首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro, Purkinje cell behaviour is sometimes studied in a dissociated soma preparation in which the dendritic projection has been cleaved. A fraction of these dissociated somas spontaneously burst. The mechanism of this bursting is incompletely understood. We have constructed a biophysical Purkinje soma model, guided and constrained by experimental reports in the literature, that can replicate the somatically driven bursting pattern and which hypothesises Persistent Na+ current (INaP) to be its burst initiator and SK K+ current (ISK) to be its burst terminator.  相似文献   

2.
Previous studies have described the presence of alternating activity induced in left and right ventral roots of the neonate rat in vitro brainstem-spinal cord preparation, following application of certain neuroactive substances to the bathing solution. The present findings show the presence of chemically induced, adult-like coordinated airstepping demonstrated by electromyographic recordings in the hindlimb-attached in vitro brainstem-spinal cord preparation. Analysis of muscular activity demonstrated alternation between antagonists of one limb and between agonists of different limbs, as well as a proximodistal delay in agonists active at different joints of the same limb. Neuroactive agents were applied independently to either the brainstem or spinal cord bath. The substances surveyed in the present studies included some of those used previously, as well as additional compounds: bicuculline and picrotoxin (γ-aminobutyric acid-ergic antagonists), N-methyl-D-aspartic acid (excitatory amino acid agonist), substance P, acetylcholine, carbachol (cholinergic agonist), and serotonin. Application of these substances to the brainstem bath produced rhythmic airstepping. Application of dopamine, aspartate, glutamate, and N-methyl-D-aspartic acid to the spinal cord bath also produced rhythmic airstepping, while application of acetylcholine produced tonic, long-lasting co-contractions. These findings reveal the presence of several neurochemical systems in the central nervous system that can be activated at birth to induce coordinated airstepping in the neonate rat in vitro brainstem-spinal cord preparation.  相似文献   

3.
Based on our own data on generation of spindle-like field electrical activity in neuronal barrels of the rat somatic cortex and also on the published data on the properties of voltage-dependent channels in the membranes of cortical cells, we developed a model of the ensemble (simple network) of neurons connected by electrical synapses. Such connections were found earlier in neurophysiological and ultramicroscopic studies. Model neurons with membranes having sodium, potassium, and calcium channels described in the literature were capable of generating bursting rhythmic impulse activity under conditions of switching off of synaptic connections between cells (isolation). With switching on of electrical synapses, spiking generated by separate neurons, which initially was nonsynchronous, became synchronized in time. Ipso facto, we demonstrated the ability of pacemaker oscillatory activity to be electrotonically synchronized in ensembles of neurons connected with electrical synapses.  相似文献   

4.
Consequences of synaptic plasticity in the lamprey spinal CPG are analyzed by means of simulations. This is motivated by the effects substance P (a tachykinin) and serotonin (5-hydroxytryptamin; 5-HT) have on synaptic transmission in the locomotor network. Activity-dependent synaptic depression and potentiation have recently been shown experimentally using paired intracellular recordings. Although normally activity-dependent plasticity presumably does not contribute to the patterning of network activity, this changes in the presence of the neuromodulators substance P and 5-HT, which evoke significant plasticity. Substance P can induce a faster and larger depression of inhibitory connections but potentiation of excitatory inputs, whereas 5-HT induces facilitation of both inhibitory and excitatory inputs. Changes in the amplitude of the first postsynaptic potential are also seen. These changes could thus be a potential mechanism underlying the modulatory role these substances have on the rhythmic network activity.The aim of the present study has been to implement the activity dependent synaptic depression and facilitation induced by substance P and 5-HT into two alternative models of the lamprey spinal locomotor network, one relying on reciprocal inhibition for bursting and one in which each hemicord is capable of oscillations. The consequences of the plasticity of inhibitory and excitatory connections are then explored on the network level.In the intact spinal cord, tachykinins and 5-HT, which can be endogenously released, increase and decrease the frequency of the alternating left-right burst pattern, respectively. The frequency decreasing effect of 5-HT has previously been explained based on its conductance decreasing effect on K Ca underlying the postspike afterhyperpolarization (AHP). The present simulations show that short-term synaptic plasticity may have strong effects on frequency regulation in the lamprey spinal CPG. In the network model relying on reciprocal inhibition, the observed effects substance P and 5-HT have on network behavior (i.e., a frequency increase and decrease respectively) can to a substantial part be explained by their effects on the total extent and time dynamics of synaptic depression and facilitation. The cellular effects of these substances will in the 5-HT case further contribute to its network effect.  相似文献   

