首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently observed a significant disulfide reduction problem during the scale‐up of a manufacturing process for a therapeutic antibody using a CHO expression system. Under certain conditions, extensive reduction of inter‐chain disulfide bonds of an antibody produced by CHO cell culture may occur during the harvest operations and/or the protein A chromatography step, resulting in the observation of antibody fragments (light chain, heavy chain, and various combination of both) in the protein A pools. Although all conditions leading to disulfide reduction have not been completely identified, an excessive amount of mechanical cell lysis generated at the harvest step appears to be an important requirement for antibody reduction (Trexler‐Schmidt et al., 2010 ). We have been able to determine the mechanism by which the antibody is reduced despite the fact that not all requirements for antibody reduction were identified. Here we present data strongly suggesting that the antibody reduction was caused by a thioredoxin system or other reducing enzymes with thioredoxin‐like activity. The intracellular reducing enzymes and their substrates/cofactors apparently were released into the harvest cell culture fluid (HCCF) when cells were exposed to mechanical cell shear during harvest operations. Surprisingly, the reducing activity in the HCCF can last for a long period of time, causing the reduction of inter‐chain disulfide bonds in an antibody. Our findings provide a basis for designing methods to prevent the antibody reduction during the manufacturing process. Biotechnol. Bioeng. 2010;107:622–632. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
Antibody disulfide bond reduction during monoclonal antibody (mAb) production is a phenomenon that has been attributed to the reducing enzymes from CHO cells acting on the mAb during the harvest process. However, the impact of antibody reduction on the downstream purification process has not been studied. During the production of an IgG2 mAb, antibody reduction was observed in the harvested cell culture fluid (HCCF), resulting in high fragment levels. In addition, aggregate levels increased during the low pH treatment step in the purification process. A correlation between the level of free thiol in the HCCF (as a result of antibody reduction) and aggregation during the low pH step was established, wherein higher levels of free thiol in the starting sample resulted in increased levels of aggregates during low pH treatment. The elevated levels of free thiol were not reduced over the course of purification, resulting in carry‐over of high free thiol content into the formulated drug substance. When the drug substance with high free thiols was monitored for product degradation at room temperature and 2–8°C, faster rates of aggregation were observed compared to the drug substance generated from HCCF that was purified immediately after harvest. Further, when antibody reduction mitigations (e.g., chilling, aeration, and addition of cystine) were applied, HCCF could be held for an extended period of time while providing the same product quality/stability as material that had been purified immediately after harvest. Biotechnol. Bioeng. 2017;114: 1264–1274. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals Inc.  相似文献   

3.
Monoclonal antibody interchain disulfide bond reduction was observed in a Chinese Hamster Ovary manufacturing process that used single-use technologies. A similar reduction has been reported for processes that involved high mechanical shear recovery unit operations, such as continuous flow centrifugation and when the clarified harvest was stored under low dissolved oxygen (DO) conditions (Trexler-Schmidt et al., 2010. Biotechnology and Bioengineering, 106(3), 452–461). The work described here identifies disposable depth filtration used during cell culture harvest operations as a shear-inducing unit operation causing cell lysis. As a result, reduction of antibody interchain disulfide bonds was observed through the same mechanisms described for continuous flow centrifugation. Small-scale depth-filtration models were developed, and the differential pressure (Δ P) of the primary depth filter was identified as the key factor contributing to cell lysis. Strong correlations of Δ P and cell lysis were generated by measuring the levels of lactate dehydrogenase and thiol in the filtered harvest material. A simple risk mitigation strategy was implemented during manufacturing by providing an air overlay to the headspace of a single-use storage bag to maintain sufficient DO in the clarified harvest. In addition, enzymatic characterization studies determined that thioredoxin reductase and glucose-6-phosphate dehydrogenase are critical enzymes involved in antibody reduction in a nicotinamide adenine dinucleotide phosphate (NADP +)/NADPH-dependent manner.  相似文献   

4.
Monoclonal antibody (mAb) interchain disulfide bond reduction has been observed in a recent large-scale clinical manufacturing operation. A massive reduction/precipitation at post-clarification steps has occurred. This note presents the development of a novel analytical approach to identify the “potential reduction”—a unique approach to predict the propensity of a monomeric-profiled mAb to be reduced in the post-harvest stage, such as harvest clarification and/or purification steps. The core of this new approach includes comparing the non-reducing capillary electrophoresis profiles of pre- and post-vacuum treated mAb in harvest cell culture fluid (HCCF). Using this approach, the potential reductions of two in-house mAbs in the unclarified and clarified cell culture harvest were assessed.  相似文献   

