line, we observed a nonlinear response to temperature shift. A moderate shift to 35°C significantly decreased final titer relative to the unshifted control while a larger shift to 32°C significantly increased final titer by 25%. Therefore, we proposed a systematic empirical approach to assess the utility of a temperature shift for faster implementation during process development. By testing multiple shift parameters, we identified optimum shift conditions in shake flasks and successfully translated findings to benchtop bioreactors and 1,000-L bioreactor scale. Significant differences in final antibody titer and charge variants were observed with temperature shift increments as small as Δ1.5°C. Acidic charge variants decreased monotonically with decreasing shift temperature in both cell lines; however, final antibody titer required simultaneous optimization of shift day and temperature. Overall, we were able to show that a systematic approach to identify temperature shift parameters at small scales is useful to optimize protein production and quality for efficient and confident translation to large-scale production.  相似文献   

7.
Mutants of Corynebacterium diphtheriae C7(beta) that are resistant to the inhibitory effects of iron on toxinogenesis were identified by their ability to form colonies surrounded by toxin-antitoxin halos on agar medium containing both antitoxin and a high concentration of iron. Chromosomal mutations were essential for the altered phenotypes of four independently isolated mutant strains. During growth in deferrated liquid medium containing various amounts of added iron, these mutants differed from wild-type C. diphtheriae C7(beta) in several ways. Their growth rates were slower under low-iron conditions and were stimulated to various degrees under high-iron conditions. The concentrations of iron at which optimal toxin production occurred were higher for the mutants than for wild-type C. diphtheriae C7(beta). Toxin production by the mutants during growth in low-iron medium occurred throughout the period of exponential growth at nearly constant rates that were proportional to the bacterial growth rates. In contrast, toxin production by wild-type C. diphtheriae C7(beta) in similar low-iron cultures occurred predominantly during the late exponential phase, when iron was a growth-limiting nutrient. Additional studies demonstrated that these mutants had severe defects in their transport systems for ferric iron. We propose that the altered regulation of toxinogenesis by iron in our mutants was caused by the severe defects in their iron transport systems. As a consequence, the mutants exhibited a low-iron phenotype during growth under conditions that permitted wild-type C. diphtheriae C7(beta) to exhibit a high-iron phenotype.  相似文献   

8.
9.
Optimization and monitoring of bioprocesses requires the measurement of several process parameters and quality attributes. Mass spectrometry (MS)-based techniques such as those coupled to gas chromatography (GCMS) and liquid Chromatography (LCMS) enable the simultaneous measurement of hundreds of metabolites with high sensitivity. When applied to spent media, such metabolome analysis can help determine the sequence of substrate uptake and metabolite secretion, consequently facilitating better design of initial media and feeding strategy. Furthermore, the analysis of metabolite diversity and abundance from spent media will aid the determination of metabolic phases of the culture and the identification of metabolites as surrogate markers for product titer and quality. This review covers the recent advances in metabolomics analysis applied to the development and monitoring of bioprocesses. In this regard, we recommend a stepwise workflow and guidelines that a bioprocesses engineer can adopt to develop and optimize a fermentation process using spent media analysis. Finally, we show examples of how the use of MS can revolutionize the design and monitoring of bioprocesses.  相似文献   

10.
Ferredoxin, flavodoxin, and rubredoxin were purified to homogeneity from Clostridium formicoaceticum and characterized. Variation of the iron concentration of the growth medium caused substantial changes in the concentrations of ferredoxin and flavodoxin but not of rubredoxin. The ferredoxin has a molecular weight of 6,000 and is a four iron-four sulfur protein with eight cysteine residues. The spectrum is similar to that of other ferredoxins. The molar extinction coefficients are 22.6 X 10(3) and 17.6 X 10(3) at 280 and 390 nm, respectively. From 100 g wet weight of cells grown with 3.6 microM iron and with 40 microM iron, 5 and 20 mg offerredoxin were isolated, respectively. The molecular weight of rubredoxin is 5,800 and it contains one iron and four cysteines. The UV-visible absorption spectrum is dissimilar to those of other rubredoxins in that the 373 nm absorption peak is quite symmetric, lacking the characteristic 350-nm shoulder found in other rubredoxins. The flavodoxin is a 14,500-molecular-weight protein which contains 1 mol of flavin mononucleotide per mol of protein. It forms a stable, blue semiquinone upon light irradiation in the presence of EDTA or during enzymatic reduction. When cells were grown in low-iron medium, flavodoxin constituted at least 2% of the soluble cell protein; however, it was not detected in extracts of cells grown in high-iron medium. The rubredoxin and ferredoxin expressed during growth in low-iron and high-iron media are identical as judged by iron, inorganic sulfide, and amino acid analysis, as well as light absorption spectroscopy.  相似文献   