5.
The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized “hopping” pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left–right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model reproduced, and suggested explanation for, a series of experimental phenomena and generated predictions available for experimental testing.  相似文献   

6.
We studied the mechanisms of generation of pacemaker activity in identified neurons of Helix pomatia. For this purpose, we isolated the PPa2 and PPa7 neurons generating spontaneous rhythmic monomodal activity and PPa1 neuron with bursting activity. It was demonstrated that isolated PPa2 and PPa7 cells produce endogenous rhythmic activity that was not considerably modified by external application of 1 mM CdCl2. Sometimes, only low-amplitude dendritic action potentials (AP) were observed instead of generation of full-amplitude somatic AP. In contrast, isolation of the PPa1 neuron eliminated its bursting activity, but subsequent application of oxytocin on this neuron recovered such activity. This finding shows that the bursting activity of the PPa1 neuron is of an exogenous nature. Application of 1 mM CdCl2 suppressed this bursting activity, but when Cd2+ was applied against the background of superfusion of the neuron with Ringer solution containing a bursting activity-initiating neuropeptide obtained from the molluscan CNS, this blocker was incapable of suppressing the bursting activity. A blocker of the hyperpolarization-activated current (I h , H current), Cs+ (10 mM) exerted no noticeable effect on the activity of the studied neurons. Our findings allow us to conclude that the pacemaker activity is initiated within the dendritic tree of a cell and is then electrotonically spread to the soma, where full-amplitude AP are generated. It seems probable that Ca2+ ions and H current are not directly involved in generation of the pacemaker activity in the studied snail neurons.  相似文献   

7.
The human bronchial cell line16HBE14o– was used as a model of airway epithelial cells to study the Ca2+-dependent Cl secretion and the identity of KCa channels involved in the generation of a favorable driving force for Cl exit. After ionomycin application, a calcium-activated short-circuit current (I sc) developed, presenting a transient peak followed by a plateau phase. Both phases were inhibited to different degrees by NFA, glybenclamide and NPPB but DIDS was only effective on the peak phase. 86Rb effluxes through both apical and basolateral membranes were stimulated by calcium, blocked by charybdotoxin, clotrimazole and TPA. 1-EBIO, a SK-channel opener, stimulated 86Rb effluxes. Block of basolateral KCa channels resulted in I sc inhibition but, while reduced, I sc was still observed if mucosal Cl was lowered. Among SK family members, only SK4 and SK1 mRNAs were detected by RT-PCR. KCNQ1 mRNAs were also identified, but involvement of KcAMP channels in Cl secretion was unlikely, since cAMP application had no effect on 86Rb effluxes. Moreover, chromanol 293B or clofilium, specific inhibitors of KCNQ1 channels, had no effect on cAMP-dependent I sc. In conclusion, two distinct components of Cl secretion were identified by a pharmacological approach after a Ca i 2+ rise. KCa channels presenting the pharmacology of SK4 channels are present on both apical and basolateral membranes, but it is the basolateral SK4-like channels that play a major role in calcium-dependent chloride secretion in 16HBE14o– cells.  相似文献   

8.
Most previous models of the spinal central pattern generator (CPG) underlying locomotion in the lamprey have relied on reciprocal inhibition between the left and right side for oscillations to be produced. Here, we have explored the consequences of using self-oscillatory hemisegments. Within a single hemisegment, the oscillations are produced by a network of recurrently coupled excitatory neurons (E neurons) that by themselves are not oscillatory but when coupled together through N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionicacid (AMPA)/kainate transmission can produce oscillations. The bursting mechanism relies on intracellular accumulation of calcium that activates Ca2+-dependent K+. The intracellular calcium is modeled by two different intracellular calcium pools, one of which represents the calcium entry following the action potential, CaAP pool, and the other represents the calcium inflow through the NMDA channels, CaNMDA pool. The Ca2+-dependent K+ activated by these two calcium pools are referred to as KCaAP and KCaNMDA, respectively, and their relative conductances are modulated and increase with the background activation of the network. When changing the background stimulation, the bursting activity in this network can be made to cover a frequency range of 0.5–5.5 Hz with reasonable burst proportions if the adaptation is modulated with the activity. When a chain of such hemisegments are coupled together, a phase lag along the chain can be produced. The local oscillations as well as the phase lag is dependent on the axonal conduction delay as well as the types of excitatory coupling that are assumed, i.e. AMPA/kainate and/or NMDA. When the caudal excitatory projections are extended further than the rostral ones, and assumed to be of approximately equal strength, this kind of network is capable of reproducing several experimental observations such as those occurring during strychnine blockade of the left-right reciprocal inhibition. Addition of reciprocally coupled inhibitory neurons in such a network gives rise to antiphasic activity between the left and right side, but not necessarily to any change of the frequency if the burst proportion of the hemisegmental bursts is well below 50%. Prolongation of the C neuron projection in the rostrocaudal direction restricts the phase lag produced by only the excitatory hemisegmental network by locking together the interburst intervals at different levels of the spinal cord. Received: 29 September 1998 Accepted in Revised Form: 26 March 1999  相似文献   