5.
The phenomenon of monoclonal antibody (mAb) interchain disulfide bond reduction during manufacturing processes continues to be a focus of the biotechnology industry due to the potential for loss of product, increased complexity of purification processes, and reduced stability of the drug product. We hypothesized that antibody reduction can be mitigated by controlling the cell culture redox potential and subsequently established a threshold redox potential above which the mAb remained intact and below which there were significant and highly variable amounts of reduced mAb. Using this knowledge, we developed three control schemes to prevent mAb reduction in the bioreactor by controlling the cell culture redox potential via an online redox probe. These control methodologies functioned by increasing the concentration of dissolved oxygen (DO), copper (II) (Cu), or both DO and Cu to maintain the redox potential above the threshold value. Using these methods, we were able to demonstrate successful control of antibody reduction. Importantly, the redox control strategies did not significantly impact the cell growth, viability, mAb production, or product quality attributes including aggregates, C-terminal lysine, high mannose, deamidation, and glycation. Our results demonstrate that controlling the cell culture redox potential is a simple and effective method to prevent mAb reduction.  相似文献   

6.
单克隆抗体生产过程中二硫键的还原是生物制药领域中的一个常见技术难题,可产生低分子量碎片,影响产品质量,导致蛋白纯度降低、稳定性下降,影响药物的安全性和有效性。抗体二硫键还原实质上是由细胞内的硫氧还蛋白系统和谷胱甘肽系统引起的可逆氧化还原反应,并与具体生产过程参数有关。近年来,随着抗体药物和哺乳动物细胞培养工艺规模的发展,二硫键还原问题频繁发生。为解决此问题,研究人员不断尝试并建立了多种预防方法以保证产品质量。概述了抗体二硫键结构、二硫键还原的主要成因及生产过程中的形成因素,重点阐述了消除或减缓抗体二硫键还原的方法、对策,并列举了几种可行的过程分析技术,以期为单克隆抗体药物生产制造工艺的进一步优化提供参考。  相似文献   

7.
Manufacturing-induced disulfide reduction has recently been reported for monoclonal human immunoglobulin gamma (IgG) antibodies, a widely used modality in the biopharmaceutical industry. This effect has been tied to components of the intracellular thioredoxin reduction system that are released upon cell breakage. Here, we describe the effect of process parameters and intrinsic molecule properties on the extent of reduction. Material taken from cell cultures at the end of production displayed large variations in the extent of antibody reduction between different products, including no reduction, when subjected to the same reduction-promoting harvest conditions. Additionally, in a reconstituted model in which process variables could be isolated from product properties, we found that antibody reduction was dependent on the cell line (clone) and cell culture process. A bench-scale model using a thioredoxin/thioredoxin reductase regeneration system revealed that reduction susceptibility depended on not only antibody class but also light chain type; the model further demonstrates that the trend in reducibility was identical to DTT reduction sensitivity following the order IgG1λ > IgG1κ > IgG2λ > IgG2κ. Thus, both product attributes and process parameters contribute to the extent of antibody reduction during production.  相似文献   

8.
Antibody disulfide bond (DSB) reduction during manufacturing processes is a widely observed phenomenon attributed to host cell reductases present in harvest cell culture fluid. Enzyme-induced antibody reduction leads to product fragments and aggregates that increase the impurity burden on the purification process. The impact of reduction on bivalent bispecific antibodies (BisAbs), which are increasingly entering the clinic, has yet to be investigated. We focused on the reduction and reoxidation properties of a homologous library of bivalent BisAb formats that possess additional single-chain Fv (scFv) fragments with engineered DSBs. Despite all BisAbs having similar susceptibilities to enzymatic reduction, fragmentation pathways were dependent on the scFv-fusion site. Reduced molecules were allowed to reoxidize with and without low pH viral inactivation treatment. Both reoxidation studies demonstrated that multiple, complex BisAb species formed as a result of DSB mispairing. Furthermore, aggregate levels increased for all molecules when no low pH treatment was applied. Combined, our results show that complex DSB mispairing occurs during downstream processes while aggregate formation is dependent on sample treatment. These results are applicable to other novel monoclonal antibody-like formats containing engineered DSBs, thus highlighting the need to prevent reduction of novel protein therapeutics to avoid diminished product quality during manufacturing.  相似文献   