11.
近年来,连续型细胞培养由于其高单位体积产量、稳定的产品质量属性以及潜在的成本节约效应正成为生物大分子制药生产的工艺焦点。相比传统的流加培养模式,灌流培养因培养的连续性、操作的复杂性,致使其反应器规模培养需消耗大量培养基,产生更高人力成本,不能满足当今加速化高效化的工艺开发需求。为获得稳健的灌流培养工艺并控制较低成本,高通量灌流培养模型被用于批量化的小规模灌流培养,进行灌流培养前期的克隆筛选、培养基筛选及工艺参数优化等工作,为后期大规模培养提供实用性数据支持,同时也被用于预测大规模培养的细胞表型和产品质量属性。重点介绍了当前高通量系统包括摇瓶/摇管系统、多平行自动化系统以及微流控体系用作灌流培养的特征、具体应用及比较,同时论述当前高通量灌流培养系统在生物工艺领域发展所面临的机遇及挑战,并展望其应用前景。  相似文献   

12.
Clinical efficacy and safety of recombinant proteins are closely associated with their structural characteristics. The major quality attributes comprise glycosylation, charge variants (oxidation, deamidation, and C‐ & N‐terminal modifications), aggregates, low‐molecular‐weight species (LMW), and misincorporation of amino acids in the protein backbone. Cell culture media design has a great potential to modulate these quality attributes due to the vital role of medium in mammalian cell culture. The purpose of this review is to provide an overview of the way both classical cell culture medium components and novel supplements affect the quality attributes of recombinant therapeutic proteins expressed in mammalian hosts, allowing rational and high‐throughput optimization of mammalian cell culture media. A selection of specific and/or potent inhibitors and activators of oligosaccharide processing as well as components affecting multiple quality attributes are presented. Extensive research efforts in this field show the feasibility of quality engineering through media design, allowing to significantly modulate the protein function. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:615–629, 2015  相似文献   

13.
Volumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof‐of‐concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high‐seed fed‐batch production cultures. First, we optimized the perfusion N‐1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line. Exponential growth was observed throughout the N‐1 duration, reaching >40 × 106 vc/mL at the end of the perfusion N‐1 stage. The cultures were subsequently split into high‐seed (10 × 106 vc/mL) fed‐batch production cultures. This strategy significantly shortened the culture duration. The high‐seed fed‐batch production processes for cell lines A and B reached 5 g/L titer in 12 days, while their respective low‐seed processes reached the same titer in 17 days. The shortened production culture duration potentially generates a 30% increase in manufacturing capacity while yielding comparable product quality. When perfusion N‐1 and high‐seed fed‐batch production were applied to cell line C, higher levels of the active protein were obtained, compared to the low‐seed process. This, combined with correspondingly lower levels of the inactive species, can enhance the overall process yield for the active species. Using three different CHO cell lines, we showed that perfusion seed cultures can optimize capacity utilization and improve process efficiency by increasing volumetric productivity while maintaining or improving product quality. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:616–625, 2014  相似文献   