9.
We delineated the role of Ca2+-activated K+ channels in the phenomenon of spike frequency adaptation (SFA) exhibited by neurons in the caudal region of nucleus tractus solitarius (cNTS) using intracellular recording coupled with the current-clamp technique in rat brain slices. Intracellular injection of a constant depolarizing current evoked a train of action potentials whose discharge frequency declined rapidly to a lower steady-state level of irregular discharges. This manifested phenomenon of SFA was found to be related to extracellular Ca2+. Low Ca2+ (0.25 mM) or Cd2+ (0.5 mM) in the perfusing medium resulted in a significant increase in the adaptation time constant (adap) and an appreciable reduction in the percentage adaptation of spike frequency (Fadap). In addition, the evoked discharges were converted from an irregular to a regular pattern, accompanied by a profound increase in mean firing rate. Intriguingly, similar alterations in adap, Fadap, discharge pattern and discharge rate were elicited by apamin (1 µM), a selective blocker for small-conductance Ca2+-activated K+ (SK) channels. On the other hand, charybdotoxin (0.1 µM), a selective blocker for large-conductance Ca2+-activated K+ channels, was ineffective. Our results suggest that SK channels of cNTS neurons may subserve the generation of both SFA and irregular discharge patterns displayed by action potentials evoked with a prolonged depolarizing current.  相似文献   

10.
The in vitro neonatal rat spinal cord preparation is the first mammalian nervous system isolated from the brainstem to the caudal end of the spinal cord. It permits the study of the cellular properties of mammalian locomotor networks and is unique in containing all the nervous structures related to locomotion. Although being a very immature system, this model has been considered as an adult preparation in which mammalian locomotor central pattern generators can be studied in detail. Nevertheless, one can also follow the development of locomotor functions during the perinatal period. Contrary to the adult, all neuroactive substances can directly reach the cellular structures in the brainstem-spinal cord preparation. When a neuroactive substance is applied to the bath, a single rhythmic activity is recorded along the cord. In fact, three rhythms can be isolated: one at the cervical level for the forelimbs, one at the lumbar level for the hind limbs and one in the sacrococcygeal region for the tail. Studies carried out on this preparation deal with three major areas: (1) relations between spontaneous activity and maturation of spinal network, (2) organisation of the different spinal networks, (3) key role of the descending pathways.Abbreviations 5-HT serotonin - ADP after-depolarization - AHP after-hyperpolarization - CPG central pattern generator - E0-E21 embryonic day 0–21 - INs interneurones - MLR mesencephalic locomotor region - MNs motoneurones - NMA N-methyl-d,l-aspartic acid - P0-P21 postnatal day 0–21 - PCPA p-chloro phenylalanin  相似文献   

11.
Voltage-gated Ca2+ (CaV) channels are transmembrane proteins comprising three subfamilies named CaV1, CaV2 and CaV3. The CaV3 channel subfamily groups the low-voltage activated Ca2+ channels (LVA or T-type) a significant role in regulating neuronal excitability. CaV3 channel activity may lead to the generation of complex patterns of action potential firing such as the postinhibitory rebound (PIR). In the adult spinal cord, these channels have been found in dorsal horn interneurons where they control physiological events near the resting potential and participate in determining excitability. In motoneurons, CaV3 channels have been found during development, but their functional expression has not yet been reported in adult animals. Here, we show evidence for the presence of CaV3 channel-mediated PIR in motoneurons of the adult turtle spinal cord. Our results indicate that Ni2+ and NNC55-0396, two antagonists of CaV3 channel activity, inhibited PIR in the adult turtle spinal cord. Molecular biology and biochemical assays revealed the expression of the CaV3.1 channel isotype and its localization in motoneurons. Together, these results provide evidence for the expression of CaV3.1 channels in the spinal cord of adult animals and show also that these channels may contribute to determine the excitability of motoneurons.  相似文献   