9.
The presence of aggregated forms of proteins can be problematic for therapeutics due to the potential for immunogenic and pharmacokinetic issues. Although downstream processing can remove the aggregated forms, inhibiting aggregate formation upstream during the cell culture stage could reduce the burden on downstream processing and potentially improve process yields. This study first examined the effects of environmental factors (temperature, pH, and dissolved oxygen) and medium components (bivalent copper ion, cysteine, and cystine) on the aggregation of two different recombinant fusion proteins expressed by Chinese hamster ovary (CHO) cells. Any strategy to reduce protein aggregation upstream during cell culture must also consider potential effects on critical upstream parameters such as cell growth, harvest titer, and protein sialylation levels. Manipulating the culture temperature shift and cystine concentration in the medium were both identified as effective and practical strategies for reducing protein aggregation in both CHO-cell expression systems. Furthermore, a combination of both strategies was more effective in reducing protein aggregation levels compared to either approach individually; and without any negative effects on harvest titer and protein sialylation. This study demonstrates a practical methodology for decreasing protein aggregation during upstream processing and emphasizes the importance of process understanding to ensure production of recombinant glycoprotein therapeutics with consistent product quality.  相似文献   

10.
D-Penicillamine is a potent copper (Cu) chelating agent. D-Pen reduces Cu(II) to Cu(I) in the process of chelation while at the same time being oxidized to D-penicillamine disulfide. It has been proposed that hydrogen peroxide is generated during this process. However, definitive experimental proof that hydrogen peroxide is generated remains lacking. Thus, the major aims of these studies were to confirm and quantitatively assess the in vitro production of hydrogen peroxide during copper catalyzed D-penicillamine oxidation. The potential cytotoxic effect of hydrogen peroxide generation was also investigated in vitro against MCF-7 human breast cancer cells. Cell cytotoxicity resulting from the incubation of D-penicillamine with copper was compared to that of D-penicillamine, copper and hydrogen peroxide. The mechanism of copper catalyzed D-penicillamine oxidation and simultaneous hydrogen peroxide production was investigated as a function of time, concentration of cupric sulfate or ferric chloride, temperature, pH, anaerobic condition and chelators such as ethylenediaminetetraacetic acid and bathocuproinedisulfonic acid. A simple, sensitive and rapid HPLC assay was developed to simultaneously detect D-penicillamine, its major oxidation product D-penicillamine disulfide, and hydrogen peroxide in a single run. Hydrogen peroxide was shown to be generated in a concentration dependent manner as a result of D-penicillamine oxidation in the presence of cupric sulfate. Chelators such as ethylenediaminetetraacetic acid and bathocuproinedisulfonic acid were able to inhibit D-penicillamine oxidation. The incubation of MCF-7 human breast cancer cells with D-penicillamine plus cupric sulfate resulted in the production of reactive oxygen species within the cell and cytotoxicity that was comparable to free hydrogen peroxide.  相似文献   

11.
We report that the production of hydrogen peroxide by radical chain reductions of molecular oxygen into water in buffers leads to hinge degradation of a human IgG1 under thermal incubation conditions. The production of the hydrogen peroxide can be accelerated by superoxide dismutase or redox active metal ions or inhibited by free radical scavengers. The hydrogen peroxide production rate correlates well with the hinge cleavage. In addition to radical reaction mechanisms described previously, new degradation pathways and products were observed. These products were determined to be generated via radical reactions initiated by electron transfer and addition to the interchain disulfide bond between Cys(215) of the light chain and Cys(225) of the heavy chain. Decomposition of the resulting disulfide bond radical anion breaks the C-S bond at the side chain of Cys, converting it into dehydroalanine and generating a sulfur radical adduct at its counterpart. The hydrolysis of the unsaturated dehydropeptides removes Cys and yields an amide at the C terminus of the new fragment. Meanwhile, the competition between the carbonyl (-C(α)ONH-) and the side chain of Cys allows an electron transfer to the α carbon, forming a new intermediate radical species (-(·)C(α)(O(-))NH-) at Cys(225). Dissociative deamidation occurs along the N-C(α) bond, resulting in backbone cleavage. Given that hydrogen peroxide is a commonly observed product of thermal stress and plays a role in mediating the unique degradation of an IgG1, strategies for improving stability of human antibody therapeutics are discussed.  相似文献   

