共查询到12条相似文献,搜索用时 15 毫秒
1.
2.
A multispecific monoclonal antibody G2 recognizes at least three completely different epitope sequences with high affinity 下载免费PDF全文
Md. Nuruddin Mahmud Masayuki Oda Daiki Usui Yasuo Inoshima Naotaka Ishiguro Yuji O. Kamatari 《Protein science : a publication of the Protein Society》2017,26(11):2162-2169
A monoclonal antibody (mAb) G2 possesses an unusual characteristic of reacting with at least three proteins (ATP6V1C1, SEPT3, and C6H10orf76) other than its original antigen, chicken prion protein (ChPrP). The epitopes on ChPrP and ATP6V1C1 have been identified previously. In this study, we identified the epitope in the third protein, SEPT3. Interestingly, there was no amino acid sequence similarity among the epitopes on the three proteins. These epitopes had high binding affinities to G2 (K D = ~10?7 M for monovalent binding and K D = ~10?9 M for divalent binding), as determined using a SPR biosensor. This is the first report on a three‐in‐one mAb recognizing completely different epitope sequences with high affinity. Additionally, competitive ELISA indicated that the binding sites on G2, specific for the three different epitopes, overlapped, suggesting that the antigen‐binding site may be flexible in the free form and capable of adapting to at least three different conformations to enable interactions with three different antigens. 相似文献
3.
4.
Christine J Rossant Danielle Carroll Ling Huang John Elvin Frances Neal Edward Walker Joris J Benschop Eldar E Kim Simon T Barry Tristan J Vaughan 《MABS-AUSTIN》2014,6(6):1425-1438
Generation of functional antibodies against integral membrane proteins such as the G-protein coupled receptor CXCR2 is technically challenging for several reasons, including limited epitope accessibility, the requirement for a lipid environment to maintain structure and their existence in dynamic conformational states. Antibodies to human CXCR2 were generated by immunization in vivo and by in vitro selection methods. Whole cell immunization of transgenic mice and screening of phage display libraries using CXCR2 magnetic proteoliposomes resulted in the isolation of antibodies with distinct modes of action. The hybridoma-derived antibody fully inhibited IL-8 and Gro-α responses in calcium flux and β-arrestin recruitment assays. The phage-display derived antibodies were allosteric antagonists that showed ligand dependent differences in functional assays. The hybridoma and phage display antibodies did not cross-compete in epitope competition assays and mapping using linear and CLIPS peptides confirmed that they recognized distinct epitopes of human CXCR2. This illustrates the benefits of using parallel antibody isolation approaches with different antigen presentation methods to successfully generate functionally and mechanistically diverse antagonistic antibodies to human CXCR2. The method is likely to be broadly applicable to other complex membrane proteins. 相似文献
5.
《MABS-AUSTIN》2013,5(6):1425-1438
Generation of functional antibodies against integral membrane proteins such as the G-protein coupled receptor CXCR2 is technically challenging for several reasons, including limited epitope accessibility, the requirement for a lipid environment to maintain structure and their existence in dynamic conformational states. Antibodies to human CXCR2 were generated by immunization in vivo and by in vitro selection methods. Whole cell immunization of transgenic mice and screening of phage display libraries using CXCR2 magnetic proteoliposomes resulted in the isolation of antibodies with distinct modes of action. The hybridoma-derived antibody fully inhibited IL-8 and Gro-α responses in calcium flux and β-arrestin recruitment assays. The phage-display derived antibodies were allosteric antagonists that showed ligand dependent differences in functional assays. The hybridoma and phage display antibodies did not cross-compete in epitope competition assays and mapping using linear and CLIPS peptides confirmed that they recognized distinct epitopes of human CXCR2. This illustrates the benefits of using parallel antibody isolation approaches with different antigen presentation methods to successfully generate functionally and mechanistically diverse antagonistic antibodies to human CXCR2. The method is likely to be broadly applicable to other complex membrane proteins. 相似文献
6.