12.
With the help of a standard voltage-clamp technique, we investigated transmembrane ion currents in isolated smooth muscle cells of the guinea pigtaenia coli. In Ca2+-dependent K+ current, we identified and studied the properties of an apamin-sensitive voltage-independent component carried through the channels of low conductance (in many publications called small conductance,I SK(Ca)). This component did not show the temporal inactivation;I SK(Ca) was insensitive to the action of 4 mM tetraethylammonium, but was completely blocked by 500 nM of apamin. It was shown thatI SK(Ca) is very sensitive to changes in the intracellular Ca2+ concentration ([Ca2+] i ): a decrease in [Ca2+] i up to 50 nM resulted in the almost complete blockade of the current. The entry of Ca ions into a cell from the external solution through the voltage-operated Ca2+ channels of L-type was not an obligatory condition for activation ofI SK(Ca). The current-voltage relationship forI SK(Ca) had a maximum within the voltage range of +20 to +50 mV. Neirofiziologiya/Neurophysiology, Vol. 32, No. 2, pp. 87–94, March–April, 2000.  相似文献   

13.
A recent study indicated that apamin-sensitive current (I KAS, mediated by apamin-sensitive small conductance calcium-activated potassium channels subunits) density significantly increased in heart failure and led to recurrent spontaneous ventricular fibrillation. While the underlying molecular correlation with SK channels is still undetermined, we hypothesized that they are remodeled in HF and that bisoprolol could reverse the remodeling. Volume-overload models were created on male Sprague-Dawley rats by producing an abdominal arteriovenous fistula. Confocal microscopy, quantitative real-time PCR, and western blot were performed to investigate the expression of SK channels and observe the influence of β-blocker bisoprolol on the expression of SK channels I KAS, and the effect of bisoprolol on I KAS and the sensitivity of I KAS to [Ca2+]i at single isolated cells were also explored using whole-cell patch clamp techniques. SK channels were remodeled in HF rats, displaying the significant increase of SK1 and SK3 channel expression. After the treatment of HF rats with bisoprolol, the expression of SK1 and SK3 channels was significantly downregulated, and bisoprolol effectively downregulated I KAS density as well as the sensitivity of I KAS to [Ca2+]i. Our data indicated that the expression of SK1 and SK3 increased in HF. Bisoprolol effectively attenuated the change and downregulated I KAS density as well as the sensitivity of I KAS to [Ca2+]i.  相似文献   

14.
Melanoma cells are transformed melanocytes of neural crest origin. K+ channel blockers have been reported to inhibit melanoma cell proliferation. We used whole-cell recording to characterize ion channels in four different human melanoma cell lines (C8161, C832C, C8146, and SK28). Protocols were used to identify voltage-gated (KV), Ca2+-activated (KCa), and inwardly rectifying (KIR) K+ channels; swelling-sensitive Cl channels (Clswell); voltage-gated Ca2+ channels (CaV) and Ca2+ channels activated by depletion of intracellular Ca2+ stores (CRAC); and voltage-gated Na+ channels (NaV). The presence of Ca2+ channels activated by intracellular store depletion was further tested using thapsigargin to elicit a rise in [Ca2+] i . The expression of K+ channels varied widely between different cell lines and was also influenced by culture conditions. KIR channels were found in all cell lines, but with varying abundance. Whole-cell conductance levels for KIR differed between C8161 (100 pS/pF) and SK28 (360 pS/pF). KCa channels in C8161 cells were blocked by 10 nm apamin, but were unaffected by charybdotoxin (CTX). KCa channels in C8146 and SK28 cells were sensitive to CTX (K d = 4 nm), but were unaffected by apamin. KV channels, found only in C8146 cells, activated at ∼−20 mV and showed use dependence. All melanoma lines tested expressed CRAC channels and a novel Clswell channel. Clswell current developed at 30 pS/sec when the cells were bathed in 80% Ringer solution, and was strongly outwardly rectifying (4:1 in symmetrical Cl). We conclude that different melanoma cell lines express a diversity of ion channel types. Received: 2 April 1996/Revised: 22 August 1996  相似文献   