12.
13.
The NADPH-supported enzymatic reduction of molecular oxygen by ferredoxin-ferredoxin:NADP+ oxidoreductase was investigated. The ESR spin trapping technique was employed to identify the free radical metabolites of oxygen. The spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was used to trap and identify the oxygen-derived free radicals. [17O]Oxygen was employed to demonstrate that the oxygen-centered radicals arose from molecular oxygen. From the data, the following scheme is proposed: (Formula:see text). The formation of the free hydroxyl radical during the reduction of oxygen was demonstrated with quantitative competition experiments. The hydroxyl radical abstracted hydrogen from ethanol or formate, and the resulting scavenger-derived free radical was trapped with known rate constants. If H2O2 was added to the enzymatic reaction, a stimulation of the production of the hydroxyl radical was obtained. This stimulation was manifested in both the concentration and the rate of formation of the DMPO/hydroxyl radical adduct. Catalase was shown to inhibit formation of the hydroxyl radical adduct, further supporting the formation of hydrogen peroxide as an intermediate during the reduction of oxygen. All three components, ferredoxin, ferredoxin:NADP+ oxidoreductase, and NADPH, were required for reduction. Ferredoxin:NADP+ oxidoreductase reduces ferredoxin, which in turn is responsible for the reduction of oxygen to hydrogen peroxide and ultimately the hydroxyl radical. The effect of transition metal chelators on the DMPO/hydroxyl radical adduct concentration suggests that the reduction of chelated iron by ferredoxin is responsible for the reduction of hydrogen peroxide to the hydroxyl radical via Fenton-type chemistry.  相似文献   

14.
Treatment of the transformed glucocorticoid receptor with hydrogen peroxide promotes the formation of disulfide bonds and inhibits the ability of the receptor to bind to DNA (Tienrungroj, W., Meshinchi, S., Sanchez, E. R., Pratt, S. E., Grippo, J. F., Holmgren, A., and Pratt, W. B. (1987) J. Biol. Chem. 262, 6992-7000). It has not been determined whether the inhibition of DNA binding activity is due to disulfide bonds formed within the DNA binding domain or between the DNA binding domain and another region of the receptor. In this paper, we examined the ability of hydrogen peroxide to inactivate the DNA binding activity of the mouse glucocorticoid receptor. We show that inhibition of DNA binding activity caused by hydrogen peroxide can be accounted for entirely by the formation of disulfide bonds between cysteine residues lying within the 15-kDa tryptic fragment containing the DNA binding domain of the receptor. Reversal of the peroxide-induced inactivation of DNA binding activity requires both zinc and a thiol-disulfide exchange reagent, such as dithiothreitol. Peroxide also eliminates recognition of the intact receptor and the 15-kDa tryptic fragment by the BuGR monoclonal antibody, and the reactivity of the BuGR epitope is restored by reduction without a requirement for zinc. Pretreatment of the receptor with methyl methanethiosulfonate inhibits much of the peroxide-mediated inactivation of the BuGR epitope but pretreatment with N-ethylmaleimide does not. Similarly, DNA binding activity of the receptor is inhibited by methyl methanethiosulfonate but not by N-ethylmaleimide. These results are consistent with the proposal that peroxide promotes the formation of disulfide bonds between thiols that lie spatially close to one another in the 15-kDa tryptic fragment, resulting in rapid elimination of zinc. Restoration of the zinc finger structure restores DNA-binding activity but restoration of the BuGR epitope requires only reduction without restoration of the zinc fingers.  相似文献   

15.
The Quiescin-sulfhydryl oxidase (QSOX) family of flavoenzymes catalyzes the direct and facile insertion of disulfide bonds into unfolded reduced proteins with concomitant reduction of oxygen to hydrogen peroxide. This review discusses the chemical mechanism of these enzymes and the involvement of thioredoxin and flavin-binding domains in catalysis. The variability of CxxC motifs in the QSOX family is highlighted and attention is drawn to the steric factors that may promote efficient thiol/disulfide exchange during oxidative protein folding. The varied cellular location of these multi-domain sulfhydryl oxidases is reviewed and potential intracellular and extracellular roles are summarized. Finally, this review identifies important unresolved questions concerning this ancient family of sulfhydryl oxidases.  相似文献   

16.
Kettle AJ  Winterbourn CC 《Biochemistry》2001,40(34):10204-10212
The predominant physiological activity of myeloperoxidase is to convert hydrogen peroxide and chloride to hypochlorous acid. However, this neutrophil enzyme also degrades hydrogen peroxide to oxygen and water. We have undertaken a kinetic analysis of this reaction to clarify its mechanism. When myeloperoxidase was added to hydrogen peroxide in the absence of reducing substrates, there was an initial burst phase of hydrogen peroxide consumption followed by a slow steady state loss. The kinetics of hydrogen peroxide loss were precisely mirrored by the kinetics of oxygen production. Two mols of hydrogen peroxide gave rise to 1 mol of oxygen. With 100 microM hydrogen peroxide and 6 mM chloride, half of the hydrogen peroxide was converted to hypochlorous acid and the remainder to oxygen. Superoxide and tyrosine enhanced the steady-state loss of hydrogen peroxide in the absence of chloride. We propose that hydrogen peroxide reacts with the ferric enzyme to form compound I, which in turn reacts with another molecule of hydrogen peroxide to regenerate the native enzyme and liberate oxygen. The rate constant for the two-electron reduction of compound I by hydrogen peroxide was determined to be 2 x 10(6) M(-1) s(-1). The burst phase occurs because hydrogen peroxide and endogenous donors are able to slowly reduce compound I to compound II, which accumulates and retards the loss of hydrogen peroxide. Superoxide and tyrosine drive the catalase activity because they reduce compound II back to the native enzyme. The two-electron oxidation of hydrogen peroxide by compound I should be considered when interpreting mechanistic studies of myeloperoxidase and may influence the physiological activity of the enzyme.  相似文献   