14.
Ascorbic acid (AA) is an antioxidant that, in the presence of iron and hydrogen peroxide, increases the production of hydroxyl radicals in vitro. Whether AA has similar pro-oxidant properties in vivo may depend upon the relative balance of iron and AA concentrations. In this study, C3H mice were fed diets supplemented with 100 or 300 mg/kg iron, with or without AA (15 g/kg), for 12 months. Liver AA concentrations were greater in mice fed AA-supplemented diets with either low or high iron (P=.0001), while the high-iron diet was associated with a significantly lower liver AA concentration regardless of AA supplementation (P=.0001). Only mice fed the high-iron diet with AA had a significantly greater liver iron concentration (P=.05). In the high-iron group, AA reduced oxidative stress, as measured by greater activities of glutathione peroxidase, superoxide dismutase (SOD) and catalase and by significantly lower concentrations of 4-hydroxylalkenal (HAE) and malondialdehyde (MDA). In mice fed the low-iron diet, AA was associated with greater concentrations of HAE and MDA and with lower activities of SOD. However, AA did not increase the concentrations of modified DNA bases with the low-iron diet but was associated with significantly lower concentrations of modified DNA bases in mice fed the high-iron diet. In conclusion, dietary AA appears to have mild pro-oxidant properties at low-iron concentrations but has a strong antioxidant effect against oxidative stress and DNA damage induced by dietary iron in mouse liver.  相似文献   

15.
16.
《MABS-AUSTIN》2013,5(8):1502-1514
ABSTRACT

Although process intensification by continuous operation has been successfully applied in the chemical industry, the biopharmaceutical industry primarily uses fed-batch, rather than continuous or perfusion methods, to produce stable monoclonal antibodies (mAbs) from Chinese hamster ovary (CHO) cells. Conventional fed-batch bioreactors may start with an inoculation viable cell density (VCD) of ~0.5 × 106 cells/mL. Increasing the inoculation VCD in the fed-batch production bioreactor (referred to as N stage bioreactor) to 2–10 × 106 cells/mL by introducing perfusion operation or process intensification at the seed step (N-1 step) prior to the production bioreactor has recently been used because it increases manufacturing output by shortening cell culture production duration. In this study, we report that increasing the inoculation VCD significantly improved the final titer in fed-batch production within the same 14-day duration for 3 mAbs produced by 3 CHO GS cell lines. We also report that other non-perfusion methods at the N-1 step using either fed batch or batch mode with enriched culture medium can similarly achieve high N-1 final VCD of 22–34 × 106 cells/mL. These non-perfusion N-1 seeds supported inoculation of subsequent production fed-batch production bioreactors at increased inoculation VCD of 3–6 × 106 cells/mL, where these achieved titer and product quality attributes comparable to those inoculated using the perfusion N-1 seeds demonstrated in both 5-L bioreactors, as well as scaled up to 500-L and 1000-L N-stage bioreactors. To operate the N-1 step using batch mode, enrichment of the basal medium was critical at both the N-1 and subsequent intensified fed-batch production steps. The non-perfusion N-1 methodologies reported here are much simpler alternatives in operation for process development, process characterization, and large-scale commercial manufacturing compared to perfusion N-1 seeds that require perfusion equipment, as well as preparation and storage vessels to accommodate large volumes of perfusion media. Although only 3 stable mAbs produced by CHO cell cultures are used in this study, the basic principles of the non-perfusion N-1 seed strategies for shortening seed train and production culture duration or improving titer should be applicable to other protein production by different mammalian cells and other hosts at any scale biologics facilities.  相似文献   

17.
This work investigates the insights and understanding which can be deduced from predictive process models for the product quality of a monoclonal antibody based on designed high‐throughput cell culture experiments performed at milliliter (ambr‐15®) scale. The investigated process conditions include various media supplements as well as pH and temperature shifts applied during the process. First, principal component analysis (PCA) is used to show the strong correlation characteristics among the product quality attributes including aggregates, fragments, charge variants, and glycans. Then, partial least square regression (PLS1 and PLS2) is applied to predict the product quality variables based on process information (one by one or simultaneously). The comparison of those two modeling techniques shows that a single (PLS2) model is capable of revealing the interrelationship of the process characteristics to the large set product quality variables. In order to show the dynamic evolution of the process predictability separate models are defined at different time points showing that several product quality attributes are mainly driven by the media composition and, hence, can be decently predicted from early on in the process, while others are strongly affected by process parameter changes during the process. Finally, by coupling the PLS2 models with a genetic algorithm first the model performance can be further improved and, most importantly, the interpretation of the large‐dimensioned process–product‐interrelationship can be significantly simplified. The generally applicable toolset presented in this case study provides a solid basis for decision making and process optimization throughout process development. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1368–1380, 2017  相似文献   