15.
SK2- and KV4.2-containing K+ channels modulate evoked synaptic potentials in CA1 pyramidal neurons. Each is coupled to a distinct Ca2+ source that provides Ca2+-dependent feedback regulation to limit AMPA receptor (AMPAR)- and NMDA receptor (NMDAR)-mediated postsynaptic depolarization. SK2-containing channels are activated by Ca2+ entry through NMDARs, whereas KV4.2-containing channel availability is increased by Ca2+ entry through SNX-482 (SNX) sensitive CaV2.3 R-type Ca2+ channels. Recent studies have challenged the functional coupling between NMDARs and SK2-containing channels, suggesting that synaptic SK2-containing channels are instead activated by Ca2+ entry through R-type Ca2+ channels. Furthermore, SNX has been implicated to have off target affects, which would challenge the proposed coupling between R-type Ca2+ channels and KV4.2-containing K+ channels. To reconcile these conflicting results, we evaluated the effect of SK channel blocker apamin and R-type Ca2+ channel blocker SNX on evoked excitatory postsynaptic potentials (EPSPs) in CA1 pyramidal neurons from CaV2.3 null mice. The results show that in the absence of CaV2.3 channels, apamin application still boosted EPSPs. The boosting effect of CaV2.3 channel blockers on EPSPs observed in neurons from wild type mice was not observed in neurons from CaV2.3 null mice. These data are consistent with a model in which SK2-containing channels are functionally coupled to NMDARs and KV4.2-containing channels to CaV2.3 channels to provide negative feedback regulation of EPSPs in the spines of CA1 pyramidal neurons.  相似文献   

16.
Small‐conductance calcium‐activated potassium (SK3) channels have been detected in human myometrium and we have previously shown a functional role of SK channels in human myometrium in vitro. The aims of this study were to identify the precise localization of SK3 channels and to quantify SK3 mRNA expression in myometrium from pregnant and non‐pregnant women. Myometrial biopsies were obtained from pregnant (n = 11) and non‐pregnant (n = 11) women. The expression of SK3 channels was assessed using immunohistochemistry and SK3 mRNA was determined by qRT‐PCR. In non‐pregnant myometrium SK3 immunoreactivity was observed in CD34 positive (CD34+) interstitial Cajal‐like cells (ICLC), now called telocytes. Although CD34+ cells were also present in pregnant myometrium, they lacked SK3 immunoreactivity. Furthermore, the immunohistochemical results showed that SK3 expression in vascular endothelium was similar between the two groups. CD117 immunoreactivity was only detected in small round cells that resemble mast cells. Compared to non‐pregnant myometrium we found significantly less SK3 mRNA in pregnant myometrium. We demonstrate that SK3 channels are localized solely in CD34+ cells and not in smooth muscle cells, and that the molecular expression of SK3 channels is higher in non‐pregnant compared to pregnant myometrium. On the basis of our previous study and the present findings, we propose that SK3 activators reduce contractility in human myometrium by modulating telocyte function. This is the first report to provide evidence for a possible role of SK3 channels in human uterine telocytes.  相似文献   

17.
Three neurons capable of generating coordinated bursting activity or synchronized slow-wave fluctuations in membrane potential (MP) were identified in the left parietal ganglion ofHelix pomatia. The function of these units contributes to regulating rhythmic opening and closing movements in the pneumostome. Both bursting activity and slow-wave neuronal MP synchronize with rhythmic movements of the pneumostome. Onset of bursting activity and fluctuations in MP on the one hand or suppression of these effects due to different influences on the cells on the other leads to initiation or extinction of pneumostome movements respectively. These neurons do not exhibit endogenous bursting activity but do produce a fairly high rate of firing activity without bursting pattern and without slow-waves in MP in isolation. Bursting activity occurs in these neurons in the intact central nervous system (CNS) as a result of gigantic synchronized IPSP in some cases and due to the aforementioned slow waves in MP and in others. No direct chemically- or electrically-operated synaptic connections exist between the three cells. Serotonin triggers both waves in MP and bursting activity in all three neurons in the intact CNS and exerts a pronounced hyperpolarizing action on each of these factors in isolation.N. K. Kol'tsov Institute of Developmental Biology, Academy of Sciences of the USSR. Moscow. Balaton Limnological Research Institute of the Hungarian Academy of Sciences, Tihany. Translated from Neirofiziologiya, Vol. 20, No. 4, pp. 509–517, July–August, 1988.  相似文献   