17.
Anaerobic reduction of hydrogen peroxide in a xanthine/xanthine oxidase system by adriamycin semiquinone in the presence of chelators and radical scavengers was investigated by direct electron paramagnetic resonance and spin trapping techniques. Under these conditions, adriamycin semiquinone appears to react with hydrogen peroxide forming the hydroxyl radical in the presence of chelators such as ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid. In the absence of chelators, a related, but unknown oxidant is formed. In the presence of desferrioxamine, adriamycin semiquinone does not disappear in the presence of hydrogen peroxide at a detectable rate. The presence of adventitious iron is therefore implicated during adriamycin semiquinone-catalyzed reduction of hydrogen peroxide. Formation of alpha-hydroxyethyl radical and carbon dioxide radical anion from ethanol and formate, respectively, was detected by spin trapping. Both the hydroxyl radical and the related oxidant react with these scavengers, forming the corresponding radical. In the presence of scavengers from which reducing radicals are formed, the rate of consumption of hydrogen peroxide in this system is increased. This result can be explained by a radical-driven Fenton reaction.  相似文献   

18.
The formation of hydrogen peroxide during the oxidation of NADH by purified preparations of cytochrome o has been demonstrated by employing three independent methods: polarographic, colorimetric, and fluorometric. The first two methods were used to assay for the accumulation of hydrogen peroxide and showed that hydrogen peroxide did accumulate as a product, but only about 30% of the oxygen consumed or 15 to 20% of the NADH oxidized was recoverable as hydrogen peroxide. This lack of 1:1 stoichiometry was not due to residual catalase activity in these preparations which could be eliminated by freeze-thawing. Thus, hydrogen peroxide may not be the sole or primary product of the NADH-cytochrome o oxidase reaction. The fluorometric assay could be coupled directly to the NADH-cytochrome o oxidase reaction in one medium, and this method showed that hydrogen peroxide was generated continuously from the beginning of the reaction in a 1:1 stoichiometry, hydrogen peroxide generated to NADH oxidized. This result suggests that hydrogen peroxide is an intermediate that can be trapped efficiently under the conditions of the fluorometric assay, whereas under the conditions of the first two assays most of the hydrogen peroxide generated undergoes further reaction. Exogenously added FAD or FMN increased the percentage of hydrogen peroxide that accumulated in the NADHcytochrome o oxidase reaction. Flavin is believed to act on the reductase side of cytochrome o so the increased percentage of hydrogen peroxide is not likely to result from the direct reaction of reduced flavin with oxygen.  相似文献   

19.
The peroxiredoxins define an emerging family of peroxidases able to reduce hydrogen peroxide and alkyl hydroperoxides with the use of reducing equivalents derived from thiol-containing donor molecules such as thioredoxin, glutathione, trypanothione and AhpF. Peroxiredoxins have been identified in prokaryotes as well as in eukaryotes. Peroxiredoxin 5 (PRDX5) is a novel type of mammalian thioredoxin peroxidase widely expressed in tissues and located cellularly to mitochondria, peroxisomes and cytosol. Functionally, PRDX5 has been implicated in antioxidant protective mechanisms as well as in signal transduction in cells. We report here the 1.5 A resolution crystal structure of human PRDX5 in its reduced form. The crystal structure reveals that PRDX5 presents a thioredoxin-like domain. Interestingly, the crystal structure shows also that PRDX5 does not form a dimer like other mammalian members of the peroxiredoxin family. In the reduced form of PRDX5, Cys47 and Cys151 are distant of 13.8 A although these two cysteine residues are thought to be involved in peroxide reductase activity by forming an intramolecular disulfide intermediate in the oxidized enzyme. These data suggest that the enzyme would necessitate a conformational change to form a disulfide bond between catalytic Cys47 and Cys151 upon oxidation according to proposed peroxide reduction mechanisms. Moreover, the presence of a benzoate ion, a hydroxyl radical scavenger, was noted close to the active-site pocket. The possible role of benzoate in the antioxidant activity of PRDX5 is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号