18.
ObjectiveOur aim was to assess the effects of dietary iron, and the compound capsaicin, on hemoglobin as well as metabolic indicators including blood glucose, cholesterol, triglycerides, insulin, and glucose tolerance.ResultsHealthy rats fed a low-iron diet exhibited significantly reduced total cholesterol and triglyceride levels, compared with rats fed a control diet. Significantly reduced blood lipid was also provoked by low dietary iron in diabetic rats, compared with those fed a control diet. Insulin, and glucose tolerance was only improved in healthy rats fed the low-iron diet. Significant increases in total cholesterol were found in diabetic rats fed a high-iron diet, compared with healthy rats fed the same diet, although no statistical differences were found for triglycerides. Hemoglobin levels, which were not statistically different in diabetic versus healthy rats fed the high-iron diet, fell when capsaicin was added. Capsaicin also provoked a fall in the level of cholesterol and triglycerides in diabetic animals, versus diabetics fed with the high iron diet alone. In conclusion, low levels of dietary iron reduced levels of serum triglycerides, hemoglobin, and cholesterol, and significantly improved insulin, and glucose tolerance in healthy rats. In contrast, a high-iron diet increased cholesterol significantly, with no significant changes to triglyceride concentrations. The addition of capsaicin to the high-iron diet (for diabetic rats) further reduced levels of hemoglobin, cholesterol, and triglycerides. These results suggest that capsaicin, may be suitable for the treatment of elevated hemoglobin, in patients.  相似文献   

19.
Cytomegalovirus gene UL114, a homolog of mammalian uracil-DNA glycosylase (UNG), is required for efficient viral DNA replication. In quiescent fibroblasts, UNG mutant virus replication is delayed for 48 h and follows the virus-induced expression of cellular UNG. In contrast, mutant virus replication proceeds without delay in actively growing fibroblasts that express host cell UNG. In the absence of viral or host cell UNG expression, mutant virus fails to proceed to late-phase DNA replication, characterized by rapid DNA amplification. The data suggest that uracil incorporated early during wild-type viral DNA replication must be removed by virus or host UNG prior to late-phase amplification and encapsidation into progeny virions. The process of uracil incorporation and excision may introduce strand breaks to facilitate the transition from early-phase replication to late-phase amplification.  相似文献   

20.
A challenging aspect with the use of protein hydrolysates in commercial manufacturing processes of recombinant therapeutic proteins is their impacts on the protein production due to a lack of understanding of batch-to-batch variability. Soy hydrolysates variability and its impact on fed-batch production of a recombinant monoclonal antibody (mAb) expressed in Sp2/0 cells were studied using 37 batches from the same vendor. The batch-to-batch variability of soy hydrolysates impacted cell growth, titer and product quality. Physicochemical characterization of batches confirmed that soy hydrolysates are mainly a source of amino acids and peptides containing lower amounts of other components such as carbohydrates and chemical elements in cell culture media. Soy hydrolysates composition of different batches was consistent except for trace elements. Statistical analyses identified iron as a potential marker of a poor process performance. To verify this correlation, two forms of iron, ferric ammonium citrate and ferrous sulfate, were added to a batch of soy hydrolysates associated to a low level of iron during cell culture. Both forms of iron reduced significantly cell growth, mAb titer and increased level of the acidic charge variants of the mAb. Consequently, trace element composition of soy hydrolysates or of all incoming raw materials might lead to significant impacts on process performance and product quality and therefore need to be tightly controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号