18.
Using a population density approach we study the dynamics of two interacting collections of integrate-and-fire-or-burst (IFB) neurons representing thalamocortical (TC) cells from the dorsal lateral geniculate nucleus (dLGN) and thalamic reticular (RE) cells from the perigeniculate nucleus (PGN). Each population of neurons is described by a multivariate probability density function that satisfies a conservation equation with appropriately defined probability fluxes and boundary conditions. The state variables of each neuron are the membrane potential and the inactivation gating variable of the low-threshold Ca2+ current IT. The synaptic coupling of the populations and external excitatory drive are modeled by instantaneous jumps in the membrane potential of postsynaptic neurons. The population density model is validated by comparing its response to time-varying retinal input to Monte Carlo simulations of the corresponding IFB network composed of 100 to 1000 cells per population. In the absence of retinal input, the population density model exhibits rhythmic bursting similar to the 7 to 14 Hz oscillations associated with slow wave sleep that require feedback inhibition from RE to TC cells. When the TC and RE cell potassium leakage conductances are adjusted to represent cholingergic neuromodulation and arousal of the network, rhythmic bursting of the probability density model may either persists or be eliminated depending on the number of excitatory (TC to RE) or inhibitory (RE to TC) connections made by each presynaptic cell. When the probability density model is stimulated with constant retinal input (10–100 spikes/sec), a wide range of responses are observed depending on cellular parameters and network connectivity. These include asynchronous burst and tonic spikes, sleep spindle-like rhythmic bursting, and oscillations in population firing rate that are distinguishable from sleep spindles due to their amplitude, frequency, or the presence of tonic spikes. In this context of dLGN/PGN network modeling, we find the population density approach using 2,500 mesh points and resolving membrane voltage to 0.7 mV is over 30 times more efficient than 1000-cell Monte Carlo simulations. Action Editor: David Golomb  相似文献   

19.
Dopamine (DA) released from the hypothalamus tonically inhibits pituitary lactotrophs. DA (at micromolar concentration) opens potassium channels, hyperpolarizing the lactotrophs and thus preventing the calcium influx that triggers prolactin hormone release. Surprisingly, at concentrations ∼1000 lower, DA can stimulate prolactin secretion. Here, we investigated whether an increase in a K+ current could mediate this stimulatory effect. We considered the fast K+ currents flowing through large-conductance BK channels and through A-type channels. We developed a minimal lactotroph model to investigate the effects of these two currents. Both I BK and I A could transform the electrical pattern of activity from spiking to bursting, but through distinct mechanisms. I BK always increased the intracellular Ca2+ concentration, while I A could either increase or decrease it. Thus, the stimulatory effects of DA could be mediated by a fast K+ conductance which converts tonically spiking cells to bursters. In addition, the study illustrates that a heterogeneous distribution of fast K+ conductances could cause heterogeneous lactotroph firing patterns. Action Editor: Christiane Linster  相似文献   

20.
Developing networks of the chick spinal cord become spontaneously active early in development and remain so until hatching. Experiments using an isolated preparation of the spinal cord have begun to reveal the mechanisms responsible for this activity. Whole-cell and optical recordings have shown that spinal neurons receive a rhythmic, depolarizing synaptic drive and experience rhythmic elevations of intracellular calcium during spontaneous episodes. Activity is expressed throughout the neuraxis and can be produced by different parts of the cord and by the isolated brain stem, suggesting that it does not depend upon the details of network architecture. Two factors appear to be particularly important for the production of endogenous activity. The first is the predominantly excitatory nature of developing synaptic connections, and the second is the presence of prolonged activity-dependent depression of network excitability. The interaction between high excitability and depression results in an equilibrium in which episodes are expressed periodically by the network. The mechanism of the rhythmic bursting within an episode is not understood, but it may be due to a “fast” form of network depression. Spontaneous embryonic activity has been shown to play a role in neuron and muscle development, but is probably not involved in the initial formation of connections between spinal neurons. It may be important in refining the initial connections, but this possibility remains to be explored. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 131–145, 1998
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号