Ikuo Shiratori Joe Akitomi David A. Boltz Katsunori Horii Makio Furuichi Iwao Waga 《Biochemical and biophysical research communications》2014
Many cases of influenza are reported worldwide every year. The influenza virus often acquires new antigenicity, which is known as antigenic shift; this results in the emergence of new virus strains, for which preexisting immunity is not found in the population resulting in influenza pandemics. In the event a new strain emerges, diagnostic tools must be developed rapidly to detect the novel influenza strain. The generation of high affinity antibodies is costly and takes time; therefore, an alternative detection system, aptamer detection, provides a viable alternative to antibodies as a diagnostic tool. In this study, we developed DNA aptamers that bind to HA1 proteins of multiple influenza A virus subtypes by the SELEX procedure. To evaluate the binding properties of these aptamers using colorimetric methods, we developed a novel aptamer-based sandwich detection method employing our newly identified aptamers. This novel sandwich enzyme-linked aptamer assay successfully detected the H5N1, H1N1, and H3N2 subtypes of influenza A virus with almost equal sensitivities. These findings suggest that our aptamers are attractive candidates for use as simple and sensitive diagnostic tools that need sandwich system for detecting the influenza A virus with broad subtype specificities. 相似文献
7.
Production and cross-reactivity patterns of a panel of high affinity monoclonal antibodies to Vibrio cholerae O139 Bengal 总被引:3,自引:0,他引:3
Surabhi Garg T. Ramamurthy Asish K. Mukhopadhyay B.C. Deb G. Balakrish Nair Toshio Shimada Tae Takeda Anwarul Huq Rita R. Colwell Yoshifumi Takeda 《FEMS immunology and medical microbiology》1994,8(4):293-298
Abstract A series of monoclonal antibodies of different isotypes specific for Vibrio cholerae O139, the new pandemic strain of cholera, was produced. These mAbs reacted only with the reference strain (MO45) representing serovar O139 but did not react with any of the other reference strains representing serovars O1 to O140. Significantly, the mAbs did not agglutinate the R-cultures of V. cholerae (CA385, 20–93) which demonstrated the exceptional specificity of these mAbs and indicated that the mAbs recognized antigenic determinants unique for the O139 serovar. There was heterogeneity in the intensity of reactivity of the mAbs with strains of V. cholerae O139 isolated from diverse sources. Apart from 4H6, the other mAbs agglutinated all the O139 strains examined. 2D12 and 2F8 were the best mAbs based on the intensity of agglutination with all the O139 strains. Evaluation of 3A10 in comparison with a polyclonal anti-O139 antibody raised in rabbit using the slide agglutination format revealed that 3A10 fared as well as the polyclonal antibody for the laboratory identification of the O139 serovar. The acquisition of these mAbs provide reagents which would be very useful in the development of simple immunodiagnostic assays for the diagnosis of V. cholerae O139 infections. 相似文献
8.
Caroline S. Colley Bojana Popovic Sudharsan Sridharan Judit E. Debreczeni David Hargeaves Michael Fung 《MABS-AUSTIN》2018,10(1):104-117
C5a is a potent anaphylatoxin that modulates inflammation through the C5aR1 and C5aR2 receptors. The molecular interactions between C5a–C5aR1 receptor are well defined, whereas C5a–C5aR2 receptor interactions are poorly understood. Here, we describe the generation of a human antibody, MEDI7814, that neutralizes C5a and C5adesArg binding to the C5aR1 and C5aR2 receptors, without affecting complement–mediated bacterial cell killing. Unlike other anti–C5a mAbs described, this antibody has been shown to inhibit the effects of C5a by blocking C5a binding to both C5aR1 and C5aR2 receptors. The crystal structure of the antibody in complex with human C5a reveals a discontinuous epitope of 22 amino acids. This is the first time the epitope for an antibody that blocks C5aR1 and C5aR2 receptors has been described, and this work provides a basis for molecular studies aimed at further understanding the C5a–C5aR2 receptor interaction. MEDI7814 has therapeutic potential for the treatment of acute inflammatory conditions in which both C5a receptors may mediate inflammation, such as sepsis or renal ischemia–reperfusion injury. 相似文献
9.
10.
Lisa C. Schmitt Alexander Rau Oliver Seifert Jonas Honer Meike Hutt Simone Schmid 《MABS-AUSTIN》2017,9(5):831-843
Human epidermal growth factor receptor 3 (HER3, also known as ErbB3) has emerged as relevant target for antibody-mediated tumor therapy. Here, we describe a novel human antibody, IgG 3–43, recognizing a unique epitope formed by domain III and parts of domain IV of the extracellular region of HER3, conserved between HER3 and mouse ErbB3. An affinity of 11 nM was determined for the monovalent interaction. In the IgG format, the antibody bound recombinant bivalent HER3 with subnanomolar affinity (KD = 220 pM) and HER3-expressing tumor cells with EC50 values in the low picomolar range (27 - 83 pM). The antibody competed with binding of heregulin to HER3-expressing cells, efficiently inhibited phosphorylation of HER3 as well as downstream signaling, and induced receptor internalization and degradation. Furthermore, IgG 3–43 inhibited heregulin-dependent proliferation of several HER3-positive cancer cell lines and heregulin-independent colony formation of HER2-overexpressing tumor cell lines. Importantly, inhibition of tumor growth and prolonged survival was demonstrated in a FaDu xenograft tumor model in SCID mice. These findings demonstrate that by binding to the membrane-proximal domains III and IV involved in ligand binding and receptor dimerization, IgG 3–43 efficiently inhibits activation of HER3, thereby blocking tumor cell growth both in vitro and in vivo. 相似文献
11.
J. Plazinski J. Elliott U. A. Hurley J. Burch T. Arioli R. E. Williamson 《Protoplasma》1997,196(1-2):78-86
Summary Myosins providing the motors for the actin-based motility that occurs in diverse plants have proved difficult to study. To facilitate those studies, we describe polymerase chain reaction primers that reliably amplify part of the myosin head from diverse plants, consensus sequences that characterise the amplified product as encoding a class V or class VIII myosin, and a monoclonal antibody that recognises an epitope conserved in the head of most plant, fungal, and animal myosins. A pair of stringent oligonucleotide primers was designed that, when used in the polymerase chain reaction, amplified at least eleven different myosins from five species of angiosperms and one sequence from each of the fernAzolla and the algaeNitella andPhaeodactylum. The amplified products, comprising 126 to 135 nucleotides encoding part of the myosin head domain, can be used as myosin-specific probes to screen genomic and cDNA libraries. To identify the products of plant myosin genes, we raised a monoclonal antibody (anti-CHE) to a nine amino acid peptide matching a conserved head epitope showing not more than single amino acid substitutions in most published myosin genes. This antibody recognises rabbit skeletal myosin and multiple polypeptides of >100 kDa in four angiosperms and in the algaNitella. Relating the Mr values of immunoreactive bands inArabidopsis extracts to the predicted Mr values of the products of five myosin genes supports the view that the antibody recognises both myosins V and VIII together with the products of some as yet unsequenced genes. The previously described MB170 antibodies may, in contrast, be specific for one or more type V myosins. Together, the polymerase chain reaction primers and the antibody represent versatile tools for identifying and categorising myosins in diverse plants. 相似文献
12.
In contrast to canonical proteases, myelin basic protein (MBP)-Sepharose-purified IgG from multiple sclerosis (MS) and systemic lupus erythematosus (SLE) patients efficiently hydrolyze only MBP, but not many other tested proteins. It was shown that anti-MBP SLE IgGs cleave nonspecific tri- and tetrapeptides with an extremely low efficiency and cannot efficiently hydrolyse longer oligopeptides corresponding to antigenic determinants (AGDs) of HIV-1 integrase. To identify all sites of IgG-mediated proteolysis corresponding to two AGDs of MBP, we have used a combination of reverse-phase chromatography (RPhC), MALDI spectrometry, and TLC to analyze the cleavage products of two (17- and 19-mer) encephalytogenic oligopeptides corresponding to these AGDs. Both oligopeptides contained several clustered major and minor sites of cleavage. The active sites of anti-MBP abzymes are localized on their light chains, while the heavy chains are responsible for the affinity of protein substrates. Interactions of intact globular proteins with both light and heavy chains of abzymes provide high specificity of MBP hydrolysis. The affinity of anti-MBP abzymes for intact MBP was ~10(3)-fold higher than for the oligopeptides. The data suggest that both oligopeptides interact mainly with the light chain of different monoclonal abzymes of total pool of IgGs, which possesses lower affinity for substrates, and therefore, depending on the oligopeptide sequences, their hydrolysis may be less specific. 相似文献